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 On the Rule-Based Parsing of Czech 

Kiril Ribarov 

This paper presents various attempts to accustom the Rule-based Approach (RBA) as originally 
introduced by Eric Brill in 1993 (Brill 1993a), on the problem of parsing of Czech (a highly inflective 
language) within a dependency based syntactic framework (Sgall et al 1986). It is experimentally 
supported in this paper that the modification of RBA for the stated aim is neither simple nor straight-
forward for all attempts fail to produce such a set of rules that parses Czech with a comparable success 
rate to the one obtained for English or the one obtained for the currently best parser (statistical) for 
Czech (Collins et al. 1999).  

 At the beginning of this article the parsing problem restricted to the need of this work is specified. 
Further, the results of the first attempts to modify the rules for RBA parsing of Czech is presented, the 
influence of the cardinality of the tag set size of the parsing success rates is studied and a second attempt 
at a wider modification of the rule templates is provided. The article contains the basic accompanying 
experimental results and aims to be a solid background and a starting point for any adaptation of the 
rule-based approach for the purposes of parsing of an inflective language within a dependency based 
framework. 

1. On the understanding of parsing 

1.1. Firstly 

The question what a parser is can have a very trivial but at the same time a rather complex answer. To 
start with, I use the "trivial" one stating that a parser is a process of assigning a (labeled or unlabeled) 
syntactic tree structure to a sentence at the input; the input originally does not exhibit any kind of 
syntactic information. By a syntactic tree structure (being assigned during the parsing) I denote such 
syntactic structures as those being present in the treebank in use (PDT 2001).  

Let IN be an input sentence and SYN_OUT be the same sentence enriched with its syntactic 
information. Parsing can be defined as an algorithm transforming IN into SYN_OUT.  

Therefore, parsing can be viewed as a mapping between sets of INs (S) and SYN_OUTs (S): 

parsing: S −−> S. 

The desired mapping to be performed has to be classified as a very sparse one. To support this claim 
the number of combinatorially possible structures is given in the second column of Table 1 (if, as in the 
case of (Brill 1993b), only complexes of more than one member are understood as constituents) as 
opposed to linguistically located structures in the Penn Treebank in the third column (the combinatorial 
space of a dependency tree is even larger). Their ratio is presented in the fourth column. Assuming that a 
sentence of 20 tokens (including punctuation) is very likely, the ratio of found structures over all 
possible structures is of a value of 2.4 x 10-8. An algorithm using no linguistic knowledge will have to 
test all of those possibilities before selecting the correct parsing. From this perspective, the algorithm of 
automatic grammar generation could be specified as an algorithm of effective linguistic knowledge 
search within an extremely sparse combinatorial space.  
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i: 
sentence 
length 

T(i) =  
(i-1)T(i-2) + T(i-1) 

possible structures1

 
Found 

structures 

 
 

Ratio 
0 1  
1 1  
2 1  
3 3  
4 6  
5 18  
6 48 25 0,52083333 
7 156 24 0,15384615 
8 492 40 0,08130081 
9 1740 65 0,03735632 

10 6168 70 0,0113489 
11 23568  
12 91416  
13 374232  
14 1562640  
15 6801888  
16 30241488  
17 139071696  
18 653176992  
19 3156467520  
20 15566830368 379 2,4347E-08 

Table 1: The Combinatorial Sparseness of Parsing 

The most traditional understanding of parsing would be such where parsing is a mapping which 
assigns all possible syntactic structures to the input. This is inherent mainly to hand crafted systems (e.g. 
manually designed formal grammar parsers). As for the automatic procedures parsing is not just a 
mapping but a function, a single structure is assigned to a single input sentence. Although statistical 
parsing algorithms can be programmed to output not only the most probable output but also the less 
probable ones, thus giving more than a single output (within the rule-based approach it is more difficult 
to make such modifications) it is assumed that statistical and rule-based techniques (and other of similar 
nature) are not capable of a complete parsing of the input sentence. I have in mind that parsing primarily 
denotes an analysis according to the traditional understanding; nevertheless I will use the term parsing 
(and parser) for automatic procedures for syntactic analysis at any level of the syntactic description. 
These automatic procedures, as noted above, give mainly a single syntactic analysis of the input stream, 
although the input might exhibit more than one syntactic structure. 

As implicitly mentioned, the structure of the output 'mimics' the structure present in the treebank. 
The assignment of a parse to a sentence may be viewed in two steps: 

(a) assigning a tree structure to the sentence, and 

(b) assigning syntactic attributes to the sentence (dependency) elements. 

Three scenarios are possible: first (a) then (b), first (b) then (a), or (a) and (b) together.  

More freedom could be given to the discrete representation of the syntactic structures which are the 
output of the parser: assigning a syntactic structure to the input does not necessarily have to mean 

                                                           
1 The series represents the possible binary tree structures algorithmically possible, as only such are produced 
from Brill's rule-based parser. The total number of the possible tree structure is represented by the Catalan 
numbers series. 
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assigning only a tree structure. But if a non-tree structure is assigned, it should be transformable to a 
syntactic tree structure without loss of information. 

The syntactic structure to obtain is a surface syntactic structure (analytical structure)2 as defined and 
used in the Prague Dependency Treebank (PDT). A parser is the algorithm implementing the parsing as 
understood above. 

1.2. Secondly 

Revealing the analytical structure of the sentence is a complex process. Various experiments conveyed 
allow us to view syntactic analysis as a system with several modules (Figure 1).  

The parser is the main module of such a system, with the following requirements for its input and 
output: 

The input: A sentence or a word group acting as a sentence (e.g. a table). The sentence can be 
associated with its morphological information (see later on modifications of this information and 
selection of morphological information relevant for syntactic parsing). 

The output: analytical syntactic structure of the input sentence, or the input sentence accompanied by 
syntactic information such that it can be easily transformed into an analytical tree structure of the input 
sentence, or into a partial analytical tree that provides at least as much information as an analytical tree 
would have provided for the step to come, the deep syntactic parser (which is not a part of this work) 
representing the tectogrammatical (underlying syntactic) structure of the sentence. 

As stated earlier, a proper output should give all possible parses of the input sentence. Unfortunately, 
this aim is not possible to fulfil with the methods used here, although modifications of the automatic 
procedures that would not exclude different parses of the sentence (or make them impossible) are under 
development.  

      input sentence 
 
      preprocessing 
 
   sentence     non-sentence 
 
 
       structure assignment of non-sentences 
 
 
1. parsing of very short sentences 
 
 
   2. Main module: parsing of common sentences 
 
 
3. parsing of long sentences → breaking the long constructions into pieces, each of which can be 
parsed by module 2. 
 

syntactic units

Figure 1: Parsing components 

Besides the main module, other parts of the system are briefly described in the sequel. 

