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Abstract
Wepresent amethod for supervised cross-lingual construction ofword-formation networks

(WFNs). WFNs are resources capturing derivational, compositional and other relations be-
tween lexical units in a single language. Current state-of-the-art methods for automatically
creating them typically rely on supervised or unsupervised pattern-matching of affixes in string
representations of words, with few recent inroads into deep learning. All methods known to
us work purely in a monolingual setting, limiting the use of higher-quality supervised models
to high-resource languages. In this paper, we present two methods, one based on cross-lingual
word alignments and translation and another based on cross-lingual word embeddings and
neural networks. Both methods are capable of transfer of WFNs into languages for which no
word-formational data are available. We evaluate our models on manually-annotated word-
formation data from the Universal Derivations and UniMorph projects.

1. Introduction

A word-formation network is a dataset capturing information about how are lex-
emes created using derivation, compounding, conversion and other types of relations.
Such networks can be created using various degrees of automatization. On one end
of the spectrum, there are networks created by manually annotating the individual
relations, resulting in a dataset that is highly precise, but either expensive to create or
small in size.

In this article, we explore methods from the other, unsupervised, part of the scale:
methods which do not require any human input or in-language annotations of word-
formation relations. Instead, they transfer knowledge from existing word-formation
networks in other languages. One method we present uses parallel texts and off-the-
shelf tools for tokenization and lemmatization, another one uses cross-lingual word
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embeddings. Parallel texts are significantly more abundant and easier to obtain than
word-formation annotations and they are available for more languages – compare
the OPUS collection (Tiedemann, 2012), where just the OpenSubtitles corpus is avail-
able for 65 languages, to a survey of available word-formation networks listing only
63 resources for 22 languages (Kyjánek, 2018). Similarly, cross-lingual word embed-
dings can be created for dozens of languages, e.g. XLM-R (Conneau et al., 2020) is
pretrained on 100 languages from the CommonCrawl dataset.

As a result, our methods should allow for a cheap and rapid creation of word-
formation networks for many languages, although at a cost of lower quality. We hope
that it is possible to emulate the successes of transfer learning methods used for other
similar tasks in natural language processing, such as syntactic parsing (McDonald
et al., 2011), part-of-speech tagging (Zhang et al., 2016) or lemmatization (Rosa and
Žabokrtský, 2019).

The main idea behind our methods is that translation of text between languages is
supposed to preserve the pragmatic meaning of texts and it usually preserves also the
meaning of individual sentences and words. Since word-formational relations con-
nectwordswith similar semantics and orthography,multiple possible target-language
translations of a single source-language word are word-formationally related with a
higher probability than randomly selected words. Moreover, many types of word-
formational relations have parallels across languages. For example, actor nouns are
typically derived from verbs – and if we take two such nouns from two languages,
which are translations of one another, chances are that their predecessor verbs will
also be translation equivalents (e.g. the Czech and English relations opravit (“to re-
pair”)→ opravář (“repairman”) are parallel, even though one uses derivation and the
other one compounding). Therefore, we believe that some information about word-
formation relations can be shared across languages.

In practice, the transferred networks are too small to be usable, but they can serve
as synthetic training data for a supervised machine translation model, which extracts
word-formation patterns found therein and finds more examples of them across a
large lexicon, thereby improving the recall of the resulting network. Synthetic training
data are widely used in deep learning, e.g. in machine translation (Sennrich et al.,
2016; Zhang and Zong, 2016).

The pilot experiments presented in this paper focus on one-to-one relations be-
tween lexemes. We omit compounding altogether and simplify the task of creating
a word-formation network to a task of assigning each lexeme a single parent lexeme,
or deciding that it is unmotivated and should function as a root of the morphological
family.

2. Related work

Most existingword-formationdata is in the formofmanually- or semi-automatically-
created word-formation networks. These are made individually for each language,
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using annotation schemas tailored towards that language’s needs. Two larger projects
aim to unify the annotation formats and provide data for more languages in a single
format: Universal Derivations (Kyjánek et al., 2019) and, recently, UniMorph since
version 4.0 (Batsuren et al., 2022).

Universal Derivations (UDer) extracts its data fromword-formation networks cre-
ated by linguists. The collection contains 31 resources covering 21 languages. Individ-
ual resources differ in annotation goals (some resourcesmarking allword-formational
relations, others e.g. only deverbal derivations), size (ranging from a thousand to a
million lexemes), and quality. Some resources in the collection contain also other
annotations, such as semantic labels of the relations or morphological segmentation.

UniMorph is amassivelymultilingual resourcewhich aims at describingmorphol-
ogy in a general, language-universal way. The UniMorph data covers inflection of
168 languages, with 25 of them also containing word-formational information. The
word-formational data, sourced fromWiktionary, describes derivational morphology
only and contains no features other than derivational relations and annotation of the
changed morpheme(s) in the successor lexeme. As with UDer, many datasets are
small, covering only a few thousand relations.

