
The Prague Bulletin of Mathematical Linguistics
NUMBER 108 JUNE 2017 13–25

Empirical Investigation of Optimization Algorithms
in Neural Machine Translation

Parnia Bahar, Tamer Alkhouli, Jan-Thorsten Peter,
Christopher Jan-Steffen Brix, Hermann Ney

Human Language Technology and Pattern Recognition Group,
RWTH Aachen University, Ahornstraße 55, 52074 Aachen, Germany

Abstract
Training neural networks is a non-convex and a high-dimensional optimization problem. In

this paper, we provide a comparative study of the most popular stochastic optimization tech-
niques used to train neural networks. We evaluate the methods in terms of convergence speed,
translation quality, and training stability. In addition, we investigate combinations that seek to
improve optimization in terms of these aspects. We train state-of-the-art attention-based mod-
els and apply them to perform neural machine translation. We demonstrate our results on two
tasks: WMT 2016 En→Ro and WMT 2015 De→En.

1. Introduction

Training a neural network involves the estimation of a huge number of parame-
ters. Ideally, optimization seeks to find the global optima, but in such a non-convex
problem, global optimality is given up and local minima in the parameter space are
considered sufficient to obtain the models that generalize beyond the training data
(Goodfellow et al., 2016, Chapter 8). Besides obtaining better performance, choosing
an appropriate optimization strategy could accelerate the training phase of neural
networks and brings higher training stability.

Modeling and training problems are two major issues involved in Neural Machine
Translation (NMT) systems. (Junczys-Dowmunt et al., 2016) state that averaging the
parameters of a few best models from a single training run, considered as a single
model, leads to improvement in terms of both translation metrics and perplexity. This

© 2017 PBML. Distributed under CC BY-NC-ND. Corresponding author: bahar@i6.informatik.rwth-aachen.de
Cite as: Parnia Bahar, Tamer Alkhouli, Jan-Thorsten Peter, Christopher Jan-Steffen Brix, Hermann Ney. Empirical
Investigation of Optimization Algorithms in Neural Machine Translation. The Prague Bulletin of Mathematical
Linguistics No. 108, 2017, pp. 13–25. doi: 10.1515/pralin-2017-0005.

http://creativecommons.org/licenses/by-nc-nd/3.0/


PBML 108 JUNE 2017

indicates that we might have a training problem since the model and the number of
parameters are exactly the same in this scenario. We call this averaging averaged-
best. On the other hand, building ensembles requires training several models which
is time consuming, however, it is common to do that in NMT (Jean et al., 2015). Thus,
an investigation is needed to discover whether either the model or the estimation of
its parameters is weak.

In this work, we empirically investigate the most prominent first-order stochas-
tic optimization methods to train an NMT system and exclusively investigate their
behavior in NMT. We address three main concerns. a) translation performance, b)
training stability and c) convergence speed. On one hand, how well, fast and stable
different optimization algorithms are able to find appropriate local minima and on
the other hand, how a combination of them can solve these aspects of training prob-
lems. The results show that applying these combinations leads to faster convergence,
translation performance boost and more regularized behavior compared to running
an optimizer alone. In this work, we follow the same standalone attention-based NMT
proposed by (Bahdanau et al., 2015) but with different optimization schemes.

1.1. Related Work

There are many works in which researchers interpret the characteristics of different
optimization techniques theoretically (Goodfellow et al., 2016; Ruder, 2016). More-
over, some other works try to show the performance of optimizers in the investigation
of loss surface for image classification task such as (Im et al., 2016). (Zeyer et al., 2017)
investigate various optimization methods for acoustic modeling empirically. (Dozat,
2015) compares different optimizers in language modeling. Furthermore, (Britz et al.,
2017) study a massive analysis of NMT hyperparameters aiming for better optimiza-
tion being robust to the hyperparameter variations.

To the best of our knowledge, there is no work comparing different optimization
algorithms for NMT. Most of the works in this area focus on the modeling problem
and rely on Adadelta used in vanilla NMT (Cho et al., 2014; Bahdanau et al., 2015).

Recently, (Wu et al., 2016) utilized the combination of Adam and a simple Stochas-
tic Gradient Descend (SGD) learning algorithm. They run Adam for a fixed number
of iterations after which they switch to SGD to slow down the training phase. Further-
more, (Farajian et al., 2016) optimize the networks with both Adagrad and Adadelta
and show that using Adagrad leads to faster convergence and better performance.