                                                           
2 Currently, procedures for automatic transformation of analytical (surface syntax) trees to tectogrammatical 
(deep syntax) ones is under development (Böhmova 2001). 
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The process of preprocessing identifies any kind of regular and fixed information. Its aim is to 
localize the regular parts of the text and the regular parts of the sentences, such as: 

- identification of tables, lists, sport event results (taken to be non-sentences) 

- localization of very short and very long sentences (sentences with a large number of verbs and 
rich punctuation) 

- identification of compound verbs (verbal analytical forms) 

- identification of prepositions and prepositional groups 

- certain coordinations  

- certain parenthetical parts 

- certain idioms and phrases. 

This list can be modified and is dependent on the language being processed. As mentioned earlier, 
the Czech language is considered here. The criterion of what can be a part of the preprocessing module 
is given by the ability of designing preprocessing rules such that they will not reduce the recall of the 
system. The need to separate long sentences from shorter ones results from unambiguous experiments, 
which show that the longer the sentence is the less successful is the parser. Breaking long sentences into 
smaller sentential segments reduces the combinatorial space of possible structures to be searched.  

Having in mind that PDT consists of various texts most of which are newspaper texts included in 
PDT without any editorial work or selections, one must expect a variety of non-sentences in the input. 
These non-sentences, like tables, lists, sport or chess results etc., are not our main objects of interest. 
Although being assigned an analytical structure, such a segment is dependent on the spelling norms of 
the language and exhibits firm regularities. Therefore, it is believed that if they are recognized and 
located correctly, specialized modules based on regular expressions can process them. It is our aim, if 
not to process them, at least to recognize them. 

During the whole process, verification of a 'list of language truths', called syntactic units, can be 
continuously performed. Syntactic units are language dependent truths about the processed language. As 
for Czech these units are to be searched in: 

- analytical forms (usually verbal; it is also a part of the preprocessing) 

- check on morphological agreement 

- list of atypical syntactic constructions based on the manual for analytical annotation, where such 
structures are exemplified, taken as a list of structured exceptions 

- results of a study of the discrete nature of the tree structures present in the treebank; non-
linguistic information that refers to the tree structures and their dimensions in the treebank.  

An ideal syntactic unit is such that does not reduce the recall of the system while not decreasing its 
precision. For a practical use a syntactic unit is such that behaves as an ideal one within certain pre-
stated threshold values. Syntactic units can be applied continuously throughout the process of parsing or 
in certain cycles as a post-processing (correction) unit. Syntactic units can also be a part of a 
preprocessing unit. The way how syntactic units are applied influences the success rate of the system. 

Speaking of parsing very short sentences I have in mind parsing sentences without verbs. In such 
sentences one may expect incomplete grammatical constructions having originally other than basic 
declarative, exclamatory or interrogative character in the text. Usually headers or other titles have these 
characteristics. It is justifiable to assume that such sentences can be successfully localized, which would 
allow, if needed, to process them separately (e.g. the rule-based method specially trained on such 
sentences could parse them in a satisfactory manner).  
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The main (parsing) module is independent on the type of the parser being used, but the system as 
designed expects an automatically trained parser being either a rule-based one or a statistical one. Any 
combinations of both are not excluded. 

To avoid misinterpretations and false expectations, I would like to stress that the parser under 
consideration is such that is automatically trained to recognize the syntax of the language, and does not 
include any human interactions; by rules I mean automatically learned rules, rather than manually 
crafted ones.  

2. The first modifications of the rule-based approach for parsing of Czech 

In my master thesis (Ribarov 1996) and as later published in Hajič, Ribarov (1997), for the first time an 
attempt at an application of a rule-based approach (originally proposed by Brill) for an automatic 
grammar generation of Czech was demonstrated. The mentioned work grew in a time when no treebank 
of Czech was available; a small data bank had to be created to allow for testing the algorithm and 
building and analyzing its modifications in order to be able to apply it for a dependency syntactic 
framework of Czech. Since these results are important for the later development and improvements, I 
summarize here the results of the above mentioned contributions. At the same time I use this occasion to 
introduce the basics of the rule-based approach and the used terminology. 

2.1. The Rule-Based Approach 

Belonging to the group of algorithms for automatic natural language learning the rule-based approach 
applied to parsing can be summarized in the following diagrams, one for the process of application used 
to parse an input text when a set of rules exists (Figure 2) and the other one for the process of learning 
during which the set of rules is created (Figure 3). 

 

 

 

 

 

 

 

 

 

Figure 2: The rule-based approach: application of rules 
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The rules are obtained automatically, although one may imagine also a set of manually written rules 
being a part of such a process3. The real power of the rule-based approach is in the ability to learn the 
rules from a syntactically preprocessed input. The supervised learning is performed on a rather small 
set4 of manually syntactically processed sentences. Manually in this sense means correctly syntactically 
analyzed sentences. The set of manually analyzed sentences used for the process of learning is usually 
referred to as the truth.  

                                                           
3 It is possible to add manually designed rules to the set of automatically obtained rules, but this is not the aim 
of this study.  
4 Opposed to the statistical techniques, the rule-based learning procedure requires less data.  
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Before one starts to apply the rule-based approach, templates of the rules must be known (given 
externally to the system) and a procedure, a function that will decide how well a specific instance of a 
rule performs, i.e. the comparison function between the truth and the actually modified input, known as 
the error function, must be known. The learning can then be schematized as in Figure 3. 
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structure and 
assign the initial 
structure 

Current structure 

All possible rules 
(data driven) 
following certain 
rule templates 

Test each rule from the all 
possible rules list: each rule is 
applied to the whole input and 
after each rule is applied, the 
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Figure 3: The rule-based error driven learning - the automatic learning of the rules 

There are the following connections between Figure 2 and Figure 3: 

- The initial syntactic structure during learning should be the same as the initial syntactic 
structure during application.  

- The error function used while learning is usually, but not necessarily, the function used during 
evaluation. 

- If, as shown in Figure 2, the input is enriched with additional information e.g. morphological, 
than the same enriched input needs to be present also during the process of learning. 

- The list of best rules obtained in the process of learning is the same list of rules used during the 
process of application, preserving the very order in which they have been obtained.  

- Each rule has the following formal structure: 

<action> <what> <where> 
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where <action> is the action to be performed, usually addition, change or deletion of certain 
elements; <what> determines the element on which the action is performed (for the parsing it 
is either a constituency boundary or a dependency), and <where> is the definition of the 
(triggering) environment on which the action is performed. For a rule to be performed the data 
as conditioned in <where> together with the element specified in <what> must be located 
and the action specified in <action> must be possible with respect to <what> within 
<where>. E.g. DELETE LEFT_PAREN5 BETWEEN NOUN NOUN means: delete a left 
constituency boundary between two neighboring nouns. In order to perform this rule two 
neighboring nouns must exist (selection of the environment) and a LEFT_PAREN between the 
two nouns must exist; otherwise there is nothing to delete.  