In addition to the manually-created word-formation networks, multiple models
for automatic construction have been proposed, typically working on the formal level
(textual-string-wise) by detecting paradigmatic changes between the predecessor(s)
and successor. Baranes and Sagot (2014) created a method that infers derivational
relations from inflectional paradigms and reported a very high precision (80-98% de-
pending on the language). The relations are detected by first extracting a list of possi-
ble prefixal and suffixal changes and then pattern-matching pairs of words against it.
The inflectional paradigms are used for reducing problems with suppletion and al-
lomorphy within stems, which would otherwise cause the prefix- and suffix pattern
matching to fail – e.g. if we know that spoken is a past participle form of a lexeme with
lemma speak, we can derive the lexeme unspoken from speak using the rule X → un-X.

A different solution to the problem of allomorphy is proposed by Lango et al.
(2021), who use a pattern-mining method to detect rules of allomorphy jointly with
affixation. The patterns are extracted automatically in an unsupervised fashion and
the potential relations are ranked by a machine-learning model trained on a small
manually annotated word-formation network.

Batsuren et al. (2019) deal with cognate detection (i.e. linking words of common
origin, identical meaning and similar spelling in different languages) using a multi-
lingual approach. The multilingual data they use is a specialized linguistic resource
containing information about etymological ancestry, which means that their methods
are not directly applicable in our semi-supervised setting.

Cognates can also be used as a clue for aligning parallel corpora and several meth-
ods for detecting cognate pairs were developed with the alignment task in mind, but
these methods need not be very precise – e.g. Church (1993) uses identical character
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4-grams and Simard et al. (1992) use pairs ofwordswith identical first four characters;
both methods are too imprecise to recognize exact word-formational relations.

More recently, algorithms working with word embeddings (as a proxy for a se-
mantic representation) have also been proposed: Musil et al. (2019) show that word
embedding differences between word-formationally related words reflect the word-
formation paradigm of the relation, and perform clustering of word-formation rela-
tions to retrieve the paradigms, although theydon’t use themodels to produce aword-
formation network. Svoboda and Ševčíková (2022) use a fine-tuned Marian transla-
tionmodel (Junczys-Dowmunt et al., 2018) to directly produce parent lemma(s) for a
given child lemma. The model requires a very large amount of data to train, and they
solve this issue by creating synthetic training data with a simple manually-crafted
morphology model, which creates nonsensical, but well-formed compounds. This
works, because the focus of PareNT is Czech compounding, which has a simple for-
mal structure, unlike typical derivational patterns in most languages.

The task of constructing word-formation networks is superficially similar to the
task of dependency parsing – in both cases, one tries to attach words to typically a
single parent (head or predecessor). However, there are also important differences:
Dependency parsing is in many ways computationally simpler, because the space of
potential heads for any single lexical unit is bounded by the length of a sentence (typi-
cally tens of units), while inWFN construction, any lexeme in the language can be the
correct predecessor (typically hundreds of thousands of units). Also, when machine
learning is used, data for syntactic parsing is more abundant, because the inventory
of training sentences is potentially infinite and getting new ones from a corpus is rel-
atively cheap, while with WFNs, the number of training examples is limited to the
lexicon size.

3. Models

Ourmodels process data in two steps: In the first step (projection), a cross-lingual
method is used to create a small word-formation network in the target language using
training data in other languages. In the second step (bootstrap extension), the small
network from the first step is used as synthetic training data to train a supervised
model of word formation, which produces a large word-formation network.

In this paper, we present two models for each step: The projection step can be
performed either by the Transfer model (see 3.1.1), or by the Cross-lingual embed-
ding model (see 3.1.2). The bootstrap extension step can be performed by the Statis-
tical machine learning extension model (see 3.2.1) or by the Neural extension model
(see 3.2.2).
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3.1. Projection models

3.1.1. Transfer model

To transfer a word-formation network from a source to a target language, we view
the network as a list of parent-child derivational relations and attempt to find the
best parent for each target-side lexeme using a word-translation model together with
target-side formal similarity metrics. Conceptually, the input lexeme C is first back-
translated into the source language as C ′, a suitable parent P ′ of the translation is
found in the source word-formation network and this parent is translated into the
target language as P.

The translations and backtranslations are found using a probabilistic word trans-
lation lexicon induced from word-aligned data obtained by running FastAlign (Dyer
et al., 2013) on a lemmatized parallel corpus. Since the present article does not con-
sider compounding, univerbation or other word-formation relations connectingmore
than two lexemes, we count each pair of aligned lexemes separately, regardless of
whether one of the lexemes has other alignments in that parallel sentence pair. As a
result, a lexeme aligned to a multi-word phrase is considered to be equally translated
from each member lexeme of that phrase.

Since there may be multiple possible translations of each lexeme, and because the
most suitable parent needn’t be the direct parent of C ′, but rather another member of
its word-formational family (e.g. the Czech lexemes svoboda (“freedom”)→ svobodný
(“free”) have the opposite derivational relation from English or German frei → die
Freiheit), the process is conducted probabilistically, yielding many potential parents P
for eachC, eachwith a score. The target network is then foundbyfinding the spanning
tree of this graph of relations which maximizes the product of the scores (Chu and
Liu, 1965).

