
The Prague Bulletin of Mathematical Linguistics
NUMBER 110 APRIL 2018 43–70

Training Tips for the Transformer Model

Martin Popel, Ondřej Bojar
Charles University, Faculty of Mathematics and Physics, Institute of Formal and Applied Linguistics,

Prague, Czechia

Abstract
This article describes our experiments in neural machine translation using the recent Ten-

sor2Tensor framework and the Transformer sequence-to-sequence model (Vaswani et al., 2017).
We examine some of the critical parameters that affect the final translation quality, memory
usage, training stability and training time, concluding each experiment with a set of recom-
mendations for fellow researchers. In addition to confirming the general mantra “more data
and larger models”, we address scaling to multiple GPUs and provide practical tips for im-
proved training regarding batch size, learning rate, warmup steps, maximum sentence length
and checkpoint averaging. We hope that our observations will allow others to get better results
given their particular hardware and data constraints.

1. Introduction

It has been already clearly established that neural machine translation (NMT) is
the new state of the art in machine translation, see e.g. the most recent evaluation
campaigns (Bojar et al., 2017a; Cettolo et al., 2017). Many fundamental changes of the
underlying neural network architecture are nevertheless still frequent and it is very
difficult to predict which of the architectures has the best combination of properties
to win in the long term, considering all relevant criteria like translation quality, model
size, stability and speed of training, interpretability but also practical availability of
good implementations. A considerable part of a model’s success in translation quality
consists in the training data, the model’s sensitivity to noise in the data but also on a
wide range of hyper-parameters that affect the training. Having the right setting of
them turns out to be often a critical component for the success.

© 2018 PBML. Distributed under CC BY-NC-ND. Corresponding author: popel@ufal.mff.cuni.cz
Cite as: Martin Popel, Ondřej Bojar. Training Tips for the Transformer Model. The Prague Bulletin of Mathematical
Linguistics No. 110, 2018, pp. 43–70. doi: 10.2478/pralin-2018-0002.

http://creativecommons.org/licenses/by-nc-nd/3.0/

PBML 110 APRIL 2018

In this article, we experiment with a relatively new NMT model, called Trans-
former (Vaswani et al., 2017) as implemented in the Tensor2Tensor1 (abbreviated T2T)
toolkit, version 1.2.9. The model and the toolkit have been released shortly after the
evaluation campaign at WMT20172 and its behavior on large-data news translation is
not yet fully explored. We want to empirically explore some of the important hyper-
parameters. Hopefully, our observations will be useful also for other researchers con-
sidering this model and framework.

While investigations into the effect of hyper-parameters like learning rate and batch
size are available in the deep-learning community (e.g. Bottou et al., 2016; Smith and
Le, 2017; Jastrzebski et al., 2017), these are either mostly theoretic or experimentally
supported from domains like image recognition rather than machine translation. In
this article, we fill the gap by focusing exclusively on MT and on the Transformer
model only, providing hopefully the best practices for this particular setting.

Some of our observations confirm the general wisdom (e.g. larger training data
are generally better) and quantify the behavior on English-to-Czech translation ex-
periments. Some of our observations are somewhat surprising, e.g. that two GPUs
are more than three times faster than a single GPU, or our findings about the interac-
tion between maximum sentence length, learning rate and batch size.

The article is structured as follows. In Section 2, we discuss our evaluation method-
ology and main criteria: translation quality and speed of training. Section 3 describes
our dataset and its preparations. Section 4 is the main contribution of the article: a
set of commented experiments, each with a set of recommendations. Finally, Sec-
tion 5 compares our best Transformer run with systems participating in WMT17. We
conclude in Section 6.

2. Evaluation Methodology

Machine translation can be evaluated in many ways and some forms of human
judgment should be always used for the ultimate resolution in any final application.
The common practice in MT research is to evaluate the model performance on a test set
against one or more human reference translations. The most widespread automatic
metric is undoubtedly the BLEU score (Papineni et al., 2002), despite its acknowledged
problems and better-performing alternatives (Bojar et al., 2017b). For simplicity, we
stick to BLEU, too (we evaluated all our results also with chrF (Popović, 2015), but
found no substantial differences from BLEU). In particular, we use the case-insensitive
sacréBLEU3 which uses a fixed tokenization (identical to mteval-v14.pl --interna-

1https://github.com/tensorflow/tensor2tensor

2http://www.statmt.org/wmt17

3 https://github.com/awslabs/sockeye/tree/master/contrib/sacrebleu
The signature of the BLEU scores reported in this paper is BLEU+case.lc+lang.en-cs+numrefs.1+smooth.
exp+test.wmt13+tok.intl+version.1.2.3.

44

https://github.com/tensorflow/tensor2tensor
http://www.statmt.org/wmt17
https://github.com/awslabs/sockeye/tree/master/contrib/sacrebleu

Martin Popel, Ondřej Bojar Training Tips for the Transformer Model (43–70)

tional-tokenization) and automatically downloads the reference translation for a
given WMT testset.

2.1. Considerations on Stopping Criterion

The situation in NMT is further complicated by the fact that the training of NMT
systems is usually non-deterministic,4 and (esp. with the most recent models) hardly
ever converges or starts overfitting5 on reasonably big datasets. This leads to learning
curves that never fully flatten let alone start decreasing (see Section 4.2). The common
practice of machine learning to evaluate the model on a final test set when it started
overfitting (or a bit sooner) is thus not applicable in practice.

Many papers in neural machine translation do not specify any stopping criteria
whatsoever. Sometimes, they mention only an approximate number of days the model
was trained for, e.g. Bahdanau et al. (2015), sometimes the exact number of training
steps is given but no indication on “how much converged” the model was at that
point, e.g. Vaswani et al. (2017). Most probably, the training was run until no further
improvements were clearly apparent on the development test set, and the model was
evaluated at that point. Such an approximate stopping criterion is rather risky: it is
conceivable that different setups were stopped at different stages of training and their
comparison is not fair.

A somewhat more reliable method is to keep training for a specified number of
iterations or a certain number of epochs. This is however not a perfect solution either,
if the models are not quite converged at that time and the difference in their perfor-
mance is not sufficiently large. It is quite possible that e.g. a more complex model
would need a few more epochs and eventually arrived at a higher score than its com-
petitor. Also, the duration of one training step (or one epoch) differs between models
(see Section 4.1) and from the practical point of view, we are mostly interested in the
wall-clock time.

When we tried the standard technique of early stopping, when N subsequent eval-
uations on the development test set do not give improvements larger than a given
delta, we saw a big variance in the training time and final BLEU, even for experi-
ments with the same hyper-parameters and just a different random seed. Moreover
to get the best results, we would have had to use a very large N and a very small delta.

4 Even if we fix the random seed (which was not done properly in T2T v1.2.9), a change of some hyper-
parameters may affect the results not because of the change itself, but because it influenced the random
initialization.

5 By overfitting we mean here that the translation quality (test-set BLEU) begins to worsen, while the
training loss keeps improving.

45

PBML 110 APRIL 2018

2.2. Our Final Choice: Full Learning Curves

Based on the discussion above, we decided to report always the full learning curves
and not just single scores. This solution does not fully prevent the risk of premature
judgments, but the readers can at least judge for themselves if they would expect any
sudden twist in the results or not.

In all cases, we plot the case-insensitive BLEU score against the wall-clock time in
hours. This solution obviously depends on the hardware chosen, so we always used
the same equipment: one up to eight GeForce GTX 1080 Ti GPUs with NVIDIA driver
375.66. Some variation in the measurements is unfortunately unavoidable because we
could not fully isolate the computation from different processes on the same machine
and from general network traffic, but based on our experiments with replicated ex-
periments such variation is negligible.

2.3. Terminology

For clarity, we define the following terms and adhere to them for the rest of the
paper:
Translation quality is an automatic estimate of how well the translation carried out

by a particular fixed model expresses the meaning of the source. We estimate
translation quality solely by BLEU score against one reference translation.

Training Steps denote the number of iterations, i.e. the number of times the opti-
mizer update was run. This number also equals the number of (mini)batches
that were processed.