After a rule is performed, technical adjustments of the modified structure can be performed, the aim 
of which is to maintain a connected, coherent syntactic tree structure: deleting a left constituency 
boundary cannot be left alone without deleting the matching right constituency boundary; further, the 
syntactic tree after such a modification is not necessarily a tree anymore, therefore maintaining steps are 
performed in order to keep the syntactic structure as a tree structure; such steps can be of various types. 

For further information on how the rule-based approach is applied to syntactic parsing of English 
within a constituency based framework, or how the rule-based paradigm is applied to PP attachment, or 
to POS tagging, one is advised to consult Brill (1993a); Brill (1993b); Brill (1992). 

2.2. Modifications for Czech 

Originally introduced and explained only for the constituency grammatical framework, in order to be 
applied for a dependency framework, as mentioned earlier, the rule-based approach needed to undergo 
deep changes, which are most visible principally in two of its components: the rule templates and the 
error function. A closer and more detailed elaboration of the changes will be given in Section 4. Here I 
elaborate the very first modifications made, the logic of which is present also in the sequential work.  

The following rule templates which operate on the linear description of the sentence and assign only 
the bare syntactic tree structure (not the syntactic functions) have been proposed: 

Rules Explanation 

SWAP LPAREN BETWEEN A B Swap A and B if there is a left bracket in-between them 

SWAP COMMA BETWEEN A B Swap A and B if there is a comma in-between them 

ADD LPAREN BETWEEN A B Add left bracket between A and B 

DEL LPAREN BETWEEN A B Delete left bracket between A and B if there is any 

Table 2. Dependency rules6

For clarification and for better understanding of Table 2 and of the term bracket, see Figure 4, which 
displays the linear description accompanied by its unambiguous dependency tree structure: 

A ( B, C(D, E), F(G) ) 

                                                           
5 By LEFT_PAREN or LPAREN or '(', or RIGHT_PAREN or RPAREN or ')' I refer to left parenthesis or right 
parenthesis, respectively. 
6 Four other rules were also considered dealing with apposition and coordination: ADD/DEL APOS/COORD 
BETWEEN A B. These rules added a new node to the tree such that joined two coordinated subtrees or 
establish a relation between two subtrees in apposition. In the analytical syntactic anotation of PDT no extra 
nodes can be added, coordination and apposition became syntactic attributes, analytical function values, 
assigned to a certain lexical item representing the relation of coordination or apposition in the tree structure as 
the conj. "and" can be a coordinating node for Peter and Mary in e.g. "Peter and Mary bought a present". 
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  B  C   F 

 

   D  E   G 

Figure 4: Example of a tree structure 

Each left bracket has its "nominated" governor: e.g. A is a governor for the left bracket between A 
and B, or C is a governor for the left bracket between C and D, etc.  

In comparison with the rules used for obtaining immediate constituents7 (Brill 1993b), the rules in 
Table 2 imply the following major differences: 

- They delete brackets, without adding new ones. 

- They add new brackets, without deleting some previous ones. 

- They change the word order in a sentence. 

Table 3 presents the conditions under which the modified rules are defined. 

Rule Defined if: 

SWAP LPAREN BETWEEN A B  

DEL LPAREN BETWEEN A B 

There is only one left bracket between A and B  

(that is: B is the leftmost son of A) 

SWAP COMMA BETWEEN A B 

ADD LPAREN BETWEEN A B  

There is no left bracket between A and B  

(that is: A and B have the same governor and B is next to A) 

Table 3: Rule conditions 

If one manipulates with a node, then this has an influence on its subtree. The rules containing SWAP 
change the order of words in a sentence. This has a direct influence on the possible triggering 
environments, which change after each selection of the best rule within the RBEDL process, due to the 
fact that the surface word order is not preserved8. 

 An application of each of the rules specified above results in the following modifications (see 
Fig. 3 to Fig. 6) as exemplified on the original simplified tree structure A(B(C,D),E) given in Fig. 2. 
     • 

   •  A  • 

    B  E 

   C  D 

   Figure 5. Simplified tree structure A(B(C,D),E) 

                                                           
7 For the lack of space those are not included here. 
8 Within the approach based on constituency structure the word order is stable. With our framework, possible 
changes between the surface word order and the order of items in our linear tree representations significantly 
increase the complexity of the learning process. 
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     • 

   •  B  • 

   A C D E 

   Figure 6. SWAP LPAREN BETWEEN A B 

     • 

   •  A  • 

    E  B 

     C  D 

   Figure 7. SWAP COMMA BETWEEN B E 

     • 

   •  A  • 

    B   

   C  D E 

   Figure 8. ADD LPAREN BETWEEN B E 

The error function is completely different from the one used for obtaining the phrase structure that 
counts the crossing constituents, therefore a direct comparison of the success rates between immediate 
constituent structure and dependency structure is not possible. A function sensitive to differences of the 
syntactic structure considered as important was created. It is not advisable to have an error function that 
would be too sensitive for certain types of changes and unequally insensitive for other types of 
differences in the tree structure. The error function counts the dependency relations present in the tree 
with respect to the total number of correct dependencies. 

For the tree structure A ( B, C( D ( E ) ), F ), where the capital Latin letters stand for a tag or a word, 
there are 5 dependencies as follows:  

A(B, A(C, A(F, C(D, D(E. 

Let us compare the above analysis to another tree structure of the same sentence: 

A ( B ( C ( D, E ) ), F), 

which has the following five dependencies: 

A(B, A(F, B(C, C(D, C(E. 

The two structures have the following three dependencies in common: 

A(B, A(F, C(D, 
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therefore if one of the structures is 'correct' the success rate is 3/5. 

In order to initiate the process of learning and/or the process of parsing the input sentence to be 
processed is assigned an initial tree structure. The left chain structure has been chosen, as demonstrated 
on the following examples, to be the initial tree structure: 

(A), for a sentence of length 19, or 

A( B ), for a sentence of length 2, or 

A ( B , C), for a sentence of length 3, or 

A ( B ( C ), D), for a sentence of length 4, or 

A ( B ( C , D ) , E), for a sentence of length 5, and so on. 