The score s of each potential relation P → C is obtained as a weighted arithmetic
mean (with weight w) of the translation score Xfer(C, P) and a relative edit distance
computed from the Levenshtein distance l(C, P), according to Equation 1 below. The
relative edit distance is the Levenshtein distance between the lemmas of C and P di-
vided by the maximum of their lengths, yielding a number between 0 and 1.

s =
Xfer(C, P) +w · (1− l(C,P)

max(|C|,|P|) )

w+ 1
(1)

We define the translation score of C and P as Xfer(C, P) according to Equation 2,
where |align(x, y)| denotes the number of alignments between lexemes x and y seen
in the aligned data and dist(C ′, P ′) denotes the number of relations on the shortest
path from C ′ to P ′ in the source network.

Xfer(C, P) =
∑

∀C ′,P ′

|align(C,C ′)|∑
∀x |align(C, x)|

· 0.5dist(C
′,P ′) · |align(P ′, P)|∑

∀x |align(P ′, x)|
(2)
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Figure 1: An example of finding a parent for the German lexeme Lehrer (“teacher”)
by transferring information from a French word-formation network, with word-
formation relations in grey and alignments in green. Lehrer is aligned to enseigneur
3⁄5 times, which has enseigner available through 1 relation, to which lehren is aligned
4⁄4 times. Lehrer is also aligned to instructeur 2⁄5 times, which has instruire available
through 1 relation, to which lehren is aligned 1⁄4 times and instruieren 3⁄4 times. The
translation score of lehren→ Lehrer, calculated according to Equation 2 below, is there-
fore 3

5
· 1
2
· 4
4
+ 2

5
· 1
2
· 1
4
= 0.35while the score of instruieren→ Lehrer is 2

5
· 1
2
· 3
4
= 0.15.

The relative edit distance is 2⁄6 for lehren → Lehrer, and 8⁄11 for instruieren → Lehrer.
Therefore, the final score of lehren → Lehrer is 0.35+5·(1−2/6)

6
= 0.336 and the score of

instruieren→ Lehrer is 0.15+5·(1−8/11)
6

= 0.252.

Therefore, the translation score is the product of the conditional probability of ob-
taining the backtranslated lexeme C ′ given the lexeme C and the conditional proba-
bility of obtaining the translated parent lexeme P given P ′, halved for each relation
that has to be traversed between C ′ and P ′. If there are multiple possible choices of
C ′ and P ′ for the given C and P, their translation scores are summed.

To prevent relations with low scores from being selected in the case where there
are no better candidates, a relation is only considered for inclusion if its score is higher
than a threshold.

An illustration of the translation score calculation is given in Figure 1.
The transfer algorithm is parametrized by the weights used for calculating the

weightedmean of the translation and edit distance scores, and by the threshold. Since
we intend to use the transfer algorithm in an unsupervised setting, it is necessary to
obtain the weights without training them using e.g. grid search or gradient descent
on in-language annotations. We have, however, found that although the algorithm
is moderately sensitive to the setting of the weights and the threshold, the optimal
settings in all tested languages are nearly identical. This allows us to train the hy-
perparameters on one language pair in a supervised manner and use them on other
pairs without further training. Using grid search on the Czech → German transfer
pair, we set the weight of the edit distance to 5, the weight of the translation to 1 and
the threshold to 0.8.
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3.1.2. Cross-lingual embedding model

Our second proposed model is a pairwise classifier neural network. Its inputs
are two lexemes (lp the potential predecessor, ls the potential successor) represented
by their word and character embeddings, and the output is a score classifying ls as
derived from lp or not1.

The model uses non-pretrained character embeddings, which are merged to pro-
duce word-level states by passing them through a bidirectional recurrent neural net-
work layer with GRU activation. The resulting GRU states are concatenated with pre-
trained word embeddings and passed through a single hidden layer with ReLU acti-
vation. The hidden states are then classified using SoftMax into two classes, derived
or nonderived.

The architecture can be used both monolingually and cross-lingually, if cross-lin-
gual word embeddings are available. In our case, cross-lingual training is used to
obtain synthetic training data for each language, followed by either a second cross-
lingual phase utilizing all synthetic datasets to train a single model, or a monolingual
training phase training one model for each language. In the first cross-lingual phase,
the model for each target language is trained separately, using only data from other
languages. No model is therefore trained on the same language it predicts data for,
simulating a semi-low-resource setting in which raw texts are available for training
the word embeddings, but annotated word-formation data is missing.

Since the network classifies pairs of lexemes and classifying all pairs in the lexicon
is computationally prohibitively expensive (the complexity increases quadratically
with the lexicon size and the larger networks have on the order of 1 000 000 lexemes),
the following heuristic is used to preselect pairswith a long common prefix and suffix.
The lexicon is alphabetically sorted in a prograde and retrograde fashion, and for each
lexeme, we test potential predecessors that lie within a 10 lexeme window around it
in either sorting, for a total of 40 potential relations.

The selected lexemes needn’t be the 40 ones with the longest common prefixes and
suffixes, but at least 10 are guaranteed to share the longest prefix and 10 the longest
suffix. We perform the lexicographic sorting on uppercased lemmas stripped of ac-
cent marks so that e.g. the German word Wunsch (“a wish”) sorts close to wünschen
(“to wish”) despite the differences in case and the presence or absence of the umlaut.