Batch Size is the number of training examples used by one GPU in one training step.
In sequence-to-sequence models, batch size is usually specified as the number
of sentence pairs. However, the parameter batch_size in T2T translation specifies
the approximate number of tokens (subwords) in one batch.6 This allows to use
a higher number of short sentences in one batch or a smaller number of long
sentences.

Effective Batch Size is the number of training examples consumed in one training
step. When training on multiple GPUs, the parameter batch_size is interpreted
per GPU. That is, with batch_size=1500 and 8 GPUs, the system actually digests
12k subwords of each language in one step.

Training Epoch corresponds to one complete pass over the training data. Unfortu-
nately, it is not easy to measure the number of training epochs in T2T.7 T2T

6 For this purpose, the number of tokens in a sentence is defined as the maximum of source and target
subwords. T2T also does reordering and bucketing of the sentences by their length to minimize the use of
padding symbols. However, some padding is still needed, thus batch_size only approximates the actual
number of (non-padding) subwords in a batch.

7https://github.com/tensorflow/tensor2tensor/issues/415

46

https://github.com/tensorflow/tensor2tensor/issues/415

Martin Popel, Ondřej Bojar Training Tips for the Transformer Model (43–70)

reports only the number of training steps. In order to convert training steps to
epochs, we need to multiply the steps by the effective batch size and divide by
the number of subwords in the training data (see Section 3.1). The segmentation
of the training data into subwords is usually hidden to the user and the number
of subwords must be thus computed by a special script.

Computation Speed is simply the observed number of training steps per hour. Com-
putation speed obviously depends on the hardware (GPU speed, GPU-CPU
communication) and software (driver version, CUDA library version, imple-
mentation). The main parameters affecting computation speed are the model
size, optimizer and other settings that directly modify the formula of the neural
network.

Training Throughput is the amount of training data digested by the training. We
report training throughput in subwords per hour. Training Throughput equals
to the Computation Speed multiplied by the effective batch size.

Convergence Speed or BLEU Convergence is the increase in BLEU divided by time.
Convergence speed changes heavily during training, starting very high and de-
creasing as the training progresses. A converged model should have conver-
gence speed of zero.

Time Till Score is the training time needed to achieve a certain level of translation
quality, in our case BLEU. We use this as an informal measure because it is not
clear how to define the moment of “achieving” a given BLEU score. We define
it as time after which the BLEU never falls below the given level.8

Examples Till Score is the number of training examples (in subwords) needed to
achieve a certain level of BLEU. It equals to the Time Till Score multiplied by
Training Throughput.

2.4. Tools for Evaluation within Tensor2Tensor

T2T, being implemented in TensorFlow, provides nice TensorBoard visualizations
of the training progress. The original implementation was optimized towards speed
of evaluation rather than towards following the standards of the field. T2T thus re-
ports “approx-bleu” by default, which is computed on the internal subwords (never
exposed to the user, actually) instead of words (according to BLEU tokenization). As
a result, “approx-bleu” is usually about 1.2–1.8 times higher than the real BLEU. Due
to its dependence on the training data (for the subword vocabulary), it is not easily
reproducible in varying experiments and thus not suitable for reporting in publica-
tions.

8 Such definition of Time Till Score leads to a high variance of its values because of the relatively high
BLEU variance between subsequent checkpoints (visible as a “flickering” of the learning curves in the
figures). To decrease the variation one can use a bigger development test set.

47

PBML 110 APRIL 2018

sentences EN words CS words
CzEng 1.7 57 M 618 M 543 M
europarl-v7 647 k 15 M 13 M
news-commentary-v11 190 k 4.1 M 3.7 M
commoncrawl 161 k 3.3 M 2.9 M
Total 58 M 640 M 563 M

Table 1: Training data resources

We implemented a helper script t2t-bleuwhich computes the “real” BLEU (giving
the same result as sacréBLEU with --tokenization intl). Our script can be used in
two ways:

• To evaluate one translated file:
t2t-bleu --translation=my-wmt13.de --reference=wmt13_deen.de

• To evaluate all translations in a given directory (created e.g. by t2t-translate-
all) and store the results in a TensorBoard events file. All the figures in this
article were created this way.

We also implemented t2t-translate-all and t2t-avg-all scripts, which translate
all checkpoints in a given directory and average a window of N subsequent check-
points, respectively.9 For details on averaging see Section 4.10.

3. Data Selection and Preprocessing

We focused on the English-to-Czech translation direction. Most of our training
data comes from the CzEng parallel treebank, version 1.7 (57M sentence pairs),10 and
the rest (1M sentence pairs) comes from three smaller sources (Europarl, News Com-
mentary, Common Crawl) as detailed in Table 1.

We use this dataset of 58M sentence pairs for most our experiments. In some exper-
iments (in Sections 4.2 and 4.6), we substitute CzEng 1.7 with an older and consider-
ably smaller CzEng 1.0 (Bojar et al., 2012) containing 15M sentence pairs (233M/206M
of en/cs words).

To plot the performance throughout the training, we use WMT newstest2013 as
a development set (not overlapping with the training data). In Section 5, we apply
our best model (judged from the performance on the development set) to the WMT
newstest2017, for comparison with the state-of-the-art systems.

9 All three scripts are now merged in the T2T master. All three scripts can be used while the training is
still in progress, i.e. they wait a given number of minutes for new checkpoints to appear.

10 http://ufal.mff.cuni.cz/czeng/czeng17, which is a subset of CzEng 1.6 (Bojar et al., 2016).

48

http://ufal.mff.cuni.cz/czeng/czeng17

Martin Popel, Ondřej Bojar Training Tips for the Transformer Model (43–70)

3.1. Training Data Preprocessing

Data preprocessing such as tokenization and truecasing has always been a very
important part of the setup of statistical machine translation systems. A huge leap in
scaling NMT to realistic data size has been achieved by the introduction of subword
units (Sennrich et al., 2016), but the long-term vision of the deep-learning community
is to leave all these “technicalities” up to the trained neural network and feed it with
as original input as possible (see e.g. Lee et al., 2016).

T2T adopts this vision and while it supports the use of external subword units, it
comes with its own built-in method similar to the word-piece algorithm by Wu et al.
(2016) and does not expect the input to be even tokenized. Based on a small sample of
the training data, T2T will train a subword vocabulary and apply it to all the training
and later evaluation data.

We follow the T2T default and provide raw plain text training sentences. We use
the default parameters: shared source and target (English and Czech) subword vocab-
ulary of size 32k.11 After this preprocessing, the total number of subwords in our main
training data is 992 millions (taking the maximum of English and Czech lengths for
each sentence pair, as needed for computing the number of epochs, see Section 2.3).
The smaller dataset CzEng 1.0 has 327 million subwords. In both cases the average
number of subwords per (space-delimited) word is about 1.5.

Even when following the defaults, there are some important details that should be
considered. We thus provide our first set of technical tips here:

Tips on Training Data Preprocessing

• Make sure that the subword vocabulary is trained on a sufficiently large sample
of the training data.12

• As discussed in Section 4.5, a higher batch size may be beneficial for the train-
ing and the batch size can be higher when excluding training sentences longer
than a given threshold. This can be controlled with parameter max_length (see
Section 4.4), but it may be a good idea to exclude too long sentences even before
preparing the training data using t2t-datagen. This way the TFRecords training
files will be smaller and their processing a bit faster.13

11 More details on T2T with BPE subword units by Sennrich et al. (2016) vs. the internal implementation
can be found in the technical report “Morphological and Language-Agnostic Word Segmentation for NMT”
attached to the Deliverable 2.3 of the project QT21: http://www.qt21.eu/resources/.

12This is controlled by a file_byte_budget constant, which must be changed directly in the source code
in T2T v1.2.9. A sign of too small training data for the subword vocabulary is that the min_count as reported
in the logs is too low, so the vocabulary is estimated from words seen only once or twice.

13 We did no such pre-filtering in our experiments.

49

http://www.qt21.eu/resources/

PBML 110 APRIL 2018

4. Experiments

In this section, we present several experiments, always summarizing the obser-
vations and giving some generally applicable tips that we learned. All experiments
were done with T2T v1.2.9 unless stated otherwise.