2.3. Results: summary and considerations 

 The rule-based error driven learning is sensitive on different parameters present in the data or 
set in the learning process (length of sentences, initial condition) which indirectly influence the results. 
The tag set size and its structure is one of the major factors (for Czech, the full tagset size is approx. 
3500 tags) that influence the success rate: the smaller the morphological tagset is the more successful is 
the learning process. However, for syntactic analysis, the tag set does not need to include all 
morphological features (Ribarov, 1996). Therefore, after the tag set had been restricted (while still being 
larger than the tag set of the Penn Treebank), some small size experiments were carried out. At the 
beginning (when there was no treebank and there was a need of testing the pure method as such), 
different very small training sets were created, which contained approx. 25 sentences (the rule-based 
parser for Czech, without further improvements, does not perform significantly better if trained on more 
than 100 sentences, see Section 4.3). The average success rate of initial bracketing was estimated to be 
42%. Various sets of rules were trained (each set for a different learning set) consisting of approx. 27 
rules learned. The rules were tested on a set of 20 sentences. Each of the set of rules increased the 
success of bracketing by approx. 8.5%. Those were the very first steps: far from impressive results and 
astonishing percentages, but still not demotivating ones. The rules were rather simple, and the success 
rate for the dependency structure is always more pessimistic than e.g. that of crossing constituents in the 
immediate constituents structure, and the improvement of 8.5% percent was judged to be relatively not a 
bad improvement. It was clear that it could be amended in various aspects. Many changes were made in-
between, both in the data and in the modifications of the stated approach. Everything has been done with 
the primary aim to judge the strength and the potential of the automatically generated rules, guided by a 
(secondary but more important) aim of constructing a suitable parser for Czech.  

3. Towards different modifications of the RBA for parsing of Czech 

After the first attempt to apply the rule-based approach for a dependency based syntactic analysis of 
Czech several other steps and modifications were made. Most important of all, the modified RBA was 
tested on real corpus data, as soon as those were available. An increasement of the success rate was 
observed, higher than the one in the early experiments from Subsection 2.3. However, the success rate 
has not yet been high enough for any sensible automatic application. To reach a higher success rate, 
several other modifications were made: the set of rules was changed and enriched with new rules, 
another error rate function was considered, various morphemic tag sets were tested. The present section 

                                                           
9 A corpus might contain sentences represented only by a full stop as it was in our data. 
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contains relevant information for approaches of an application of the rule-based approach for parsing 
Czech10. 

3.1. The input 

In all of the experiments, the input text is taken from the Prague Dependency Treebank (PDT 2001), and 
the rules operate on the morphemic representation of the input text. The sentence: 

Počet kopií z jedné kazety se pohybuje kolem 9 až 10 tisíc. 

[The number of copies from one cartridge is about 9 to 10 thousand.] 

has the following morphemic categories11: 
Počet|NNIS1-----A----   number 
kopií|NNFP2-----A----   copies 
z|RR--2----------   from 
jedné|CIFS2----------   one 
kazety|NNFS2-----A----   cartridge 
se|P7-X4----------  is-refl. 
pohybuje|VB-S---3P-AA--- move 
kolem|RR--2----------   about 
9|C=-------------    9 
až|J,-------------    to 
10|C=-------------   10 
tisíc|CIXS2----------  thousand 
.|Z:-------------   . 

The input rules ignore the lexical items and take the sentence to parse to be the input stream of 
morphemic tags 

NNIS1-----A---- NNFP2-----A---- RR--2---------- CIFS2---------- NNFS2-----A---- P7-X4--------
-- VB-S---3P-AA--- RR--2---------- C=------------- J,------------- C=------------- CIXS2---------- 
Z:------------- 

The dependency tree is represented in its linear form, where S is the sentence marker, an 
artificially introduced node governing the whole sentence. 

S( pohybuje(Počet(kopií(z(kazety(jedné)))), se, kolem(tisíc(až(9, 10)))), .)12

In the earlier stages when no sufficiently large disambiguated morphological data were available, 
but one had only the output of a complete morphological analysis of the input words, there was a 
need of accustoming the algorithms to that situation. It was then necessary to state where it was 
possible to apply the readings/interpretation of the rules such that the non-disambiguated 
morphemic tags could be used. 

Rules Explanation 

SWAP LPAREN BETWEEN A B 

SWAP COMMA BETWEEN A B  

ADD LPAREN BETWEEN A B  

DEL LPAREN BETWEEN A B 

All of the rules are read in the same way as before assuming that A 
and B are not disambiguated tags but members of a set of possible 
morphemic tags.  

Table 4: Explanation of modified basic rule types 
                                                           
10 Several experiments for tagging Czech are also included. 
11 For information on the positional tagset for Czech, see (PDT 2001). 
12 For reasons of clarity the linearized description of the syntactic structure of the sentence includes only the 
lexical items instead of the morphemic categories. 
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The present computational power and the combinatorial character of the learning process do not 
allow a practical use of big tag sets and do not allow more than one tag per word. Therefore the 
requirement is to have a disambiguated morphology and to operate on disambiguated tags13, at least for 
the process of learning (while during application one could assume input with multiple tags and interpret 
the rules as in Table 4). 

3.2. The influence of modified tagsets14

Assuming that the input sentence to parse consists only of morphemic tags, the type and the size of the 
tagset has a direct influence on the success rate of the parsing procedure. The motivation for this study 
can be found in the following: 

- The success of tagging of Czech is influenced by the cardinality of the tagset. As discussed in 
Hladká and Ribarov (1998) and also supported by a former study (Elworthy 1995), where 
experiments concerning changing tagsets for three different languages (English, French, Swedish) 
are presented, the tagset should be chosen according to the requirements of a given application. The 
aim is to combine a morphemic tagger and a parser in order to obtain a fully automatic procedure. 
Therefore the output of the tagger should, in our case, suit best the needs of the parser. 

- Besides that, in order to combine a tagger and a parser one needs to have a tagger with the highest 
possible success rate (the parser should then be trained on the output of the tagger). 

Practically this is realized by examining the performance of the parser on tagsets of different sizes. 
At the same time the success rate of the tagger itself for different tagsets should be observed, in order to 
select the most successful one. Three different POS tagsets (POS TAG1171, POS TAG206, POS TAG34)15, 
a statistical approach to tag text and the tagging accuracy of each statistical tagging with three different 
tagsets have been developed and tested. The results are summarized in Table 5. 

Method16 BMM RB BMM RB MMFS MMFS MMFS 

POS tagset 
size 

1 171 1 171 206 206 47 43 34 

Training 
data 

600K 38K 600K 38K 15K 15K 15K 

Tagger 
accuracy 

81,5% 79,8% 90,1% 87,2% 91,7% 93,0% 96,2% 

Table 5: Tests on various tagsets  

For a user, let us say a linguist, whose aim is to specify morphological categories, we need to 
perform tagging with a full tagset, more specifically, with carefully selected and detailed morphological 
classification corresponding to the traditional grammar. The result could be viewed as a process which 
„added“ information to the text, or as a way of classification (clustering) of the word stock. Different 
tagset sizes result in different classification of the word forms. The members of each cluster are thus 
assigned the same tag. 