This method of obtaining relation candidates depends on the linguistic proper-
ties of the languages under consideration. It works well with languages which derive
words predominantly by affixation, with limited allomorphy in the stem and only
rare circumfixation, apophony or suppletive relations, which this method generally
doesn’t detect as possible relations. Therefore, the preselection of classification exam-

1Two alternative formulations were considered and tested: A network directly producing lp from a
given ls as a string of characters, and a network classifying a bag of potential successor words at once from
a given lp, but the model detailed above was found to outperform them from the start and research into
the alternative architectures was not pursued further.
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ples limits the potential performance of themodels – if the trueword-formational pre-
decessor doesn’t lie in the window of tested examples, it cannot be correctly classified
by the model. However, testing has shown that the languages we selected for eval-
uation (see Section 4) all get reasonable results despite the simplicity of the method
– in all gold-standard networks, the heuristic selects at least 90 % of true predeces-
sors. Therefore, the relatively small window size is not the main limiting factor of the
prediction performance.

For example, looking at awindowof±5 lexemes catches 85%of all possible deriva-
tional relations in the German DErivBase word-formation network and ±10 catches
90 %. In the French Démonette network, 96 % of derivations are within ±5 and 98 %
are within a ±10 window. In Czech DeriNet, a window of ±5 contains 85 % of all re-
lations and ±10 contains 90 %. The method would perform poorly on languages with
more frequent circumfixation or nonconcatenative morphology, such as transfixation
or templatic morphology found in e.g. Hebrew or Arabic.

A possible systematic fix for detecting words derived by circumfixation would be
to use a more complex measure of morphological similarity. A method we tried is
the orthographic part of the model from Proxinette (Hathout, 2008), which approx-
imates morphological relatedness by counting common n-grams of varying length,
probabilistically weighting them by rarity in the corpus. Its construction allows enu-
merating lexemes most similar to an input lexeme in a computationally-tractable way,
without considering all pairs. However, it produced inferior results on the Czech,
German and French datasets we evaluated it on, and therefore we don’t use it in our
experiments.

A word-formation network is then constructed by calculating the maximum span-
ning tree of edges with a classification score ≥ 0.5, with the score used as the edge
weight.

When training the network, the training data is sampled uniformly randomly from
all positive examples in the training word-formation networks, supplemented by two
sources of negative examples: Non-predecessor lexemes randomly sampled from the
whole lexicon and non-predecessors sampled from the heuristic window around each
lexeme. For each positive example pair, we sample 2 random negative pairs from
the whole lexicon, and 3 random lexemes and for each of them one random non-
predecessor from the window, for a 1:5 positive:negative sample ratio.

The word embeddings used are based on multilingually-aligned staticized XLM-
R (Hämmerl et al., 2022). The XLM-R model (Conneau et al., 2020) provides high
quality cross-lingual contextual embeddings, but since the task of identifying word-
formational relations is lexical in nature, it is better suited for use with static embed-
dings. These are obtained using the X2Static method (Gupta and Jaggi, 2021), which
distills static embeddings from contextual by a process similar to FastText’s “contin-
uous bag of words” (Bojanowski et al., 2017), but applied to contextual word em-
beddings instead of the words themselves. The staticization process transforms the
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embeddings one language at a time, so the cross-lingual relations of embeddings are
partially lost, requiring realignment using VecMap.

3.2. Bootstrap extension

One issue with the aforementioned methods is that the word-formation networks
they are able to produce are limited in size, because they both work only on lexemes
with large-enough frequency in a corpus. Therefore, it is desirable to increase cover-
age of lower-frequency parts of the lexicon and lexemes not seen in the parallel data
or embeddings lexicon. We propose two different methods to do this, both trained on
data produced by one of the methods above. The first method is based on statistical
machine learning with manually selected features, the second one reuses the neural
network described above in a different setting.

3.2.1. Statistical machine learning extension model

One way of increasing recall of the produced word-formation networks is to take
the networks created by the transfer model or cross-lingual embedding model de-
scribed above, extract affixal patterns found therein and apply them to a larger lexi-
con.

The affixal pattern of a (proposed) word-formational relation is an unsupervised
approximation of the morpheme difference between the related lexemes. We obtain it
as the leftover substrings to the left and right of the longest common contiguous sub-
string shared by lowercased lemmas of the lexemes. For example, the relation Kampf
(“a fight”)→ kämpfen (“to fight”) has the longest common contiguous substring mpf
and affixal pattern ka- → kä- + -en.

Weuse the transferred network as a seed to train amachine learningmethod to pre-
dict derivational relations by classifying pairs of lexemes as either directly derived or
non-derived from one another. The output network is obtained by finding the max-
imum spanning tree of the graph of predictions (Chu and Liu, 1965). The features
used for classification are the one-hot-encoded part-of-speech categories of both lex-
emes, their edit distance, the difference of their lengths, whether each of them starts
with a capital letter and the frequency of their affixal pattern as seen in the training
dataset.

Since this methodworks by classifying pairs of lexemes, we again use the heuristic
method for preselecting classification pairs described in Section 3.1.2 to decrease the
computational complexity.

We evaluatedmultiple classificationmethods implemented in the scikit-learn pack-
age (Pedregosa et al., 2011), namely SVC, LogisticRegression, AdaBoostClassifier,
KNeighborsClassifier, DecisionTreeClassifier, BernoulliNB and Perceptron and se-
lected logistic regression for consistent evaluation performance.
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3.2.2. Neural extension model

The neural extensionmodel reuses the architecture of the cross-lingual embedding
model, but with different data. It is trained on synthetic word-formation networks
produced by the cross-lingual embedding model described above. The use of the
training data is different too.