2. Neural Machine Translation

Given a source f = fJ1 and a target e = eI1 sequence, NMT (Sutskever et al.,
2014; Bahdanau et al., 2015) models the conditional probability of target words given
the source sequence. The NMT training objective function is to minimize the cross-
entropy over the S training samples

{⟨
f(s),e(s)

⟩}S
s=1

which is defined as below:

14



P. Bahar et al Optimization Algorithms in NMT (13–25)

J(θ) =

S∑
s=1

I(s)∑
i=1

logp(ei
(s)|e<i

(s), f(s);θ) (1)

Since computing the objective function for the whole training data is expensive, we
randomly select a small number of samples and take the average over them. This is
so-called mini-batch training, resulting in mini-batch gradient calculations. We leave
out the corresponding notations for mini-batches for simplicity.

3. Optimization

Fast convergence and robustness against stochasticity are important aspects de-
sired in an optimizer so that it finds the global optimum. In practice, local optima
can be sufficient and gradient-based techniques are able to find it (Goodfellow et al.,
2016).

3.1. Stochastic Gradient Descent

The commonly used gradient-based algorithm in neural network is Stochastic Gra-
dient Descent (SGD) (Robbins and Monro, 1951) which updates a set of parameters, θ,
as shown in Algorithm 1. η is called the learning rate, determining how large the up-
date is and gt represents the gradient of cost function J. Then, the parameters in the
direction of the gradients are updated. For simplicity, we refer to gθt

as gt. Through
this paper, we use the term SGD to state the simple SGD defined here.

Algorithm 1 : Stochastic Gradient Descent (SGD)
1: gt ← ∇θt

J (θt)
2: θt+1 ← θt − ηgt

SGD usually uses scheduling-based step size selection and the learning rate is one
of the important hyperparameters of training that should be carefully tuned. Unlike
simple SGD, a number of methods have been introduced to adapt the separate learn-
ing rate for each parameter, called adaptive optimizer. It is still necessary to choose
proper hyperparameters for these methods, but less sensitive. The most prominent
first-order gradient-based optimizers are Adagrad, RmsProp, Adadelta and Adam
that are briefly discussed in the following.

3.2. Adagrad

Adagrad (Duchi et al., 2011) is a gradient-based method in which the shared global
learning rate η is divided by the l2-norm of all previous gradients, nt, as seen in
Algorithm 2, line 3. Hence, it introduces different learning rates for every parameter

15



PBML 108 JUNE 2017

at each time step, so that larger gradients have smaller learning rates and vice versa.
This property helps to perform larger updates for the dimensions with infrequent
changes and smaller updates for those that have already large changes. On the other
hand, nt in the denominator is a positive growing value which might aggressively
shrink the learning rate. ϵ is the stabilizing numerical constant.

Algorithm 2 : Adagrad
1: gt ← ∇θt

J (θt)
2: nt ← nt−1 + g2

t

3: θt+1 ← θt −
η√

nt+ϵ
gt

Algorithm 3 : RmsProp
1: gt ← ∇θt

J (θt)
2: nt ← νnt−1 + (1− ν)g2

t

3: θt+1 ← θt −
η√

nt+ϵ
gt

3.3. RmsProp

Instead of storing all the past squared gradients from the beginning of the train-
ing, one can restrict a window over the recent gradients to acquire local information.
An efficient way to do it is RmsProp in which instead of using the sum of squared
gradients, a decaying weight of squared gradients is applied (Algorithm 3) (Hinton
et al., 2012).

Algorithm 4 : Adadelta
1: gt ← ∇θt

J (θt)
2: nt ← νnt−1 + (1− ν)g2

t

3: r(nt)← √
nt + ϵ

4: ∆θt ← −η
r(nt)

gt

5: st ← νst−1 + (1− ν)∆θ2
t

6: r(st−1)← √
st−1 + ϵ

7: θt+1 ← θt −
r(st−1)
r(nt)

gt

Algorithm 5 : Adam
1: gt ← ∇θt

J (θt)
2: nt ← νnt−1 + (1− ν)g2

t

3: n̂t ← nt

1−νt

4: mt ← µmt−1 + (1− µ)gt

5: m̂t ← mt

1−µt

6: θt+1 ← θt −
η√

n̂t+ϵ
m̂t

3.4. Adadelta

Similar to RmsProp, Adadelta takes the decaying mean of the past squared gra-
dients. As shown in Algorithm 4, nt accumulates this quantity, and its square root
becomes the rt of past squared gradients up to the time t. The obtained parameter
update is stored in ∆θt. Then the squared parameter updates, st, is accumulated in
a decaying manner to compute the final update (Zeiler, 2012). Since ∆θt is unknown
for the current time step, its value is estimated by the rt of parameter updates up to
the last time step. Eventually, the update rule requires no default learning rate to set.