Previous tagset reductions have been connected with specific mutual dependence between each two 
of the tagsets. The tagsets mappings have to preserve the patterns, the (ir)regularities of the language. 

                                                           
13 The first results of the learning process were obtained by selecting the first morphemic tag from the list of 
tags. 
14 The major par of this subsection is taken from (Hladka, Ribarov 1998) 
15 The subscripted number denotes the cardinality of the tagset. 
16 BMM - Bigram Markov Model, RB - Rule-based, MMFS - Markov model realized by finite state automata 
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If the training corpus is annotated with the POS TAG1171 we can observe results of the rule-based 
approach given in Table 6. 

Order Description of the Rule Success (%) 

1 Swap the dependency between ZIP and NFS4A             33.67 

2 Swap the dependency between ANS51A and NFP5A      34.53 

3 Swap the dependency between PDFS2 and NFS6A         35.14 

4 Swap the dependency between PQFIP1 and VPS3A        35.74 

5 Swap the dependency between RV7 and VPS3A            36.27 

6 Swap the dependency between ANS51A and NIS4A       36.81 

7 Swap the dependency between ANP71A and NFP7A      44.56 

8 Swap the dependency between PQFMP1 and VPP3N      44.76 

9 Swap the dependency between ANS53A and NFS6A      44.96 

10 Swap the dependency between ANS61A and NNS6A      45.16 

... 

11 Swap the dependency between AFS71A and NMS6A       47.18 

12 Swap the dependency between ANS61A and NOMORPH    47.38 

Table 6 

The situation changes rather dramatically if we train on the reduced tagset POS TAG34 as shown in 
Table 7. 

Order Description of the Rule Success (%) 

1 Swap the dependency between ADJ and NOUN                   44.38 

2 Swap the dependency between CM and CONJ                     46.00 

3 Swap the dependency between PSE and VERB_PRI              47.48 

4 Swap the dependency between ADV and VERB_PRI             48.74 

5 Swap the dependency between PROP and VERB_PRI            49.58 

6 Swap the dependency between ADJ and NOUN                   50.42 

7 Swap the dependency between CM ADJ                               51.29 

8 Delete the dependency between ADJ and CM                         52.22 

... 

9 Add a dependency between PUNCT and PROP               64.84 

10 Delete the dependency between PRON_INS and PREP            65.02 

Table 717

                                                           
17 The rules in Table 5 and Table 4 are not the complete set of rules. 
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Not all of the rules result in a sentence structure with a precise grammatical explanation. The 
„strange“ ones are there to combine with the others in order to correct the structures of the previously 
applied rules. Although some of the rules are obvious and we believe that a human would derive the 
same rules, still the grammatical meaning of the rules can be evaluated only when analyzing the result 
of the application of the whole list of the rules. Let us examine the relation and dependence of the 
reduced and non-reduced tagset on the selected rules as given in the above tables. One of the obvious 
rules in Table 7 is rule 1 (and rule 6; the rules might repeat; during their repetition their influence has a 
different scope depending on their position in the list). To cope with a more distinct situation in a more 
specific POS TAG1171, the algorithm produces more rules in order to capture the relation between an 
adjective and a noun: rules 2, 6, 7, 9, 10 and 11 in Table 6. 
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Figure 9: The saturation of the learning process 

Undoubtedly, the reduced tagset brings better absolute values. We would like to note that the nodes 
within the syntactic structure could be returned to the corresponding values from the full tagset. Thus, 
no information has been lost. 

As for the Rule-Based application for syntactic structure extraction, the reduced tagset leads to a 
much better start on the learning curve (Figure 9). After the saturation of the process of learning, which 
comes after several tens of rules have been learnt, the learning might continue after one switches to the 
more expanded tagset, namely the full tagset. 

3.3. Syntactically sensitive tag set reduction 

Being sensitive to the tagset size, the rule-based approach operates better on smaller tagsets. 
Therefore if a reduction of a tagset does not distort the syntactic characteristics of the input, one should 
perform this reduction. 

A reasonable reduction of the morphemic tagset for Czech should respect the following facts: 

– With nouns, the difference of nominative, accusative, dative, genitive from the other cases 
should be preserved. 

– Adjectives in nominative should be distinguished from the other adjectives. 

– Adjective pronouns should be distinguished from nominal ones. 

– Adjective numerals should be distinguished from nominal ones. 
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– Two verbs deserve special considerations. Those verbs are "mít"  (to have) and "být" (to 
be). As for the verb "být" in the sentences where more than one verb occurs, more detailed 
distinctions should be made, which are: 

- "být" as an auxiliary verb in future tense 

- "být" as an auxiliary verb in past tense 

- "být" as an auxiliary verb in a conditional clause 

- if no other verb form occurs, then "být" is a copula or a verb of existence. 

– Within sentences with more than one verb a distinction between coordinating and 
subordinating conjunctions should be made. 

– Prepositions should be divided into various groups according to the cases they bridge, as for 
example locative - <preposition> - accusative, instrumental - <preposition> - accusative, 
instrumental - <preposition> - genitive, etc.  

– There is no need of subcategorizing adverbs, interjections and particles, therefore in these 
cases it is sufficient to yeald only the main POS category. 

4. Second attempt for parsing rules modifications 

There are no directions according to which a rule is designed. Nevertheless there are several 
guidelines the rules follow: 

- The form of the rule is limited by the needs of the operations to be performed, thus by the aim to 
be achieved.  

- The rule should be computationally achievable within the time and space determined by the 
application needs.  

- The rule is suited to the formal framework of the language theory. It is the design of the 
templates of the rules which are language dependent although the RBA as such is language 
independent. 

The first set of rules applied for Czech (Subsection 2.2) followed the logic of the rules for English. 
They performed, conditioned under various triggering environments, only two simple actions: addition 
or deletion of constituency boundaries resulting in their left or right shift, see Figure 10. 

     delete 

  add 

 

...  ( A ( B ) X ...  ) ... 

Figure 10 

As shown in the previous sections, such rules do not guarantee a significantly high success rate. A 
new exhaustive set of rules was designed. They were designed in such a way that they cover the basic 
operations that can be performed on a dependency tree. The interpretation of the rules was modified so 
that they operate on the tree representation of the sentence: there is a left paren between A and B also in 
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the cases as in A (C, B), since the left paren is understood as a dependency. Thus, the changes the rule 
performs are always +/- one tree level18. 

4.1. Modified rule templates for parsing of Czech - second attempt 

The second attempt to modify the rule templates is a result of a broad study and is summarized in Table 
8. 