The cross-lingual embedding model doesn’t train on data for the language it pre-
dicts relations for to ensure correct separation between training and evaluation data,
and therefore n models are trained to produce data for n languages. The extension
model is fully cross-lingual – a single universal model is trained jointly on all lan-
guages and can classify word-formational relations for any language.

In addition to getting the benefit of supervised training on the target language, the
neural extensionmodel also benefits from an extended lexicon compared to the cross-
lingual embedding model – while the dataset for the cross-lingual embedding model
contains the intersection of the manually created WFNs with the embedding lexicon,
the extensionmodel uses the embedding lexicons directly, providing potentiallymore
training examples.

4. Training and evaluation data

For training and evaluating the word-formation models, we use word-formational
data from the Universal Derivations (Kyjánek et al., 2019) and UniMorph (Batsuren
et al., 2022) projects.

The word embedding data required by the neural models is taken from pretrained
X2S-MA (Hämmerl et al., 2022), which is a static embedding resource created from
XLM-R (Conneau et al., 2020) byfirst staticizing the embeddings usingX2Static (Gupta
and Jaggi, 2021) and then realigning the resulting static embeddings cross-lingually.
Although it doesn’t use subword segmentation, and is limited to its training lexicon
as a result, we’ve found it to outperform other sources of embeddings.

All resourcesmentioned above are available formany languages: UDer for 21, Uni-
Morph for 25 and X2S-MA for 40. However, their intersection is more limited – only
14 languages have both a word-formation network (from either UDer or UniMorph)
and pretrained embeddings available. From those languages, we selected the 13 listed
in Table 1 for use with the neural-networks-based models. One language, Dutch, was
excluded, because its word-formation network as contained in UDer has quality too
low to be usable for either training or evaluation due to errors introduced in the UDer
conversion process.

When there are multiple networks for one language, we train on concatenation
of lists of all relations. Compounding relations are treated as multiple derivational
relations with the same successor. The data sizes of the individual word-formation
resources for languages which are also present in the X2S-MA embeddings dataset
are summarized in Table 1.
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Lang Resource Lexemes Relations
deu DErivBase* 280775 43367
deu UniMorph 40155 29381
eng CatVar* 82675 24628
eng UniMorph 264690 225131
eng WordNet 13813 7855
est EstWordNet* 988 507
fas DeriNetFA* 43357 35745
fin FinnWordNet* 20035 11890
fin UniMorph 48499 36997
fra Demonette* 22060 13808
fra UniMorph 93382 73259
hun UniMorph* 38441 32477
ita DerIvaTario* 8267 1783
kaz UniMorph* 3158 1965
por EtymWordNetPT 2797 1610
por NomLexPT* 7020 4201
por UniMorph 19236 12687
rus DeriNetRU 337632 164725
rus DerivBaseRU* 270473 134024
rus EtymWordNetRU 4005 3227
rus GCompAna 4931 1639
rus UniMorph 19823 14048
spa DeriNetES* 151173 42825
spa UniMorph 42760 31293
tur EtymWordNetTR* 7775 5838
tur UniMorph 2836 1776

Table 1: Data sizes of different resources. Resources labelled UniMorph are Wik-
tionary data extracted by the UniMorph project (Batsuren et al., 2022), all other re-
sources are taken from the UDer project (Kyjánek et al., 2019). Resources marked by
a star are used for evaluation in addition to training.

The gold standard data for each language is always taken from one resource, even
when multiple resources for the language exist, to avoid having multiple conflict-
ing golden predecessors for a single lexeme. The datasets designated as golden are
marked in Table 1 by a star. Due to the setup of the experiments, the resource used
for evaluation on a language is never directly used for training of that particular lan-
guage’s model. However, in the second multilingual step, the resource is trained on
indirectly, because models for other languages do use it. For example, the Portuguese
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data are left out when training the Portuguese model, but are used for training the
English model. The second level model then uses both English and Portuguese data
from the previous step. We deem that this is not an issue, because the neural network
cannot get high scores by reproducing its training data, as the data are transferred
cross-lingually twice before evaluation.

The transfer model was trained and evaluated on three languages only, namely
Czech, French and German. These languages were selected for the large size and
quality of their word-formation networks as present in UDer – DeriNet 2.0 (Žabokrt-
ský et al., 2016) with 809 282 relations, Démonette 1.2 (Hathout and Namer, 2014)
with 13 808 relations and DErivBase 2.0 (Zeller et al., 2013) with 43 368 relations, re-
spectively. The transfer model fails to extract useful information from source data
with low accuracy, and since (unlike the neural model) it works purely on pairs of
languages, it is not possible to combine smaller resources for multiple languages to
get one larger usable dataset.