We experiment with two sets of hyper-parameters pre-defined in T2T: transfor-
mer_big_single_gpu (BIG) and transformer_base_single_gpu (BASE), which differ
mainly in the size of the model. Note that transformer_big_single_gpu and trans-
former_base_single_gpu are just names of a set of hyper-parameters, which can be
applied even when training on multiple GPUs, as we do in our experiments, see Sec-
tion 4.7.14

Our baseline setting uses the BIG model with its default hyper-parameters except
for:

• batch_size=1500 (see the discussion of different sizes in Section 4.5),
• --train_steps=6000000, i.e. high enough, so we can stop each experiment man-

ually as needed,
• --save_checkpoints_secs=3600 which forces checkpoint saving each hour (see

Section 4.10),
• --schedule=train which disables the internal evaluation with approx_bleu and

thus makes training a bit faster (see Section 2).15

4.1. Computation Speed and Training Throughput

We are primarily interested in the translation quality (BLEU learning curves and
Time Till Score) and we discuss it in the following sections 4.2–4.10. In this section, we
focus however only on the computation speed and training throughput. Both are affected
by three important factors: batch size, number of used GPUs and model size. The
speed is usually almost constant for a given experiment.16

Table 2 shows the computation speed and training throughput for a single GPU
and various batch sizes and model sizes (BASE and BIG). The BASE model allows for
using a higher batch size than the BIG model. The cells where the BIG model resulted
in out-of-memory errors are marked with “OOM”.17 We can see that the computa-

14 According to our experiments (not reported here), transformer_big_single_gpu is better than trans-
former_big even when training on 8 GPUs, although the naming suggests that the T2T authors had an
opposite experience.

15Also there are some problems with the alternative schedules train_and_evaluate (it needs more mem-
ory) and continuous_train_and_eval (see https://github.com/tensorflow/tensor2tensor/issues/556).

16 TensorBoard shows global_step/sec statistics, i.e. the computation speed curve. These curves in our
experiments are almost constant for the whole training with variation within 2%, except for moments when
a checkpoint is being saved (and the computation speed is thus much slower).

17 For these experiments, we used max_length=50 in order to be able to test bigger batch sizes. However,
in additional experiments we checked that max_length does not affect the training throughput itself.

50

https://github.com/tensorflow/tensor2tensor/issues/556

Martin Popel, Ondřej Bojar Training Tips for the Transformer Model (43–70)

model
batch_size BASE BIG

500 43.4k 23.6k
1000 30.2k 13.5k
1500 22.3k 9.8k
2000 16.8k 7.5k
2500 14.4k 6.5k
3000 12.3k OOM
4500 8.2k OOM
6000 6.6k OOM

(a) Computation speed (steps/hour)

model
batch_size BASE BIG

500 21.7M 11.9M
1000 30.2M 13.5M
1500 33.4M 14.7M
2000 33.7M 15.0M
2500 36.0M 16.2M
3000 37.0M OOM
4500 36.7M OOM
6000 39.4M OOM

(b) Training throughput (subwords/hour)

Table 2: Computation speed and training throughput for a single GPU.

tion speed decreases with increasing batch size because not all operations in GPU are
fully batch-parallelizable. The training throughput grows sub-linearly with increas-
ing batch size, so based on these experiments only, there is just a small advantage
when setting the batch size to the maximum value. We will return to this question in
Section 4.5, while taking into account the translation quality.

We can also see the BASE model has approximately two times bigger throughput
as well as computation speed relative to the BIG model.

GPUs steps/hour subwords/hour
1 9.8k 14.7M
2 7.4k 22.2M
6 5.4k 48.6M
8 5.6k 67.2M

Table 3: Computation speed and training throughput for various numbers of GPUs,
with the BIG model and batch_size=1500.

Table 3 uses the BIG model and batch_size=1500, while varying the number of
GPUs. The overhead in GPU synchronization is apparent from the decreasing com-
putation speed. Nevertheless, the training throughput still grows with more GPUs,
so e.g. with 6 GPUs we process 3.2 times more training data per hour relative to a sin-
gle GPU (while without any overhead we would hypothetically expect 6 times more
data).

51

PBML 110 APRIL 2018

..

24

.

25

.

26

.

27

.
0

.
50

.
100

.
150

.
200

.
250

.

1

.

2

.

3

.

4

.

5

.

6

.

7

.

8

.

9

.

10

.

11

.

BL
EU

. Training time (hours).

Training time (days)

.

58M training sentences

.

16M training sentences

Figure 1: Training data size effect. BLEU learning curves for our main training dataset
with 58 million sentence pairs and an alternative training dataset with 16 million sen-
tence pairs. Both trained with 8 GPUs, BIG model and batch_size=1500.

The overhead when scaling to multiple GPUs is smaller than the overhead when
scaling to a higher batch size. Scaling from a single GPU to 6 GPUs increases the
throughput 3.2 times, but scaling from batch size 1000 to 6000 on a single GPU in-
creases the throughput 1.3 times.

4.2. Training Data Size

For this experiment, we substituted CzEng 1.7 with CzEng 1.0 in the training data,
so the total training size is 16 million sentence pairs (255M / 226M of English/Czech
words). Figure 1 compares the BLEU learning curves of two experiments which differ
only in the training data: the baseline CzEng 1.7 versus the smaller CzEng 1.0. Both
are trained on the same hardware with the same hyper-parameters (8 GPUs, BIG,
batch_size=1500). Training on the smaller dataset (2.5 times smaller in the number
of words) converges to BLEU of about 25.5 after two days of training and does not
improve over the next week of training. Training on the bigger dataset gives slightly
worse results in the first eight hours of training (not shown in the graph) but clearly
better results after two days of training, reaching over 26.5 BLEU after eight days.18

With batch_size=1500 and 8 GPUs, training one epoch of the smaller dataset (with
CzEng 1.0) takes 27k steps (5 hours of training), compared to 83k steps (15 hours) for
the bigger dataset (with CzEng 1.7). This means about 10 epochs in the smaller dataset
were needed for reaching the convergence and this is also the moment when the bigger

18 We compared the two datasets also in another experiment with two GPUs, where CzEng 1.7 gave
slightly worse results than CzEng 1.0 during the first two days of training but clearly better results after
eight days. We hypothesize CzEng 1.0 is somewhat cleaner than CzEng 1.7.

52

Martin Popel, Ondřej Bojar Training Tips for the Transformer Model (43–70)

dataset starts being clearly better. However, even 18 epochs in the bigger dataset were not
enough to reach the convergence. enough to reach the convergence

Tips on Training Data Size

• For comparing different datasets (e.g. smaller and cleaner vs. bigger and nois-
ier), we need to train long enough because results after first hours (or days if training
on a single GPU) may be misleading.

• For large training data (as CzEng 1.7 which has over half a gigaword), BLEU
improves even after one week of training on eight GPUs (or after 20 days of training
on two GPUs in another experiment).

• We cannot easily interpolate one dataset results to another dataset. While the smaller
training data (with CzEng 1.0) converged after 2 days, the main training data
(with CzEng 1.7), which is 2.5 times bigger, continues improving even after
2.5×2 days.19

4.3. Model Size

Choosing the right model size is important for practical reasons: larger models
may not fit any more on your GPU or they may require to use a very small batch size.

We experiment with two models,20 as pre-defined in Tensor2Tensor – transfor-
mer_big_single_gpu (BIG) and transformer_base_single_gpu (BASE), which differ in
four hyper-parameters summarized in Table 4.

model hidden_size filter_size num_heads adam_beta2
BASE 512 2048 8 0.980
BIG 1024 4096 16 0.998

Table 4: transformer_big_single_gpu (BIG) and transformer_base_single_gpu
(BASE) hyper-parameter differences.

Figure 2 shows that on a single GPU, the BIG model becomes clearly better than the
BASE model after 4 hours of training if we keep the batch size the same – 2000 (and we
have confirmed it with 1500 in other experiments). However, the BASE model takes
less memory, so we can afford a higher batch size, in our case 4500 (with no max_length
restriction, see the next section), which improves the BLEU (see Section 4.5). But even

19 Although such an expectation may seem naïve, we can find it in literature. For example, Bottou (2012)
in Section 4.2 writes: “Expect the validation performance to plateau after a number of epochs roughly comparable to
the number of epochs needed to reach this point on the small training set.”

20 We tried also a model three times as large as BASE (1.5 times as large as BIG), but it did not reach better
results than BIG, so we don’t report it here.