Rule Explanation 

ADD ( LEFT A   Make A to be the governing node of the sister nodes of A  

ADD ( RIGHT A Push A one level lower in the dependency path 

ADD ( BETWEEN A B If A and B are sister nodes, apply ADD ( RIGHT A. 

ADD ) LEFT A Move A one level up in the dependency tree. 

ADD ) RIGHT A The left sister node of A becomes its governing node. 

ADD ) BETWEEN A B If A and B are sister nodes, apply ADD ) RIGHT A 

DEL ( LEFT A A becomes a sister node of what has been its governing node. 

DEL ( RIGHT A The subtree of A is moved one level up in the tree. 

DEL ( BETWEEN A B If there is a dependency between A and B, 
apply DEL ( RIGHT A. 

DEL ) LEFT A The right bracket to the left from A and its counter bracket are 
deleted. 

DEL ) RIGHT A The right bracket to the right from A and its counter bracket are 
deleted. 

DEL ) BETWEEN A B If B is the sister node of the governing node of A, apply DEL ) 
RIGHT A. 

SWAP ( RIGHT A If the left bracket exists to the right from A, 
do: DEL ( RIGHT A and ADD ( LEFT A. 

SWAP ( LEFT A If the left bracket exists to the left from A, 
do: DEL ( LEFT A and ADD ( RIGHT A. 

SWAP ) RIGHT A If the right bracket exists to the right from A, 
do: DEL ) RIGHT A and ADD ) LEFT A. 

SWAP ) LEFT A If the right bracket exists to the left from A, 
do: DEL ) LEFT A and ADD ) RIGHT A. 

SWAP ( BETWEEN A B If there is a dependency relation between A and B, change its 
direction from A to B to B to A. 

SWAP ) BETWEEN A B If there no dependency relation between A and B and B is one 
level higher than A, swap A and B.  

SWAP COMMA BETWEEN A B If A and B are on the same tree level, exchange the subtrees 
they govern between them. 

                                                           
18 The complexity of the process of learning would significantly increase if rules operating on nodes not being 
directly dependent are used. 
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MAKE ROOT LEFT A  Make node A to be the root of the tree. 

MAKE ROOTFIRST 
BETWEEN A B 

If A and B are sister nodes, A becomes a root node. 

MAKE ROOTSECOND 
BETWEEN A B 

If A and B are sister nodes, B becomes a root node. 

MAKE GROUP LEFT A All nodes governed by A become immediate sister nodes of that 
node (the structure collapses so that everything is governed
by A). 

MAKE GROUPFIRST 
BETWEEN A B 

If A and B are sister nods, all nodes governed by A become 
immediate sister nodes of A. 

MAKE GROUPSECOND 
BETWEEN A B 

If A and B are sister nodes, all nodes governed by B become 
immediate sisters of B. 

MAKE DEPENDENCE 
BETWEEN A B 

If there is no dependency relation between A and B, establish it. 
A and B can be anywhere in the tree (exception to the 1 level 
distance application of the rules). 

Table 8: Modified rule templates 

Some general remarks on the rules from Table 8: 

- all of the rules follow the form as presented earlier: <action> <what> <where>. 

- LEFT means 'to the first suitable position to the left' in the linear form of the tree. 

- RIGHT means 'to the first suitable position to the right' in the linear form of the tree. 

- Each sentence is represented in its linear form. The rules operate on the linear form but their 
interpretation is as if they had operated on a tree. 

- As for the transformation, A and B represent the whole subtrees they govern. 

- There are no limitations whether the rules can or cannot create non-projective syntactic 
trees, nevertheless the rules are not designed to identify them and treat them in a different 
manner. 

4.2. Example of an application of the new rules 

In order to illustrate an application of the main types of the rules, let us consider the linearized tree 
structure A ( B( C, D), E( F, G), H, I, J( K (L, M) ) ) (Figure 11) 

     A 

 

  B   E H I J 

 

 C  D F  G   K 

 

        L  M 
Figure 11 
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 If the rule ADD ) LEFT D is applied, the resulting structure is  

A ( B( C), D, E( F, G), H, I, J( K (L, M) ) ) (Figure 12) 

     A 

 

  B  D E H I J 

 

 C   F  G   K 

 

        L  M 

Figure 12 

 SWAP COMMA BETWEEN G K changing the original tree into 

A ( B( C, D), E( F, K (L, M)), H, I, J( G ) ) (Figure 13) 

     A 

 

  B   E H I J 

 

 C  D F  K   G 

 

     L  M 

Figure 13 

 The rule SWAP ( BETWEEN J K makes the following changes: 

A ( B( C, D), E( F, G), H, I, K( J, L, M ) ) (Figure 14) 

     A 

 

  B   E H I K 

 

 C  D F  G     J L M 

Figure 14 

 Finally, 'ADD ) LEFT I' adds the right bracket which means moving all of the sister nodes to the 
left from node I one level deeper within the dependency structure : 

A ( B( C, D), E( F, G, H) I, J( K (L, M) ) ) (Figure 15) 
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     A 

 

  B   E  I J 

 

 C  D F  G H  K 

 

        L  M 

Figure 15 

The performance of the remaining set of rules is not presented here since the changes they cause on the 
tree structure are deductible from what has been presented in Figures 11 to 15. 

The last seven rules from Table 8 did not improve significantly the success rate while parsing and 
therefore they are not exemplified here. One could easily imagine the tree transformations they perform. 

4.3. Best rules 

The list of the best rules learned from 100 sentences is presented in Table 9. The tagset has been reduced 
and only the first two characters (positions, POS and sub POS) are taken into consideration. The success 
rate presented in Table 9 is the cumulative success rate of the rule during the process of learning. 
Experiments with more than 100 sentences (200 and 300 sentences) were also carried out. None of those 
experiments resulted in a list of more successful best rules than the one presented here. 