We transferred each network into both other languages and compared the result
to the existing network for that language. The transfer was realized using word dic-
tionaries obtained fromword alignments of parallel data. We used the OpenSubtitles
dataset from the OPUS collection (Tiedemann, 2012) for all language pairs, lemma-
tizing them with UDPipe 1.2 (Straka and Straková, 2017) and extracting only words
tagged as adjectives, adverbs, nouns and verbs. The lemmatizer uses pretrainedmod-
els trained on treebanks from Universal Dependencies (Nivre et al., 2016). The lem-
matized corpora are then aligned using FastAlign (Dyer et al., 2013). The data sizes
are listed in Table 2.

Lang pair Sentences Tokens on left Tokens on right
de — cs 15 237 340 48 320 109 45 922 280
fr — cs 25 838 124 83 108 504 87 983 667
fr — de 14 779 572 44 135 610 48 440 995

Table 2: Sizes of parallel data for each language pair after part-of-speech category
filtering.

5. Evaluation Method

We evaluate the performance of our systems by measuring precision, recall and
accuracy in the task of assigning a parent to a lexeme. We define precision as the
ratio of correctly predicted relations to all predicted relations, recall as the ratio of
correctly predicted relations to all gold relations and accuracy as the ratio of correctly
assigned parents or correctly recognized unmotivated lexemes to all gold lexemes.
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1 for gold_child in gold.lexemes:
2 if not gold_child.parent:
3 true_negative++
4 else:
5 for t_child in translations(gold_child):
6 for t_parent in family(t_child):
7 for parent in backtranslations(t_parent, gold_child):
8 if parent = gold_child.parent:
9 true_positive++

10 continue_line 1
11 false_negative++
12 accuracy := ((true_positive + true_negative) / (true_positive +

↪→ true_negative + false_negative))
13 recall := true_positive / (true_positive + false_negative)

Listing 1: Pseudocode for calculating oracle accuracy and recall of the transfer
algorithm. The backtranslation function returns all backtranslations of t_parent,
except those that translate to gold_child.

Therefore, the precision and recall don’t take into account unmotivated lexemes, while
the accuracy does. The gold-standard data is taken from the existing word-formation
network for the target language.

Because the set of lexemes captured in the cross-lingually projected network dif-
fers from the one used in the gold-standard data, we calculate themetrics in twoways,
which differ in their treatment of missing lexemes. “External” measures consider all
gold-standard relations of lexemes missing from the evaluated network to be false
negatives, while the “internal”measures ignore them insteadmeasures and onlymea-
sure scores on the intersection of the two lexicons. Therefore, the external measures
quantify how close the method gets to reproducing the gold-standard data, while the
internal scores showhowgood is the output itself. Precision is the same for bothmeth-
ods, but recall and accuracy differ. The baseline measures and the networks obtained
by machine learning are created from the set of lexemes found in the gold-standard
network, which makes the internal and external measures identical.

5.1. Baselines

To establish a lower bound of reasonably achievable scores, we created two base-
lines: one trivial, called “empty”, and one inspired by the purely left- or right-branching
parse, the standard baseline in syntactic parsing, called “closest-shorter”.

The empty baseline for a given lexicon is calculated as the scores of an emptyword-
formation network created over that lexicon, i.e. a network without any relations. The
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lexemes from gold-standard data which have no assigned parent are therefore evalu-
ated as correct, while all lexemeswith parents are incorrect, resulting in unmeasurable
(zero) precision, zero recall and moderate-to-high accuracy.

The closest-shorter baseline gives each lexeme four options for its parent and se-
lects the one which has a shorter lemma and the closest orthographic distance, as
measured by the ratio of the length of the longest common contiguous substring to
the sum of lengths of the two lemmas. The options to choose from are the previ-
ous and next lexemes in prograde sorting of the lexicon, and the previous and next
lexemes in retrograde sorting. The lemma length criterion means that lexemes sur-
rounded by longer neighbors in both prograde and retrograde sorting of the lexicon
remain unmotivated. We have already observed that both ends of most derivational
relations lie within a small window on a sorted lexicon, making this baseline rather
strong in terms of both precision and recall.

5.2. Oracle Score

As an additional measure of the potential quality of the transfer approach, we
measured the oracle score of obtaining the gold-standard parent through any combi-
nation of back- and forward-translations of gold-standard child lexemes. Under this
measure, unmotivated lexemes are always considered to be correct, and a derived lex-
eme is considered to be correctly connected to its parent if it can be backtranslated to
a member of a word-formational family, which contains a member that can be trans-
lated to the correct parent. The pseudocode of this algorithm is present in Listing 1.
The recall and accuracy obtained using this algorithm represent the maximum scores
achievable with the transfer method, if it selected the gold parent for each lexeme
every time it is available.

Any error in the recall can be broken down into three categories: first, where we
cannot translate the child to the language of the transferring network; (no t_child
on line 5 of Listing 1); second, where there are no translations of any members of the
translated lexeme’s family (no parent on line 7) and third, where no possible parent
matches the gold one (predicate on line 8 is always false).

6. Evaluation Results

As can be seen in Table 3, the networks created by the transfer algorithm are rather
small in size. Within the constructed network, precision and recall are moderate for
most language pairs, but when compared to the gold standard data, recall is nearly
zero for all of them.

To a large degree, difference in scores between languages can be attributed to the
testing data – each language has its own independently developed dataset with differ-
ent design decisions, size and quality. Even datasetswith identical names (DerivBase,
DeriNet) were typically created by different teamsworkingwith different constraints.
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Size [k] Internal scores [%] Gold scores [%]
Alg Lang pair Lex Rel Prec. Recall F1 Acc. Recall F1 Acc.