16



P. Bahar et al Optimization Algorithms in NMT (13–25)

3.5. Adam

Adaptive Moment Estimation (Adam) is another gradient-based approach that has
been proposed recently (Kingma and Ba, 2014). It not only accumulates the decaying
average of the past squared gradients nt, like RmsProp and Adadelta, but also stores
a decaying mean of past gradients mt. There are two terms which can be considered
as the first and second moments. In Algorithm 5, m̂t and n̂t are the bias corrected
terms for instability against zero initialization.

3.6. Combination of Optimizers

Because the learning trajectory significantly affects training process, it is required
to control the learning rate. Many research attempts show that simple SGD is able
to find a minimum, but it might take long and it relies on the initial learning rate
(Goodfellow et al., 2016, Chapter 8). Therefore, at the beginning, a fast convergence
to the zone in which local minima located is desired. Then, by reducing the decay rate,
the model has better opportunity to find the best critical point within that area. To
do so, one can combine different optimization algorithms to take advantage of meth-
ods which accelerate the training and afterwards switch to the techniques with more
control on the learning rate (Wu et al., 2016). Here, we combine adaptive optimizers
with the simple SGD not only to regulate the learning phase, but also to accelerate the
whole process. We start the training with any of the five considered optimizers, then
run the variants of reducing the learning rate. These variations are:

1. Fixed-SGD: means the training is carried on by the simple SGD algorithm with
a constant learning rate. Thus, it is easy to apply and there is no need to have
any schedules or thresholds in advance. Here, we use a learning rate of 0.01.

2. Annealing: refers to the scheduling scheme in which the learning rate of the as-
sociated optimizer is decreased based on a pre-defined schedule between epochs.
We use a schedule in that the learning rate is halved after every sub-epoch.

4. Experiments
We have carried out the experiments on two translation tasks. The WMT 2016

En→Ro and WMT 2015 De→En. All experiments use the bilingual data, without any
monolingual data. All systems follow the architecture by (Bahdanau et al., 2015). We
use an implementation based on Blocks (Merriënboer et al., 2015)1 which is a frame-
work on top of Theano (Bastien et al., 2012). To deal with OOVs, we use the joint-BPE
approach (Sennrich et al., 2016) to have a sequence of subwords in both the source
and the target sides. In both tasks, the number of joint-BPE operations is 20K. All
words are projected into a 620-dimensional embedding space. Both encoder and de-
coder are equipped with LSTMs with peephole connections with 1000 cells. We shuf-
fle the training samples once before training and use mini-batches of 50 sentence pairs

1https://github.com/mila-udem/blocks-examples

17



PBML 108 JUNE 2017

and remove sentences longer than 75 subwords. Decoding is performed using beam
search with a beam size of 12. The models are trained with different optimization
schemes (see § 3) using the same architecture, the same number of parameters and all
are identically initialized by the same random seed. The total number of parameters
are 73M and 76M for En→Ro and De→En respectively. The systems are evaluated
using case-sensitive BLEU and case-sensitive TER (Papineni et al., 2002; Snover et al.,
2006) computed by MultEval (Clark et al., 2011).

For WMT 2016 En→Ro, the training data consists of 604K pairs of bilingual sen-
tences with 16.8M English and 17.7M Romanian subwords. Validation is performed
on 1000 sentences of the newsdev2016 corpus. We stop training after 200K iterations
and evaluate them every 5K. One iteration is one mini-batch. The newstest16 corpus
consisting of 1999 sentences is used as our test set.

For WMT 2015 De→En translation task, the bilingual training data includes 4.2M
sentence pairs. The data set is composed of 133M German and 125M English words.
The concatenation of newstest2011 and newstest2012 is used as our validation set
named (newsdev11+12) resulting to 5984 sentences. We evaluate and save the models
every 10K and stop training after 500K iterations. newstest2014 and newstest2015
are used as the test set including 3003 and 2169 samples respectively. For adaptive-
based algorithms, which adapt the learning rate during training, we use the default
hyperparameters proposed by the original publications (see Algorithms 2-5).

.....2 .

3

.

4

.