53

PBML 110 APRIL 2018

..

16

.

18

.

20

.

22

.

24

.
0

.
10

.
20

.
30

.
40

.
50

.
60

.
70

.

BL
EU

. Training time (hours).

BIG model, batch size 2000, 1 GPU

.

BASE model, batch size 4500, 1 GPU

.

BASE model, batch size 2000, 1 GPU

Figure 2: Effect of model size and batch size on a single GPU.

..

22

.

23

.

24

.

25

.

26

.
0

.
10

.
20

.
30

.
40

.
50

.

BL
EU

. Training time (hours).

BIG model, batch size 1500, 8 GPUs

.

BASE model, batch size 4500, 8 GPUs

Figure 3: Effect of model size and batch size on 8 GPUs.

so, after less than one day of training, BIG with batch size 2000 becomes better than
BASE with batch size 4500 (or even 6000 with max_length=70 in another experiment)
and the difference grows up to 1.8 BLEU after three days of training.

Figure 3 confirms this with 8 GPUs – here BIG with batch size 1500 becomes clearly
better than BASE with batch size 4500 after 18 hours of training.

Tips on Model Size

• Prefer the BIG over the BASE model if you plan to train longer than one day and
have 11 GB (or more) memory available on GPU.

• With less memory you should benchmark BIG and BASE with the maximum
possible batch size.

54

Martin Popel, Ondřej Bojar Training Tips for the Transformer Model (43–70)

maximum batch size longer sentences
max_length BIG+Adam BIG+Adafactor BASE+Adam train test

none 2040 2550 4950 0.0% 0.0%
150 2230 2970 5430 0.2% 0.0%
100 2390 3280 5990 0.7% 0.3%
70 2630 3590 6290 2.1% 2.2%
50 2750 3770 6430 5.0% 9.1%

Table 5: Maximum batch size which fits into 11GB memory for various combinations
of max_length (maximum sentence length in subwords), model size (base or big) and
optimizer (Adam or Adafactor). The last two columns show the percentage of sen-
tences in the train (CzEng 1.7) and test (wmt13) data that are longer than a given
threshold.

• For fast debugging (of model-size-unrelated aspects) use a model called trans-
former_tiny.

4.4. Maximum Training Sentence Length

The parameter max_length specifies the maximum length of a sentence in sub-
words. Longer sentences (either in source or target language) are excluded from the
training completely. If no max_length is specified (which is the default), batch_size
is used instead. Lowering the max_length allows to use a higher batch size or a bigger
model. Since the Transformer implementation in T2T can suddenly run out of mem-
ory even after several hours of training, it is good to know how large batch size fits
in your GPU. Table 5 presents what we empirically measured for the BASE and BIG
models with Adam and Adafactor21 optimizers and various max_length values.

Setting max_length too low would result in excluding too many training sentences
and biasing the translation towards shorter sentences, which would hurt the trans-
lation quality. The last two columns in Table 5 show that setting max_length to 70
(resp. 100) results in excluding only 2.1% (resp. 0.7%) of sentences in the training
data, and only 2.2% (resp. 0.3%) sentences in the development test data are longer,
so the detrimental effect of smaller training data and length bias should be minimal
in this setting. However, our experiments with batch_size=1500 in Figure 4 show a
strange drop in BLEU after one hour of training for all experiments with max_length
70 or lower. Even with max_length 150 or 200 the BLEU learning curve is worse than
with max_length=400, which finally gives the same result as not using any max_length

21 The Adafactor optimizer (Shazeer and Stern, 2018) is available only in T2T 1.4.2 or newer and has three
times smaller models than Adam because it does not store first and second moments for all weights. We
leave further experiments with Adafactor for future work.

55

PBML 110 APRIL 2018

..

0

.

5

.

10

.

15

.
0

.
1

.
2

.
3

.
4

.
5

.
6

.
7

.
8

.
9

.

BL
EU

. Training time (hours).

max length 400

.

max length 200

.

max length 150

.

max length 70

.

max length 50

.

max length 25

Figure 4: Effect of restricting the training data to various max_length values. All
trained on a single GPU with the BIG model and batch_size=1500. An experiment
without any max_length is not shown, but it has the same curve as max_length=400.

restriction. The training loss of max_length=25 (and 50 and 70) has high variance and
stops improving after the first hour of training but shows no sudden increase (as in
the case of diverged training discussed in Section 4.6 when the learning rate is too
high). We have no explanation for this phenomenon.22

We did another set of experiments with varying max_length, but this time with
batch_size=2000 instead of 1500. In this case, max_length 25 and 50 still results in
slower growing BLEU curves, but 70 and higher has the same curve as no max_length
restriction. So in our case, if the batch size is high enough, the max_length has almost no
effect on BLEU, but this should be checked for each new dataset.

We trained several models with various max_length for three days and observed
that they are not able to produce longer translations than what was the maximum length used
in training, even if we change the decoding parameter alpha.

Tips on max_length

• Set (a reasonably low) max_length. This allows to use a higher batch size and
prevents out-of-memory errors after several hours of training. Also, with a
higher percentage of training sentences that are almost max_length long, there
is a higher chance that the training will fail either immediately (if the batch size
is too high) or never (otherwise).,

• Set a reasonably high max_length. Consider the percentage of sentences excluded
from training and from the targeted development test set and also watch for un-
expected drops (or stagnations) of the BLEU curve in the first hours of training.

22 https://github.com/tensorflow/tensor2tensor/issues/582

56

https://github.com/tensorflow/tensor2tensor/issues/582

Martin Popel, Ondřej Bojar Training Tips for the Transformer Model (43–70)

..

10

.

12

.

14

.

16

.

18

.

20

.

22

.
0

.
10

.
20

.
30

.
40

.
50

.
60

.
70

.

BL
EU

. Training time (hours).

BASE, batch size 6000

.

BASE, batch size 4500

.

BASE, batch size 3000

.

BASE, batch size 1500

.

BASE, batch size 1000

Figure 5: Effect of the batch size with the BASE model. All trained on a single GPU.

4.5. Batch Size

The default batch_size value in recent T2T versions is 4096 subwords for all mod-
els except for transformer_base_single_gpu, where the default is 2048. However, we
recommend to always set the batch size explicitly23 or at least make a note what was
the default in a given T2T version when reporting experimental results.

Figure 5 shows learning curves for five different batch sizes (1000, 1500, 3000, 4500
and 6000) for experiments with a single GPU and the BASE model.24 A higher batch
size up to 4500 is clearly better in terms of BLEU as measured by Time Till Score and
Examples Till Score metrics defined in Section 4.1. For example, to get over BLEU of 18
with batch_size=3000, we need 7 hours (260M examples), and with batch_size=1500,
we need about 3 days (2260M examples) i.e. 10 times longer (9 time more examples).
From Table 2a we know that bigger batches have slower computation speed, so when
re-plotting Figure 5 with steps instead of time on the x-axis, the difference between the
curves would be even bigger. From Table 2b we know that bigger batches have slightly
higher training throughput, so when re-plotting with number of examples processed
on the x-axis, the difference will be smaller, but still visible. The only exception is
the difference between batch size 4500 and 6000, which is very small and can be fully

23e.g. --hparams="batch_size=1500,learning_rate=0.20,learning_rate_warmup_steps=16000"
As the batch size is specified in subwords, we see no advantage in using power-of-two values.

24All the experiments in Figure 5 use max_length=70, but we have got the same curves when re-running
without any max_length restrictions, except for batch_size=6000 which failed with OOM.

57

PBML 110 APRIL 2018

..

0

.

5

.

10

.

15

.

20

.
0

.
5

.
10

.
15

.
20

.
25

.
30

.
35

.

BL
EU

. Training time (hours).

BIG, batch size 2000

.

BIG, batch size 1500

.

BIG, batch size 1450

.

BIG, batch size 1400

.

BIG, batch size 1300

.

BIG, batch size 1000

Figure 6: Effect of the batch size with the BIG model. All trained on a single GPU.

explained by the fact that batch size 6000 has 7% higher throughput than batch size
4500.