Xfer

de → cs 18 6.0 40 33 36 54 0.29 0.58 1.2
fr→ cs 20 7.0 42 36 39 54 0.37 0.73 1.3
cs→ de 14 3.8 27 35 31 66 2.5 4.5 18
fr → de 3 0.6 14 14 14 65 0.20 0.39 4.2
cs→ fr 3 1.2 24 31 27 43 2.1 3.9 7.7
de → fr 0.4 0.1 3.5 11 5.3 59 0.04 0.07 1.8

ML

de → cs 1 026 743 46 74 56 49 74 56 49
fr→ cs 1 026 743 40 70 51 44 70 51 44
cs→ de 280 68 35 68 46 80 68 46 80
fr → de 280 35 44 39 42 85 39 42 85
cs→ fr 21 15 60 89 72 66 89 72 66
de → fr 21 5 36 14 20 37 14 20 37

closest-
shorter
baseline

cs
de
fr

1 026 809 21 54 30 23 54 30 23
280 225 5.2 57 10 21 57 10 21
21 17 32 83 46 39 83 43 39

empty
baseline

cs
de
fr

1 026 0 N/A 0.00 0.00 21 0.00 0.00 21
280 0 N/A 0.00 0.00 85 0.00 0.00 85
21 0 N/A 0.00 0.00 35 0.00 0.00 35

Table 3: Evaluation scores of the results and baselines for each language pair. The
lexeme and relation counts are in thousands. Internal scores are measured on the set
of lexemes in the generated network, gold scores on the set of lexemes from gold data.
Precision is identical for both. For the machine learning and baseline algorithms, the
distinction between internal and gold scores does not matter, since the lexicon used
for prediction is taken from the gold-standard data as is.
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Scores [%] Error cause [%] WFN rel count

Lang pair Recall Acc.
No
child
trans

No
parent
trans

No
match Xferred Gold

de → cs 5.1 29 91 0.08 3.8 43 368 809 282
fr→ cs 6.8 32 90 0.05 3.6 13 808 809 282
cs→ de 34 90 52 0.23 13 809 282 43 368
fr→ de 26 93 51 0.02 22 13 808 43 368
cs→ fr 35 80 57 0.20 8.3 809 282 13 808
de → fr 22 64 62 0.07 16 43 368 13 808

Table 4: Transfer oracle scores for each language pair. Precision is 100% in all cases.
The error causes list percentage of cases where the lexeme cannot be translated to
the language of the transferring network, where no possible parents can be translated
back, and when none of the translated parents match the gold one, respectively. The
error percentage points are relative to the total relation count, i.e. they sum up to
100 together with recall. The last two columns list sizes of the transferred and gold-
standard word-formation networks, measured in relations.

For example, whether unconnected lexemes remain in the database or are elided has a
dominating effect on accuracy – accuracy on the German, English and Spanish gold-
standard WFNs is higher than on the other ones, because they contain > 70 % lex-
emes without parents, which are comparatively easy to correctly predict, but don’t
contribute to either precision or recall.

The classification example preselection heuristic may be a bottleneck on perfor-
mance, as it limits recall to approximately 90 % and several networks come rather
close to that number. But it is still possible to improve performance by a large margin
before being strictly limited by the heuristic.

The performance of the transfermethod depends a lot on the size of the transferred
network. Since the Czech DeriNet is an order of magnitude larger than the other
networks, the gold scores for networks created by using it as a base are the highest
ones, but even these don’t match more than 2.5% of relations from the gold-standard
data.

The precision of the constructed networks is also influenced by the translation
quality. The alignment data trained on the deu-fra pair (in both directions) has many
incorrect alignments. This doesn’t affect the oracle score, since the correct translations
will generally be found, but the wide distribution of the probability mass hurts the ac-
tual algorithm, which is unable to distinguish plausible and implausible translations.
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Internal scores [%] Gold scores [%]
Lang Size Prec. Rec. F1 Acc. Rec. F1 Acc.
deu 15765 14 34 20 42 5.7 8.1 20
eng 12819 30 47 37 47 18 22 30
fas 13877 22 82 35 31 11 15 13
fin 1616 16 10 13 38 2.4 4.2 15
fra 3767 27 66 39 35 7.9 12 11
hun 6158 41 35 37 23 8.7 14 7.7
ita 3465 9.3 57 16 27 24 13 23
kaz 522 58 37 46 30 17 27 16
por 2428 37 43 40 36 25 30 27
rus 8708 12 16 14 28 0.8 1.5 3.6
spa 13702 24 76 37 42 8.3 12 15
tur 2829 28 75 40 38 17 21 19

Table 5: Evaluation scores of the synthetic training data. Accuracy, precision and
recall are in percent, size indicates the number of predicted relations.