5

.

6

.

lo
g

PP
L

.

. ..SGD . ..Adagrad

. ..RmsProp . ..Adadelta

. ..Adam

.....2 .

3

.

4

.

5

.

6

.

lo
g

PP
L

.

. ..SGD . ..Adagrad

. ..RmsProp . ..Adadelta

. ..Adam

.....
0
.

0.5
.

1
.

1.5
.

2
.

·105

.10 .

15

.

20

.

25

.

Iterations

.

BL
EU

[%
]

(a) En→Ro

.....
0
.

1
.

2
.

3
.

4
.

5
.

·105

.10 .

15

.

20

.

25

.

Iterations

.

BL
EU

[%
]

(b) De→En

Figure 1: log PPL and BLEU score of all optimizers on validation sets.

18



P. Bahar et al Optimization Algorithms in NMT (13–25)

5. Analysis

Figure 1 shows the behavior of five optimizers for both En→Ro and De→En tasks
in terms of BLEU and perplexity (PPL). As it is shown, Adam and Adagrad are faster
at the beginning and converge to a relatively good area in the parameter space in
terms of the cost function. At the beginning of the training, Adam outperforms the
other methods in terms of both BLEU and perplexity. As it is seen in the Figure 1a,
Adam reaches 23.9% in BLEU after only 40K iterations for En→Ro and 22.8% BLEU
after 220K iterations on De→En compared to the others (see Fig. 1b). Its aggressive
movement diverts from the local minima afterward.

In Adagrad, the denominator accumulates the sum of square of past gradients over
training iterations leading to a significantly small learning step which slows down the
training phase. Although RmsProp moves fast initially, it converges to a worse point
compared to the other optimizers. We leave out RmsProp in the rest of our experi-
ments since it has not shown promising results. Adadelta and simple SGD (with a
constant learning rate) have a similar smooth pattern. Both have a moderate behavior
for the first iterations and move slowly towards saturation. The same patterns for all
of the optimizers in terms of log PPL can be seen in Figure 1. Again Adam converges
to a proper point faster than the others.

In our experiments, we continue the training of the best model using different
combinations described in Section 3.6. We monitor the perplexity and BLEU score on
the validation set during training. We pick the best model among all based on BLEU
to continue training the network by one of the explained combinations. In this case,
our intuition is that we have already reached an appropriate region in the parameter
space and it is a good time to slow down the training. By means of finer search, the
optimizer has better chance not to skip a good local minima.

Figures 2 and 3 show the BLEU on the validation sets for En→Ro and De→En
translation tasks respectively using these combinations. For example, the network is
firstly trained by Adam and followed by Fixed-SGD, Annealing-SGD and Annealing-
Adam (Fig. 2d and 3d). As the name suggests in Fixed-SGD, we continue training
with the simple SGD and a fixed learning rate is used. While in the annealing-based
strategies, the network continues having an annealing schedule. The difference be-
tween the two last variants is that in the former (Annealing-SGD), the learning rate of
the simple SGD is reduced, whereas in the latter (Annealing-Adam) the learning rate
of the adaptive-based optimizer, Adam, is decreased.

One can find the detailed results of the individual configuration on the validation
set for each task in Table 1. In this Table, on one hand, the performance of each strategy
has been compared with its base optimizer (e.g. line 12 compared to line 15) and on
the other hand, the overall analogy among different groups has been shown. For each
group, the improvement over the base optimizer has been written in the parenthesis
and the best performance is marked by (†). As depicted, for all of the optimizers,
applying these combinations improves both BLEU and TER. We also observed the
same performance boost in terms of PPL. The smallest boost is associated with the

19



PBML 108 JUNE 2017

Adagrad optimizer on De→En. We speculate that the learning rate of Adagrad is
already too small and annealing it makes the entire term much smaller leading to the
slow training. Therefore, it is not possible to find better optima in a proper time.

Overall analogy states that Adam followed by Annealing-Adam gives the best re-
sults on newsdev11+12 for De→En up to 25.4% in BLEU and 56.7% in TER. Moreover,
the boost of this approach is the same as the Adam plus the other configurations on
newsdev16 for En→Ro and obtains 26.2% in BLEU and 55.9% in TER. We believe that
the small fluctuations in BLEU and TER scores might be the noise.

Since the performance of the third strategy (results listed in the line 3, 7, 11 and 15)
is as good as or better than the rest, we choose it to narrow down the results and verify
the results on the test sets. In this case, for each parameter, we have an individual
learning rate.