So for the BASE model, a higher batch size gives better results, although with dimin-
ishing returns. This observation goes against the common knowledge in other NMT
frameworks and deep learning in general (Keskar et al., 2017) that smaller batches pro-
ceed slower (training examples per hour) but result in better generalization (higher
test-set BLEU) in the end. In our experiments with the BASE model in T2T, bigger
batches are not only faster in training throughput (as could be expected), but also
faster in convergence speed, Time Till Score and Examples Till Score.

Interestingly, when replicating these experiments with the BIG model, we see quite
different results, as shown in Figure 6. The BIG model needs a certain minimal batch
size to start converging at all, but for higher batch sizes there is almost no difference
in the BLEU curves (but still, bigger batch never makes the BLEU worse in our ex-
periments). In our case, the sharp difference is between batch size 1450, which trains
well, and 1400, which drops off after two hours of training, recovering only slowly.

According to Smith and Le (2017) and Smith et al. (2017), the gradient noise scale,
i.e. scale of random fluctuations in the SGD (or Adam etc.) dynamics, is proportional
to learning rate divided by the batch size (cf. Section 4.8). Thus when lowering the
batch size, we increase the noise scale and the training may diverge. This may be either
permanent, as in the case of batch size 1000 in Figure 6, or temporary, as in the case
of batch size 1300 and 1400, where the BLEU continues to grow after the temporary
drop, but much more slowly than the non-diverged curves.

We are not sure what causes the difference between the BASE and BIG models with
regards to the sensitivity to batch size. One hypothesis is that the BIG model is more

58

Martin Popel, Ondřej Bojar Training Tips for the Transformer Model (43–70)

..

0

.

5

.

10

.

15

.

20

.
0

.
5

.
10

.
15

.
20

.
25

.
30

.
35

.
40

.
45

.

BL
EU

. Training time (hours).

learning rate 0.25

.

learning rate 0.20

.

learning rate 0.10

.

learning rate 0.05

.

learning rate 0.01

Figure 7: Effect of the learning rate on a single GPU. All trained on CzEng 1.0 with
the default batch size (1500) and warmup steps (16k).

difficult to initialize and thus more sensitive to divergence in the early training phase.
Also while for BASE, increasing the batch size was highly helpful until 4500, for BIG
this limit may be below 1450, i.e. below the minimal batch size needed for preventing
diverged training.

Tip on Batch Size

• Batch size should be set as high as possible while keeping a reserve for not hitting
the out-of-memory errors. It is advisable to establish the largest possible batch
size before starting the main and long training.

4.6. Learning Rate and Warmup Steps on a Single GPU

The default learning rate in T2T translation models is 0.20. Figure 7 shows that
varying the value within range 0.05–0.25 makes almost no difference. Setting the
learning rate too low (0.01) results in notably slower convergence. Setting the learning
rate too high (0.30, not shown in the figure) results in diverged training, which means
in this case that the learning curve starts growing as usual, but at one moment drops
down almost to zero and stays there forever.

A common solution to prevent diverged training is to decrease the learning_ra-
te parameter or increase learning_rate_warmup_steps or introduce gradient clipping.
The learning_rate_warmup_stepsparameter configures a linear_warmup_rsqrt_decay
schedule25 and it is set to 16 000 by default (for the BIG model), meaning that within

25 The schedule was called noam in T2T versions older than 1.4.4.

59

PBML 110 APRIL 2018

..

0

.

5

.

10

.

15

.

20

.
0

.
5

.
10

.
15

.
20

.
25

.
30

.
35

.
40

.
45

.

BL
EU

. Training time (hours).

warmup steps 12k

.

warmup steps 14k

.

warmup steps 16k

.

warmup steps 32k

.

warmup steps 48k

Figure 8: Effect of the warmup steps on a single GPU. All trained on CzEng 1.0 with
the default batch size (1500) and learning rate (0.20).

the first 16k steps the learning rate grows linearly and then follows an inverse square
root decay (t−0.5, cf. Section 4.8.3). At 16k steps, the actual learning rate is thus the
highest.

If a divergence is to happen, it usually happens within the first few hours of train-
ing, when the actual learning rate becomes the highest. Once we increased the warmup
steps from 16k to 32k, we were able to train with the learning rate of 0.30 and even
0.50 without any divergence. The learning curves looked similarly to the baseline one
(with default values of 16k warmup steps and learning rate 0.20). When trying learn-
ing rate 1.0, we had to increase warmup steps to 60k (with 40k the training diverged
after one hour) – this resulted in a slower convergence at first (about 3 BLEU lower
than the baseline after 8 hours of training), but after 3–4 days of training having the
same curve as the baseline.

Figure 8 shows the effect of different warmup steps with a fixed learning rate (the
default 0.20). Setting warmup steps too low (12k) results in diverged training. Setting
them too high (48k, green curve) results in a slightly slower convergence at first, but
matching the baseline after a few hours of training.

We can conclude that for a single GPU and the BIG model, there is a relatively
large range of learning rate and warmup steps values that achieve the optimal results.
The default values learning_rate=0.20 and learning_rate_warmup_steps=16000 are
within this range.

Tips on Learning Rate and Warmup Steps

• In case of diverged training, try gradient clipping and/or more warmup steps.

60

Martin Popel, Ondřej Bojar Training Tips for the Transformer Model (43–70)

• If that does not help (or if the warmup steps are too high relative to the expected
total training steps), try decreasing the learning rate.

• Note that when you decrease warmup steps (and keep learning rate), you also
increase the maximum actual learning rate because of the way how the lin-
ear_warmup_rsqrt_decay (aka noam) schedule is implemented.26

4.7. Number of GPUs

T2T allows to train with multiple GPUs on the same machine simply using the
parameter --worker_gpus.27 As explained in Section 2.3, the parameter batch_size is
interpreted per GPU, so with 8 GPUs, the effective batch size is 8 times bigger.

A single-GPU experiment with batch size 4000, should give exactly the same re-
sults as two GPUs and batch size 2000 and as four GPUs and batch size 1000 because
the effective batch size is 4000 in all three cases. We have confirmed this empirically.
By the “same results” we mean BLEU (or train loss) versus training steps on the x-axis.
When considering time, the four-GPU experiment will be the fastest one, as explained
in Section 4.1.

Figure 9 shows BLEU curves for different numbers of GPUs and the BIG model
with batch size, learning rate and warmup steps fixed on their default values (1500,
0.20 and 16k, respectively). As could be expected, training with more GPUs converges
faster. What is interesting is the Time Till Score. Table 6 lists the approximate training
time and number of training examples (in millions of subwords) needed to “surpass”
(i.e. achieve and never again fall below) BLEU of 25.6.

GPUs hours subwords (M)
1 > 600 > 9000
2 203 2322·2 = 4644
6 56 451·6 = 2706
8 40 341·8 = 2728

Table 6: Time and training data consumed to reach BLEU of 25.6, i.e. Time Till Score
and Examples Till Score. Note that the experiment on 1 GPU was ended after 25 days
of training without clearly surpassing the threshold (already outside of Figure 9).

26This holds at least in T2T versions 1.2.9–1.5.2, but as it is somewhat unexpected/unintuitive for some
users, it may be fixed in future, see https://github.com/tensorflow/tensor2tensor/issues/517.

27and making sure environment variable CUDA_VISIBLE_DEVICES is set so enough cards are visible. T2T
allows also distributed training (on multiple machines), but we have not experimented with it. Both single-
machine multi-gpu and distributed training use synchronous Adam updates by default.

61

https://github.com/tensorflow/tensor2tensor/issues/517

PBML 110 APRIL 2018

..

23.5

.

24

.

24.5

.

25

.

25.5

.

26

.

26.5

.

27

.
0

.
50

.
100

.
150

.
200

.
250

.
300

.
350

.

1

.

2

.

3

.

4

.

5

.

6

.

7

.

8

.

9

.

10

.

11

.

12

.

13

.

14

.

BL
EU

. Training time (hours).

Training time (days)

.

8GPU

.

6GPU

.

2GPU

.

1GPU

.

25.6

Figure 9: Effect of the number of GPUs. BLEU=25.6 is marked with a black line.

We can see that two GPUs are more than three times faster than a single GPU when
measuring the Time Till Score and need much less training examples (i.e. they have
lower Examples Till Score). Similarly, eight GPUs are more than five times faster than two
GPUs and 1.7 times less training data is needed.