Rule Success 
SWAP ( RIGHT AF  0.415543 
SWAP ( LEFT JE  0.436162 
SWAP ( BETWEEN ZI JS 0.448850 
SWAP ( RIGHT PS  0.458366 
SWAP ( RIGHT PQ  0.467883 
SWAP ( RIGHT DB  0.477399 
SWAP ( RIGHT PD  0.486122 
SWAP ( RIGHT DG  0.493259 
SWAP ( BETWEEN ZI VP 0.500396 
DEL ( RIGHT AF  0.505155 
SWAP ( RIGHT PR  0.509913 
SWAP ( RIGHT VC  0.515464 
ADD ( BETWEEN R4 NF 0.519429 
SWAP ( BETWEEN ZI JE 0.523394 
SWAP ( BETWEEN ZN JS 0.527359 
SWAP ( BETWEEN PP VP 0.530531 
SWAP ( RIGHT NO  0.533703 
ADD ( RIGHT R2  0.536875 
SWAP ( RIGHT AM  0.540048 
DEL ( RIGHT RV  0.542427 
DEL ( BETWEEN ZI NF 0.544806 
SWAP ( BETWEEN NI DB 0.547978 
DEL ( RIGHT T|  0.550357 
DEL ( BETWEEN DB DB 0.552736 
SWAP ( BETWEEN JE VV 0.555115 
SWAP ( RIGHT AI  0.557494 
SWAP ( BETWEEN VF VR 0.559873 
ADD ( BETWEEN PD DB 0.561459 
SWAP ( BETWEEN JS NM 0.563045 

DEL ) RIGHT ZI  0.564631 
ADD ( BETWEEN RV NI 0.566217 
DEL ( BETWEEN JE R7 0.567803 
SWAP COMMA BETWEEN VP NF 0.569389 
SWAP ( RIGHT PE  0.570975 
SWAP ( BETWEEN NF VR 0.572562 
SWAP ( BETWEEN VM NO 0.574147 
SWAP ( BETWEEN VM VR 0.575734 
ADD ( BETWEEN JS VP 0.577320 
DEL ) BETWEEN VR ZI 0.578906 
DEL ( RIGHT DG  0.580492 
SWAP ( BETWEEN JE JS 0.582078 
ADD ( BETWEEN VP NI 0.583664 
DEL ( BETWEEN ZI NM 0.585250 
SWAP ( BETWEEN JE ZS 0.586836 
SWAP ( BETWEEN T VP 0.588422 
ADD ( BETWEEN JE AF 0.589215 
ADD ) BETWEEN DB R4 0.590008 
SWAP ( BETWEEN ZI VG 0.590801 
ADD ( BETWEEN JE NF 0.591594 
ADD ) BETWEEN AF DB 0.592387 
SWAP ( BETWEEN PD DG 0.593180 
SWAP ( BETWEEN DG VP 0.593973 
ADD ( BETWEEN VP NM 0.594766 
DEL ) LEFT NM  0.595559 
SWAP ( BETWEEN JE RV 0.596352 
SWAP ( BETWEEN JS PD 0.597145 
ADD ( BETWEEN ZI NO 0.597938 
DEL ( RIGHT PA  0.598731 
ADD ( BETWEEN NO ZI 0.599524 
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ADD ( BETWEEN VM NF 0.600317 SWAP ( RIGHT VU  0.624108 
ADD ( BETWEEN ZN AB 0.601110 DEL ( RIGHT PN  0.624901 
SWAP ( BETWEEN DB AV 0.601903 ADD ) BETWEEN VP NF 0.625694 
SWAP ( BETWEEN VP VS 0.602696 SWAP ( BETWEEN PQ JS 0.626487 
SWAP ( BETWEEN AF NO 0.603489 ADD ) BETWEEN AV NM 0.627280 
ADD ( BETWEEN NO AF 0.605075 DEL ( RIGHT AC  0.628073 
SWAP ) BETWEEN AF NF 0.606661 ADD ( BETWEEN R3 NF 0.628866 
SWAP COMMA BETWEEN ZI PI 0.607454 ADD ( BETWEEN VF R4 0.629659 
DEL ( RIGHT PL  0.608247 DEL ( BETWEEN VF AF 0.630452 
SWAP ( BETWEEN NF VR 0.610626 ADD ( BETWEEN VF JE 0.631245 
SWAP COMMA BETWEEN NI NI 0.611419 DEL ( BETWEEN NI R3 0.632038 
ADD ( BETWEEN NI DB 0.612213 DEL ( BETWEEN NM NM 0.632831 
ADD ( BETWEEN NI R4 0.613006 SWAP ( BETWEEN R2 ZI 0.636003 
ADD ( BETWEEN NM AB 0.613799 ADD ( BETWEEN VP NM 0.636796 
SWAP ( BETWEEN NI RV 0.614592 SWAP ( BETWEEN ZI CX 0.637589 
SWAP ( BETWEEN R2 RV 0.616178 SWAP ( BETWEEN JE VS 0.638382 
DEL ( BETWEEN RV R3 0.616971 SWAP ( BETWEEN DB JE 0.639968 
ADD ( BETWEEN R4 NN 0.617764 SWAP ( BETWEEN VF VS 0.641554 
SWAP ( BETWEEN R4 R4 0.618557 ADD ( BETWEEN R2 NN 0.642347 
ADD ( BETWEEN DG PD 0.619350 DEL ( BETWEEN ZI RV 0.643140 
SWAP ( BETWEEN CG NF 0.620143 SWAP ( BETWEEN VP VR 0.643933 
DEL ( BETWEEN JE PD 0.620936 DEL ( BETWEEN NI AB 0.644726 
ADD ( BETWEEN JE AF 0.622522  
ADD ) BETWEEN PQ NF 0.623315 

Table 9: List of best rules obtained from the learning process on 100 sentences 

4.4. The error function as it is and the error function as it could be 

The error function is the key determiner of how good a certain structure is when compared to another 
one. The error function used in all of the experiments with syntactic dependency structures of Czech 
(not only for RBA) in all of the works presented so far determines the ratio between the correct and the 
total number of dependencies. Such an error function will make no difference between tree structures 
from Figure 16 in terms of the values of their nodes. 

  A       A 

 

 B  B   and   B    B 

 

D  E   F     D E F 

Figure 16 

Secondly, there are situations where this error function is "the bad guide" for the process of learning. 
If a dependency relation A - B (Figure 17 (a)) has to be compared to the dependencies A - C and C - B 
of the tree path A - C - B on the one hand (Figure 17 (b)), and on the other hand to the dependencies C - 
A and C - B of the subtree C (A, B) (Figure 17 (c)), obviously the success rate will yield 0% in both of 
the cases. But, it seems that there is a dependency (non-direct) relation between A and B in the first 
case, and that one should be able to distinguish between the first and the second case. 
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 A    A      C 

 

 B    C    A  B 

 

       B 

  (a)    (b)     (c) 

Figure 17 

For a transformation to be performed by the stated rules it is "easier to make" B directly dependent 
on A at Figure 17 (b) since B is in the subtree of A, while it is more difficult to achieve the required 
dependency in the case of Figure 17 (c) since B and A are two different subtrees which are not 
necessarily next to each other. Also in Figure 17 (b) it can be considered that B is not directly dependent 
but remains to be at least distantly dependent on A. 

Thirdly, it is neither directly nor approximately possible to compare the success of the algorithms 
used for dependencies to the one used for constituency for an application of the mentioned error 
function. Assuming that a constituency structure can be derived from a dependency tree and a 
predefined hierarchy of the non-terminals, then the derivation history of the constituency is also 
determined. Each terminal node is specified by the path it determines from the root of the tree. Though 
not linguistically similar, paths can be enumerated also from the dependency tree. Thus, comparing 
paths instead of dependencies can make the absolute success rates "more comparable". 