.....
1
.

1.2
.

1.4
.

1.6
.

1.8
.

2
.

·105

.15 .

20

.

25

.

BL
EU

[%
]

.

. ..SGD

. ..SGD then Fixed-SGD

. ..SGD then Annealing-SGD

(a) SGD

.....
1
.

1.2
.

1.4
.

1.6
.

1.8
.

2
.

·105

.15 .

20

.

25

.

BL
EU

[%
]

.

. ..Adagrad

. ..Adagrad then Fixed-SGD

. ..Adagrad then Annealing-Adagrad

. ..Adagrad then Annealing-SGD

(b) Adagard

.....
1
.

1.2
.

1.4
.

1.6
.

1.8
.

2
.

·105

.15 .

20

.

25

.

Iterations

.

BL
EU

[%
]

.

. ..Adadelta

. ..Adadelta then Fixed-SGD

. ..Adadelta then Annealing-Adadelta

. ..Adadelta then Annealing-SGD

(c) Adadelta

.....
0
.

0.2
.

0.4
.

0.6
.

0.8
.

1
.

·105

.15 .

20

.

25

.

Iterations

.

BL
EU

[%
]

.

. ..Adam

. ..Adam then Fixed-SGD

. ..Adam then Annealing-Adam

. ..Adam then Annealing-SGD

(d) Adam

Figure 2: BLEU of optimizers followed by the combinations on the val. set for En→Ro.

20



P. Bahar et al Optimization Algorithms in NMT (13–25)

.....
3.5

.
4

.
4.5

.
5

.

·105

.15 .

20

.

25

.

BL
EU

[%
]

.

. ..SGD

. ..SGD then Fixed-SGD

. ..SGD then Annealing-SGD

(a) SGD

.....
3.5

.
4

.
4.5

.
5

.

·105

.15 .

20

.

25

.

BL
EU

[%
]

.

. ..Adagrad

. ..Adagrad then Fixed-SGD

. ..Adagrad then Annealing-Adagrad

. ..Adagrad then Annealing-SGD

(b) Adagard

.....
3.5

.
4

.
4.5

.
5

.

·105

.15 .

20

.

25

.

Iterations

.

BL
EU

[%
]

.

. ..Adadelta

. ..Adadelta then Fixed-SGD

. ..Adadelta then Annealing-Adadelta

. ..Adadelta then Annealing-SGD

(c) Adadelta

.....
2
.

2.5
.

3
.

3.5
.

·105

.15 .

20

.

25

.

Iterations

.

BL
EU

[%
]

.

. ..Adam

. ..Adam then Fixed-SGD

. ..Adam then Annealing-Adam

. ..Adam then Annealing-SGD

(d) Adam

Figure 3: BLEU of optimizers followed by the combinations on the val. set for De→En.
The representation of x-axis of Adam is different as it is faster.

En→Ro De→En

Optimizer newsdev16 newsdev11+12
BLEU TER BLEU TER

1 SGD 23.3 59.5 22.8 59.5
2 + Fixed-SGD 24.7 (+1.4) 57.0 (-2.5) 23.8 (+1.0) 58.4 (-1.1)
3 + Annealing-SGD 24.8 (+1.5) 57.0 (-2.5) 24.1 (+1.3) 58.1 (-1.4)
4 Adagrad 23.9 58.1 22.6 60.0
5 + Fixed-SGD 24.2 (+0.3) 57.7 (-0.4) 22.4 (-0.2) 60.3 (+0.3)
6 + Annealing-SGD 24.3 (+0.4) 57.4 (-0.7) 22.9 (+0.3) 59.7 (-0.3)
7 + Annealing-Adagrad 24.6 (+0.7) 57.0 (-1.1) 22.6 (0.0) 59.9 (-0.1)
8 Adadelta 23.2 59.1 22.9 59.8
9 + Fixed-SGD 24.5 (+1.3) 57.3 (-1.8) 23.8 (+0.9) 58.5 (-1.3)
10 + Annealing-SGD 24.6 (+1.4) 57.6 (-1.5) 24.0 (+1.1) 58.2 (-1.6)
11 + Annealing-Adadelta 24.6 (+1.4) 57.5 (-1.6) 24.0 (+1.1) 58.4 (-1.4)
12 Adam 23.9 58.2 23.0 59.4
13 + Fixed-SGD 26.2 (+2.3) 55.6 (-2.6) 24.5 (+1.5) 57.7 (-1.7)
14 + Annealing-SGD 26.3 (+2.4)† 55.8 (-2.4)† 24.9 (+1.9) 57.4 (-2.0)
15 + Annealing-Adam 26.2 (+2.3) 55.9 (-2.3) 25.4 (+2.4)† 56.7 (-2.7)†

Table 1: Results in BLEU[%] and TER[%] on val. sets. † shows the best results.