Recall that in Figure 6 we have shown that increasing the batch size from 1450 to
2000 has almost no effect on the BLEU curve. However, when increasing the effective
batch size by using more GPUs, the improvement is higher than could be expected
from the higher throughput.28 We find this quite surprising, especially considering
the fact that we have not tuned the learning rate and warmup steps (see the next
section).

Tips on the Number of GPUs

• For the fastest BLEU convergence use as many GPUs as available (in our experi-
ments up to 8).

• This holds even when there are more experiments to be done. For example, it is better
to run one 8-GPUs experiment after another, rather than running two 4-GPUs
experiments in parallel or eight single-GPU experiments in parallel.

28 It would be interesting to try simulating multi-GPU training on a single GPU, simply by doing the
update once after N batches (and summing the gradients). This is similar to the ghost batches of Hoffer et al.
(2017), but using ghost batch size higher than the actual batch size. We leave this for future work.

62

Martin Popel, Ondřej Bojar Training Tips for the Transformer Model (43–70)

4.8. Learning Rate and Warmup Steps on Multiple GPUs

4.8.1. Related Work

There is a growing number of papers on scaling deep learning to multiple ma-
chines with synchronous SGD (or its variants) by increasing the effective batch size.
We will focus mostly on the question how to adapt the learning rate schedule, when
scaling from one GPU (or any device, in general) to k GPUs.

Krizhevsky (2014) says “Theory suggests that when multiplying the batch size by k,
one should multiply the learning rate by

√
k to keep the variance in the gradient expectation

constant”, without actually explaining which theory suggests so. However, in the ex-
perimental part he reports that what worked the best, was a linear scaling heuristics,
i.e. multiplying the learning rate by k, again without any explanation nor details on
the difference between

√
k scaling and k scaling.

The linear scaling heuristics become popular, leading to good scaling results in
practice (Goyal et al., 2017; Smith et al., 2017) and also theoretical explanations (Bot-
tou et al., 2016; Smith and Le, 2017; Jastrzebski et al., 2017). Smith and Le (2017) in-
terpret SGD (and its variants) as a stochastic differential equation and show that the
gradient noise scale g = ϵ

(
N
B
− 1

)
, where ϵ is the learning rate, N is the training set

size, and B is the effective batch size. This noise “drives SGD away from sharp minima,
and therefore there is an optimal batch size which maximizes the test set accuracy”. In other
words for keeping the optimal level of gradient noise (which leads to “flat minima”
that generalize well), we need to scale the learning rate linearly when increasing the
effective batch size.

However, Hoffer et al. (2017) suggest to use
√
k scaling instead of the linear scaling

and provide both theoretical and empirical support for this claim. They show that
cov(∆w,∆w) ∝ ϵ2

NB
, thus if we want to keep the the covariance matrix of the parame-

ters update step ∆w in the same range for any effective batch size B, we need to scale
the learning rate proportionally to the square root of B. They found that

√
k scaling

works better than linear scaling on CIFAR10.29 You et al. (2017) confirm linear scal-
ing does not perform well on ImageNet and suggest to use Layer-wise Adaptive Rate
Scaling.

We can see that large-batch training is still an open research question. Most of
the papers cited above have experimental support only from the image recognition
tasks (usually ImageNet) and convolutional networks (e.g. ResNet), so it is not clear
whether their suggestions can be applied also on sequence-to-sequence tasks (NMT)
with self-attentional networks (Transformer). There are several other differences as
well: Modern convolutional networks are usually trained with batch normalization

29 To close the gap between small-batch training and large-batch training, Hoffer et al. (2017) introduce (in
addition to

√
k scaling) so-called ghost batch normalization and adapted training regime, which means decaying

the learning rate after a given number of steps instead of epochs.

63

PBML 110 APRIL 2018

(Ioffe and Szegedy, 2015), which seems to be important for the scaling, while Trans-
former uses layer normalization (Lei Ba et al., 2016).30 Also, Transformer uses Adam
together with an inverse-square-root learning-rate decay, while most ImageNet pa-
pers use SGD with momentum and piecewise-constant learning-rate decay.

4.8.2. Our Experiments

We decided to find out empirically the optimal learning rate for training on 8 GPUs.
Increasing the learning rate from 0.20 to 0.30 resulted in diverged training (BLEU
dropped to almost 0 after two hours of training). Similarly to our single-GPU exper-
iments (Section 4.6), we were able prevent the divergence by increasing the warmup
steps or by introducing gradient clipping (e.g. with clip_grad_norm=1.0, we were
able to use learning rate 0.40, but increasing it further to 0.60 led to divergence any-
way). However, none of these experiments led to any improvements over the default learning
rate – all had about the same BLEU curve after few hours of training.

Jastrzebski et al. (2017) shows that “the invariance under simultaneous rescaling of
learning rate and batch size breaks down if the learning rate gets too large or the batch size
gets too small”. A similar observation was reported e.g. by Bottou et al. (2016). Thus
our initial hypothesis was that 0.20 (or 0.25) is the maximal learning rate suitable for
stable training in our experiments even when we scale from a single GPU to 8 GPUs.
Considering this initial hypothesis, we were surprised that we were able to achieve so
good Time Till Score with 8 GPUs (more than 8 times smaller relative to a single GPU,
as reported in Table 6). To answer this riddle we need to understand how learning
rate schedules are implemented in T2T.

4.8.3. Parametrization of Learning Rate Schedules in T2T

In most works on learning rate schedules31 the “time” parameter is actually inter-
preted as the number of epochs or training examples. For example a popular setup
for piecewise-constant decay in ImageNet training (e.g. Goyal et al., 2017) is to divide
the learning rate by a factor of 10 at the 30-th, 60-th, and 80-th epoch.

However, in T2T, it is the global_step variable that is used as the “time” parameter.
So when increasing the effective batch size 8 times, e.g. by using 8 GPUs instead of a
single GPU, the actual learning rate32 achieves a given value after the same number of

30 Applying batch normalization on RNN is difficult. Transformer does not use RNN, but still we were
not successful in switching to batch normalization (and possibly ghost batch normalization) due to NaN
loss errors.

31 Examples of learning rate schedules are inverse-square-root decay, inverse-time decay, exponential
decay, piecewise-constant decay, see https://www.tensorflow.org/api_guides/python/train#Decaying_
the_learning_rate for TF implementations.

32 By actual learning rate we mean the learning rate after applying the decay schedule. The learning_rate
parameter stays the same in this case.

64

https://www.tensorflow.org/api_guides/python/train#Decaying_the_learning_rate
https://www.tensorflow.org/api_guides/python/train#Decaying_the_learning_rate

Martin Popel, Ondřej Bojar Training Tips for the Transformer Model (43–70)

steps, but this means after 8 times less training examples. For the inverse-square-root
decay, we have actual_lr(steps) = c · steps−0.5 = 1√

8
· actual_lr(steps · 8), where c is a

constant containing also the learning_rate parameter. So with 8 GPUs, if we divide
the learning_rate parameter by

√
8, we achieve the same actual learning rate after a

given number of training examples as in the original single-GPU setting.
This explains the riddle from the previous section. By keeping the learning_rate

parameter the same when scaling to k times bigger effective batch, we actually increase the
actual learning rate

√
k times, in accordance with the suggestion of Hoffer et al. (2017).33

This holds only for the linear_warmup_rsqrt_decay (aka noam) schedule and ignoring
the warmup steps.

If we want to keep the same learning rate also in the warmup phase, we would
need to divide the warmup steps by k. However, this means that the maximum actual
learning rate will be

√
k times higher, relative to the single-GPU maximal actual learn-

ing rate and this leads to divergence in our experiments. In deed, many researchers
(e.g. Goyal et al., 2017) suggest to use a warmup when scaling to more GPUs in order
to prevent divergence. Transformer uses learning rate warmup by default even for
single-GPU training (cf. Section 4.6), but it makes sense to use more warmup training
examples in multi-GPU setting.

In our experiments with 8 GPUs and the default learning rate 0.20, using 8k warmup
steps instead of the default 16k had no effect on the BLEU curve (it was a bit higher in
the first few hours, but the same afterwards). Further decreasing the warmup steps
resulted in a retarded BLEU curve (for 6k) or a complete divergence (for 2k).