Internal scores [%] Gold scores [%]
Lang Size Prec. Rec. F1 Acc. Rec. F1 Acc.
deu 15 20 0.03 0.06 67 0.01 0.01 33
eng 6843 40 28 33 55 12 18 36
fas 186 15 0.08 0.51 35 0.08 0.16 14
fin 3864 16 40 23 28 6.1 8.8 11
fra 4241 24 80 37 32 8.1 12 9.7
hun 4765 54 30 38 24 8.5 15 8.0
ita 3816 9.3 72 16 23 28 14 20
kaz 830 57 70 63 46 30 39 24
por 1908 49 42 45 47 25 33 35
rus 11508 14 29 19 25 1.3 2.3 3.3
spa 13961 23 77 36 41 8.1 12 15
tur 2961 30 80 44 38 19 23 20

Table 6: Evaluation scores of the neural extension model applied on word-formation
networks obtained by the cross-lingual embedding model. Accuracy, precision and
recall are in percent, size indicates the number of predicted relations.
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Figure 2: Word-formation networks generated by the machine learning expansion of
the transferred networks, showing the family of lexeme to reconcile (encircled) for four
of the six language pairs. Top: deu-fra (single lexeme) and fra-deu, middle: ces-fra,
bottom: ces-deu.
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Figure 3: Word-formation networks generated by the machine learning expansion of
the transferred networks, showing the family of lexeme to reconcile (encircled) for the
other two of the six language pairs. Top: deu-ces, bottom: fra-ces.
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The machine learning extension method provides a way of generalizing the out-
put of the transfer method, as it learns frequent affixal patterns from the transferred
data and applies them to a larger lexicon, omitting infrequent (often spurious) pat-
terns. As seen in the second part of Table 3, this results in increased precision on the
networks transferred to French and German, where the gold standard data consists of
relatively few selected paradigms and therefore skews towards fewer, more produc-
tive patterns. The results on the Czech data, which ismore varied, still reach precision
comparable to the transferred networks we train on. Recall increases in all cases, even
when compared to the “internal” scores, which are more favorable to the transferred
networks. Due to this large increase, F1-score also increases. Sample outputs of the
machine learning method can be seen in Figures 2 and 3.

The oracle scores for the transfer are in Table 4. The scores are influenced by the
ratio of sizes of the word-formation networks used for transfer and evaluation; trans-
ferring a large network and evaluating on a smaller one gives an advantage in recall
in comparison to the opposite scenario, simply because a larger source network offers
more options to select from after transfer. The error causes listed in the table corre-
spond to the sources of error in recall as categorized in Section 5.2.

For all language pairs, most of the errors (50-90%) are attributable to the first cause,
where the gold data contains untranslatable lexemes. For the pairs that translate to
Czech, this is again explainable by the size and composition of its DeriNet network,
which contains many unattested lexemes – finding rare lexemes such as přeskočitel-
nost (“skippability”) in the parallel data is unlikely. This is also the reason why the
networks obtained through the machine learning expansion have better scores than
the oracle of the transfer algorithm. The transfer lexicon is limited to the lexemes
found in the parallel data, whose source-side alignments are found in the source
word-formation network, and for evaluation purposes, we further limit the lexicon to
lexemes from the gold-standard data. The machine-learning pipeline uses the gold-
standard lexicon directly, eliminating the “No child trans” class of errors entirely.

Additionally, transfers of networks to German have higher accuracy than transfers
to French, even though the recall is comparable. This is because the German network,
DErivBase, contains many compounds, which don’t have their parents annotated and
are listed as unmotivated. These are counted in the accuracy scores (the definition of
oracle score above considers missing relations to be always correctly recognized) but
do not contribute to recall of relations. The unmotivated words are also the reason
behind the fact that the fra-deu pair has higher accuracy than ces-deu, despite having
lower recall – fewer relations are translated, resulting in more unmotivated words
being correct.

Scores of the cross-lingual embedding model are in Table 5. The model produces
results with roughly comparable internal scores (the F1 score on German is 31% for
transfer vs. 20% for NNs, while on French it is 27% vs. 39%), but significantly higher
gold scores, due to the networks themselves being several times larger. It does not,
however, attain scores on par with the machine learning extension method.
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The neural extension model exposes a large flaw in the training regime of the neu-
ral network. The network is optimized towards minimizing cross entropy between
the predicted and gold binary classifications of individual word-formation relations,
i.e. it maximizes gold accuracy. As seen in Table 6, the model generally succeeds at
that, even though the scores don’t necessarily increase on every language (there is a
small but significant decrease on Finnish, French and Italian). However, this appar-
ent improvement entirely destroys the usefulness of the model on German and Farsi,
because the increase in accuracy is driven by correctly classifying unrelated lexemes
at the expense of related ones, causing the recall to go to zero. Even then, the accu-
racy is still worse than the machine learning extension method. One solution could
be a training objective focused on maximizing gold F1 score, or an improved model
of word formation which doesn’t predict individual relations, but focuses on larger
units, e.g. whole instances of a word-formation paradigm or whole word-formation
families.

7. Conclusion

In this paper, wepresented a two cross-lingualmethods for creatingword-formation
networks – one transfers an existing network using aword-translation lexicon induced
from word alignments, the other one uses a neural network with pretrained cross-
lingual word embeddings. The transferred small networks are then expanded by ei-
ther extracting paradigms using statistical machine learning and applying them to
a larger set of lexemes, or by bootstrapping the neural network on the small word-
formation networks in a cross-lingual fashion. The resulting word-formation net-
works generally show moderately high precision and good recall.
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