Therefore, I propose to count the error rate in a more diversified manner than only in the classical 
way. The proposed approach consists in including the length of the dependency (the direct dependency 
could have the value of 1, while the non-direct dependency could be given a success rate as a decreasing 
function of the distance). Two functions are directly offering themselves to fulfil this aim: reciprocal 

distance 
n

nf 1)( =  and negative exponential distance 1

1)( −= ne
ng . The latter "punishes" the non-

direct dependency distance more than f(n) does. 

For the previous comparison example, A - B to A- C - B, the direct dependency A - B exists as a non-

direct dependency in A - C - B; a "weight" or "success" of 37.01)2( ≅==
e

ng , opposed to 1 if A - B 

had to be compared to A - B. 

In order to be able to calculate the success rate a V(T, F), the value of a tree T, should be defined, 
which would allow for the calculation of the ratio of existing over possible values (precision). Let 

, where F(n) is either f(n) or g(n).  ∑
∀

=

ofT
path

pathFFTV )(),(

If T is a tree describing a correct syntactic structure then its value is calculated as V(T, F); it will 
always be higher than any incorrect variant. 

Let us compare the structure T1: A - B - C - D to the structure T2: A( B (D), C). Let the latter be the 
true structure. Its value V(T2, g) = 3 + 0.37 = 3.37. If T1 is to be compared to T2 one may compare any 
of the possible paths in T1 (A - B, B - C, C - D, A - B - C, B - C - D, A - B - C - D) to all of the paths of 
T2 (A - B, B - D, A - C, A - B - D). The set of comparable paths is T1,2(A - B,  A - B - C,  B - C - D) 
with its value V(T1,2, g) = 1 + 0.37 + 0.37 = 1.74. The success rate is then V(T1,2, g)/ V(T2, g) = 
1.74/3.37 = 51.63 %. 
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If the rule-based error driven learning includes this error function, the rules presented in Table 10 can 
be achieved (as in the previous case the learning process was on 100 sentences; the same set of 
sentences). 

Rule Success 
SWAP ( RIGHT AF  0.590218 
SWAP ( RIGHT ZI  0.613243 
SWAP ( LEFT JE  0.630062 
SWAP ( BETWEEN PQ VP 0.648547 
SWAP ( LEFT VR  0.658814 
SWAP ( RIGHT DB  0.668000 
SWAP ( RIGHT DG  0.676885 
SWAP ( RIGHT PS  0.684720 
SWAP ( RIGHT PD  0.691009 
SWAP ( RIGHT PR  0.697009 
SWAP ( BETWEEN ZI DB 0.701609 
DEL ( RIGHT PP  0.705621 
DEL ( BETWEEN NI ZI 0.709475 
SWAP ( BETWEEN NI JE 0.713570 
DEL ( BETWEEN RV JS 0.716804 
DEL ( BETWEEN RV R2 0.719927 
SWAP ( BETWEEN RV VP 0.722952 
DEL ( RIGHT PQ  0.725858 
SWAP ( BETWEEN NI ZI 0.728761 

Table 10: A fragment of the list of best rules obtained from the learning process on 100 sentences 
with negative exponential error function 

The success rate of the learning process is higher since the way it has been calculated results in 
higher percentage rates. This higher success rate does not necessarily mean a less errorneous output. 

5. Conclusions 

Mentioning comparison of outputs, it has been taken into consideration that the constituency based 
output for English and the dependency based output of Czech are not directly comparable - nevertheless 
the relative improvement of the initial parsing structure of Czech is not as good as the one for English. 
Thus, after numerous experiments for Czech it were these experiments that diverted our opinions into 
the direction that the Rule-based Parsing fails to be a promising algorithm for parsing of Czech. 
Nevertheless, the Rule-based Approach as a learning paradigm is not under question here - but the 
generality contained within the so-called language independence needs revision. As the presented 
experiments clearly show, it is not enough only analogously to modify the rule templates and to run the 
"language independent" algorithm. 

Acknowledgements 

This research is supported by the project number LN00A063 - Ministry of Education of the Czech 
Republic, the Center for Computational Linguistics, Faculty of Mathematics and Physics, Charles 
University. 

98 



Kiril Ribarov: On The Rule-Based Parsing of Czech 
 

 

References 

Böhmová A. (2001). Automatic procedures in 
tectogrammatical tagging. The Prague Bulletin of 
Mathematical Linguistics 76, Charles University 
Press, Prague, Czech Republic. 

Brill E. (1993 a). A Corpus-Based Approach to 
Language Learning, A dissertation in the 
Department of Computer and Information Science, 
University of Pennsylvania. 

Brill E. (1993 b). Automatic grammar induction and 
parsing free text: A transformation-based approach, 
In Proceedings of the 31st Meeting of ACL, 
Columbus, Ohio. 

Brill E. (1992). A simple rule-based part of speech 
tagger. In Proceedings of the 3rd ANLP 
Conference, ACL, Trento, Italy. 

Collins M., Hajič J., Brill E., Ramshaw L., Tillmann 
C. (1999). A Statistical Parser of Czech. In 
Proceedings of 37th ACL'99, pp. 505-512, 
University of Maryland, College Park, June 22-25. 

Elworthy D. (1995). Tagset design and inflected 
languages. In Proceedings of the ACL Sigdat 
Workshop, pp. 1-9, Dublin, Ireland. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Hajič J., Ribarov K. (1997). Rule-based Dependencies. In 
Proceedings of the Workshop on the Empirical Learning 
of Natural Language Processing Tasks, pp. 125-136, 
Prague, Czech Republic. 

Hladká B., Ribarov K. (1998). Part of speech tags for 
automatic tagging and syntactic structures, In Issues of 
Valency and Meaning - Studies in honour of Jarmila 
Panevova, Karolinum, Charles University Press, pp. 226-
237, Prague, Czech Republic. 

Ribarov K. (1996). Automatic Natural Language 
Grammar. MSc. Thesis (in Czech), Institute of Formal 
and Applied Linguistics, Charles University, Prague, 
Czech Republic. 

Sgall P., Hajičová E., Panevová J. (1986). The Meaning of 
the Sentence and Its Semantic and Pragmatic Aspects. 
Reidel Publishing Company, Dordrecht, Netherlands, 
Academia, Prague, Czech Republic.  

The Prague Dependency Treebank ver. 1.0 CD-ROM 
(2001). Issued via the Linguistic Data Consortium, 
Institute of Formal and Applied Linguistics, Charles 
University, Prague, Czech Republic. 

99 



The Prague Bulletin of Mathematical Linguistics 77, 2002  
 

 

100 