Tips on Learning Rate and Warmup Steps on Multiple GPUs

• Keep the learning_rate parameter at its optimal value found in single-GPU ex-
periments.

• You can try decreasing the warmup steps, but less than linearly and you should
not expect to improve the final BLEU this way.

4.9. Resumed Training

T2T allows to resume training from a checkpoint, simply by pointing the output_dir
parameter to a directory with an existing checkpoint (specified in the checkpoint file).
This may be useful when the training fails (e.g. because of hardware error), when we
need to continue training on a different machine or during hyper-parameter search,
when we want to continue with the most promising setups. T2T saves also Adam

33 In addition to suggesting the
√
k learning-rate scaling, Hoffer et al. (2017) show that to fully close the

“generalization gap”, we need to train longer because the absolute number of steps (updates) matters. So
from this point of view, using steps instead of epochs as the time parameter for learning rate schedules may
not be a completely wrong idea.

65

PBML 110 APRIL 2018

..

26

.

26.2

.

26.4

.

26.6

.

26.8

.
110

.
120

.
130

.
140

.
150

.
160

.
170

.
180

.

BL
EU

. Training time (hours).

averaging 16 checkpoints

.

averaging 8 checkpoints

.

no averaging

Figure 10: Effect of checkpoint averaging. All trained on 6 GPUs.

momentum into the checkpoint, so the training continues almost as if it had not been
stopped. However, it does not store the position in the training data – it starts from a
random position. Also the relative time (and wall-clock time) in TensorBoard graphs
will be influenced by the stopping.

Resumed training can also be exploited for changing some hyper-parameters, which
cannot be meta-parametrized by the number of steps. For example, Smith et al. (2017)
suggest to increase the effective batch size (and number of GPUs) during training, in-
stead of decaying the learning rate.

Yet another usage is to do domain adaptation by switching from (large) general-
domain training data to (small) target-domain training data for the few last epochs. In
this case, consider editing also the learning rate or learning rate schedule (or faking
the global_step stored in the checkpoint) to make sure the learning rate is not too
small.

4.10. Checkpoint Averaging

Vaswani et al. (2017) suggest to average the last 20 checkpoints saved in 10-minute
intervals (using utils/avg_checkpoints.py). According to our experiments slightly
better results are achieved with averaging checkpoints saved in 1-hour intervals. This
has also the advantage that less time is spent with checkpoint saving, so the training
is faster.

Figure 10 shows the effect of averaging is twofold: the averaged curve has lower
variance (flickering) from checkpoint to checkpoint and it is almost always better than
the baseline without averaging (usually by about 0.2 BLEU). In some setups, we have
seen improvements due to averaging over 1 BLEU. In the early phases of training,
while the (baseline) learning curve grows fast, it is better to use fewer checkpoints for

66

Martin Popel, Ondřej Bojar Training Tips for the Transformer Model (43–70)

Manual Automatic Scores
Ave % Ave z BLEU TER CharacTER BEER System
– – – 23.8 0.662 0.582 0.543 T2T 8 GPUs 8 days
1 62.0 0.308 22.8 0.667 0.588 0.540 uedin-nmt
2 59.7 0.240 20.1 0.703 0.612 0.519 online-B
3 55.9 0.111 20.2 0.696 0.607 0.524 limsi-factored

55.2 0.102 20.0 0.699 - - LIUM-FNMT
55.2 0.090 20.2 0.701 0.605 0.522 LIUM-NMT
54.1 0.050 20.5 0.696 0.624 0.523 CU-Chimera
53.3 0.029 16.6 0.743 0.637 0.503 online-A

8 41.9 -0.327 16.2 0.757 0.697 0.485 PJATK

Table 7: WMT17 systems for English-to-Czech and our best T2T training run. Manual
scores are from the official WMT17 ranking. Automatic metrics were provided by
http://matrix.statmt.org/. For *TER metrics, lower is better. Best results in bold,
second-best in italics.

averaging. In later phases (as shown in Figure 10, after 4.5–7.5 days of training), it
seems that 16 checkpoints (covering last 16 hours) give slightly better results on aver-
age than 8 checkpoints, but we have not done any proper evaluation for significance
(using paired bootstrap testing for each hour and then summarizing the results).

The fact that resumed training starts from a random position in the training data
(cf. Section 4.9) can be actually exploited for “forking” a training to get two (or more)
copies of the model, which are trained for the same number of steps, but indepen-
dently in the later stages and thus ending with different weights saved in the final
checkpoint. These semi-independent models can be averaged in the same way as
checkpoints from the same run, as described above. Our preliminary results show
this helps a bit (on top of checkpoint averaging).

Tips on Checkpoint Averaging

• Use it. Averaging 8 checkpoints takes about 5 minutes, so it is a “BLEU boost
for free” (compared with the time needed for the whole training).

• See the tools for automatic checkpoint averaging and evaluation described in
Section 2.4.

5. Comparison with WMT17 Systems

Table 7 provides the results of WMT17 English-to-Czech news translation task,
with our best Transformer model (BIG trained on 8 GPUs for 8 days, averaging 8
checkpoints) evaluated using the exact same implementation of automatic metrics.
While the automatic evaluation is not fully reliable (see e.g. the high BLEU score for
CU-Chimera despite its lower manual rank), we see that the Transformer model out-

67

http://matrix.statmt.org/

PBML 110 APRIL 2018

performs the best system in BLEU, TER, CharacTER and BEER, despite it does not
use any back-translated data, reranking with other models (e.g. right-to-left rerank-
ing) nor ensembling (as is the case of uedin-nmt and other systems). Note that our
Transformer uses a subset of the constrained training data for WMT17, so the results
are comparable.

6. Conclusion

We presented a broad range of basic experiments with the Transformer model
(Vaswani et al., 2017) for English-to-Czech neural machine translation. While we limit
our exploration to the more or less basic parameter settings, we believe this report can
be useful for other researchers. In sum, experiments done for this article took about
4 years of GPU time.

Among other practical observations, we’ve seen that for the Transformer model,
larger batch sizes lead not only to faster training but more importantly better trans-
lation quality. Given at least a day and a 11GB GPU for training, the larger setup
(BIG) should be always preferred. The Transformer model and its implementation in
Tensor2Tensor is also best fit for “intense training”: using as many GPUs as possible
and running experiments one after another should be preferred over running several
single-GPU experiments concurrently.

The best performing model we obtained on 8 GPUs trained for 8 days has outper-
formed the WMT17 winner in a number of automatic metrics.

Acknowledgements

This research was supported by the grants 18-24210S of the Czech Science Foun-
dation, H2020-ICT-2014-1-645452 (QT21) of the EU, SVV 260 453, and using language
resources distributed by the LINDAT/CLARIN project of the Ministry of Education,
Youth and Sports of the Czech Republic (LM2015071).

Bibliography

Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio. Neural Machine Translation by
Jointly Learning to Align and Translate. In Proceedings of ICLR, 2015.

Bojar, Ondřej, Zdeněk Žabokrtský, Ondřej Dušek, Petra Galuščáková, Martin Majliš, David
Mareček, Jiří Maršík, Michal Novák, Martin Popel, and Aleš Tamchyna. The Joy of Paral-
lelism with CzEng 1.0. In Proceedings of the Eighth International Language Resources and Eval-
uation Conference (LREC’12), pages 3921–3928, Istanbul, Turkey, May 2012. ELRA, European
Language Resources Association. ISBN 978-2-9517408-7-7.

Bojar, Ondřej, Ondřej Dušek, Tom Kocmi, Jindřich Libovický, Michal Novák, Martin Popel,
Roman Sudarikov, and Dušan Variš. CzEng 1.6: Enlarged Czech-English Parallel Corpus
with Processing Tools Dockered. In Sojka, Petr, Aleš Horák, Ivan Kopeček, and Karel Pala,

68

Martin Popel, Ondřej Bojar Training Tips for the Transformer Model (43–70)

editors, Text, Speech, and Dialogue: 19th International Conference, TSD 2016, number 9924 in
Lecture Notes in Artificial Intelligence, pages 231–238. Masaryk University, Springer Inter-
national Publishing, 2016. ISBN 978-3-319-45509-9.

Bojar, Ondřej, Rajen Chatterjee, Christian Federmann, Yvette Graham, Barry Haddow, Matthias
Huck, Philipp Koehn, Varvara Logacheva, Christof Monz, Matteo Negri, Matt Post, Raphael
Rubino, Lucia Specia, and Marco Turchi. Findings of the 2017 Conference on Machine
Translation (WMT17). In Proceedings of the Second Conference on Machine Translation, Copen-
hagen, Denmark, September 2017a. ACL.

Bojar, Ondřej, Yvette Graham, and Amir Kamran. Results of the WMT17 Metrics Shared
Task. In Proceedings of the Second Conference on Machine Translation, Copenhagen, Denmark,
September 2017b. ACL.

Bottou, Léon. Stochastic Gradient Descent Tricks, pages 421–436. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2012. ISBN 978-3-642-35289-8. doi: 10.1007/978-3-642-35289-8_25.
URL https://doi.org/10.1007/978-3-642-35289-8_25.

Bottou, L., F. E. Curtis, and J. Nocedal. Optimization Methods for Large-Scale Machine Learn-
ing. ArXiv e-prints, June 2016. URL https://arxiv.org/abs/1606.04838.

Cettolo, Mauro, Marcello Federico, Luisa Bentivogli, Jan Niehues, Sebastian Stüker, Katsuhito
Sudoh, Koichiro Yoshino, and Christian Federmann. Overview of the IWSLT 2017 Evalua-
tion Campaign. In Proceedings of the 14th International Workshop on Spoken Language Transla-
tion (IWSLT), pages 2–14, Tokyo, Japan, 2017.

Goyal, Priya, Piotr Dollár, Ross B. Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Ky-
rola, Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, Large Minibatch SGD:
Training ImageNet in 1 Hour. CoRR, 2017. URL http://arxiv.org/abs/1706.02677.

Hoffer, Elad, Itay Hubara, and Daniel Soudry. Train longer, generalize better: closing
the generalization gap in large batch training of neural networks. In Guyon, I., U. V.
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Ad-
vances in Neural Information Processing Systems 30, pages 1731–1741. Curran Associates, Inc.,
2017. URL http://papers.nips.cc/paper/6770-train-longer-generalize-better-closing-the-
generalization-gap-in-large-batch-training-of-neural-networks.pdf.

Ioffe, Sergey and Christian Szegedy. Batch Normalization: Accelerating Deep Network Train-
ing by Reducing Internal Covariate Shift. CoRR, abs/1502.03167, 2015. URL http://arxiv.
org/abs/1502.03167.

Jastrzebski, Stanislaw, Zachary Kenton, Devansh Arpit, Nicolas Ballas, Asja Fischer, Yoshua
Bengio, and Amos J. Storkey. Three Factors Influencing Minima in SGD. CoRR,
abs/1711.04623, 2017. URL http://arxiv.org/abs/1711.04623.

Keskar, Nitish Shirish, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping
Tak Peter Tang. On Large-Batch Training for Deep Learning: Generalization Gap and Sharp
Minima. In Proceedings of ICLR, 2017. URL http://arxiv.org/abs/1609.04836.

Krizhevsky, Alex. One weird trick for parallelizing convolutional neural networks. CoRR,
abs/1404.5997, 2014. URL http://arxiv.org/abs/1404.5997.

Lee, Jason, Kyunghyun Cho, and Thomas Hofmann. Fully Character-Level Neural Machine
Translation without Explicit Segmentation. CoRR, 2016. URL http://arxiv.org/abs/1610.
03017.

69

https://doi.org/10.1007/978-3-642-35289-8_25
https://arxiv.org/abs/1606.04838
http://arxiv.org/abs/1706.02677
http://papers.nips.cc/paper/6770-train-longer-generalize-better-closing-the-generalization-gap-in-large-batch-training-of-neural-networks.pdf
http://papers.nips.cc/paper/6770-train-longer-generalize-better-closing-the-generalization-gap-in-large-batch-training-of-neural-networks.pdf
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1711.04623
http://arxiv.org/abs/1609.04836
http://arxiv.org/abs/1404.5997
http://arxiv.org/abs/1610.03017
http://arxiv.org/abs/1610.03017

PBML 110 APRIL 2018

Lei Ba, J., J. R. Kiros, and G. E. Hinton. Layer Normalization. ArXiv e-prints, July 2016.
Papineni, Kishore, Salim Roukos, Todd Ward, and Wei-Jing Zhu. BLEU: a Method for Au-

tomatic Evaluation of Machine Translation. In Proceedings of ACL 2002, pages 311–318,
Philadelphia, Pennsylvania, 2002.

Popović, Maja. chrF: character n-gram F-score for automatic MT evaluation. In Proceedings of the
Tenth Workshop on Statistical Machine Translation, pages 392–395, Lisbon, Portugal, September
2015. ACL. URL http://aclweb.org/anthology/W15-3049.

Sennrich, Rico, Barry Haddow, and Alexandra Birch. Neural Machine Translation of Rare
Words with Subword Units. In Proceedings of ACL 2016, pages 1715–1725, Berlin, Germany,
August 2016. ACL. URL http://www.aclweb.org/anthology/P16-1162.

Shazeer, N. and M. Stern. Adafactor: Adaptive Learning Rates with Sublinear Memory Cost.
ArXiv e-prints, Apr. 2018. URL https://arxiv.org/abs/1804.04235.

Smith, Samuel L. and Quoc V. Le. A Bayesian Perspective on Generalization and Stochastic
Gradient Descent. In Proceedings of Second workshop on Bayesian Deep Learning (NIPS 2017),
Long Beach, CA, USA, 2017. URL http://arxiv.org/abs/1710.06451.

Smith, Samuel L., Pieter-Jan Kindermans, and Quoc V. Le. Don’t Decay the Learning Rate,
Increase the Batch Size. CoRR, 2017. URL http://arxiv.org/abs/1711.00489.

Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is All you Need. In Guyon, I., U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neu-
ral Information Processing Systems 30, pages 6000–6010. Curran Associates, Inc., 2017. URL
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf.

Wu, Yonghui, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi, Wolfgang
Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff Klingner, Apurva
Shah, Melvin Johnson, Xiaobing Liu, Lukasz Kaiser, Stephan Gouws, Yoshikiyo Kato,
Taku Kudo, Hideto Kazawa, Keith Stevens, George Kurian, Nishant Patil, Wei Wang,
Cliff Young, Jason Smith, Jason Riesa, Alex Rudnick, Oriol Vinyals, Greg Corrado, Mac-
duff Hughes, and Jeffrey Dean. Google’s Neural Machine Translation System: Bridging
the Gap between Human and Machine Translation. CoRR, abs/1609.08144, 2016. URL
http://arxiv.org/abs/1609.08144.

You, Yang, Igor Gitman, and Boris Ginsburg. Scaling SGD Batch Size to 32K for ImageNet
Training. CoRR, abs/1708.03888, 2017. URL http://arxiv.org/abs/1708.03888.

Address for correspondence:
Martin Popel
popel@ufal.mff.cuni.cz
Institute of Formal and Applied Linguistics
Faculty of Mathematics and Physics, Charles University
Malostranské náměstí 25, 118 00 Praha 1
Czech Republic

70

http://aclweb.org/anthology/W15-3049
http://www.aclweb.org/anthology/P16-1162
https://arxiv.org/abs/1804.04235
http://arxiv.org/abs/1710.06451
http://arxiv.org/abs/1711.00489
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1708.03888

	Introduction
	Evaluation Methodology
	Considerations on Stopping Criterion
	Our Final Choice: Full Learning Curves
	Terminology
	Tools for Evaluation within Tensor2Tensor

	Data Selection and Preprocessing
	Training Data Preprocessing

	Experiments
	Computation Speed and Training Throughput
	Training Data Size
	Model Size
	Maximum Training Sentence Length
	Batch Size
	Learning Rate and Warmup Steps on a Single GPU
	Number of GPUs
	Learning Rate and Warmup Steps on Multiple GPUs
	Related Work
	Our Experiments
	Parametrization of Learning Rate Schedules in T2T

	Resumed Training
	Checkpoint Averaging

	Comparison with WMT17 Systems
	Conclusion