21



PBML 108 JUNE 2017

5.1. Translation Quality

Table 2 lists the results of the test sets for En→Ro and De→En tasks. We also report
the results of the Annealing method for each optimizers. In addition to the perfor-
mance of the best model, the results of the averaged-best model which is the average
of the four best training points which is also a single model is shown. Clearly, the
Adam followed by Annealing-Adam outperforms the rest of combinations. An inter-
esting point to be highlighted is that the averaged-best leads to improvements as good
as the annealing strategy except for one case in the table. On newstest16 En→Ro2, the
averaged-best of Adam outperforms the Annealing-Adam. If one does not follow any
schedule scheme, he can easily run the pure Adam, save the intermediate points and
average the weights. We observed the same pattern of improvements for TER on both
tasks. As a summary, we reach the conclusion that the model has the opportunity to
find the better critical point within that located area, if the learning step is reduced.
Applying these variations differing in the handling of the learning rate can be helpful
to focus more on an area containing the local minima. We conclude that shrinking
the learning steps might lead to a finer search and prevent stumbling over a local
minimum. By comparing the performance of different optimization approaches, we
showed that Adam followed by Annealing-Adam gains the best performance.

En→Ro De→En
Best Averaged-best Best Averaged-best

Optimizer newstest16 newstest14 newstest15 newstest14 newstest15
1 SGD 20.3 22.5 25.2 26.1 26.7 27.4
2 + Annealing-SGD 22.1 21.9 26.9 27.4 26.9 27.2
3 Adagrad 21.6 21.7 24.8 26.2 24.9 26.0
4 + Annealing-Adagrad 21.9 21.9 24.6 25.5 24.6 25.5
5 Adadelta 20.5 22.2 25.2 25.6 26.6 27.4
6 + Annealing-Adadelta 22.0 22.0 26.4 27.6 26.5 27.4
7 Adam 21.4 24.6 25.0 25.7 28.0 28.9
8 + Annealing-Adam 23.0† 23.1 28.1† 29.0† 28.2 29.0

Table 2: Results measured in BLEU[%] for best and averaged-best models on test sets. †

shows the best performance for the Best models.

5.2. Training Stability

As shown in Table 2, using one of these configurations to slow down the learning
phase narrows the gap between averaged-best and the best model. For example for
En→Ro, averaged-best model gains 1.7% in BLEU using Adadelta (line 5) while apply-
ing Annealing-Adadelta has already covered this offset and it does not get more boost
from averaging (line 6). Moreover, this gap has been compensated by decreasing the
learning steps. This property holds for all of the cases in Table 2. We conclude that
pure Adam training is less regularized, therefore the model is allowed to navigate

2Note that, the best performing En→Ro NMT system in the WMT 2016 shared task has been used the
synthetic data which is not the case in our work.

22



P. Bahar et al Optimization Algorithms in NMT (13–25)

varying areas in the parameter space. It stumbles on good cases. Thus it is benefi-
cial to average the best cases. Whereas in the Adam+Annealing-Adam the parameter
space navigated is more regularized, leading to less varieties.

5.3. Convergence Speed

The momentum in Adam optimizer regulating the directions causes a fast descent
towards the minimum. By adding the previous updates into the current update, mo-
mentum enforces the updates in a particular direction. The convergence of Adam
followed by Annealing-Adam obtained after 70K iterations for En→Ro shown in fig-
ure 2d as well as 310K iterations for De→En pictured in figure 3d. This results to 50%
faster convergence in the training on average on both tasks. As the number of training
samples for En→Ro is seven times smaller than those for De→En, the convergence of
this task is faster.

6. Conclusion

We practically analyzed the performance of five common first-order gradient-based
optimization methods in NMT which are either run alone or followed by the varia-
tions differing in the handling of the learning rate. We benefited from the methods
accelerating the training at the beginning and then switched to the techniques with
more control on the learning rate to find the better local minimum in parameter space.
The quality of the models in terms of BLEU and TER scores as well as the convergence
speed and robustness against stochasticity have been investigated on two WMT trans-
lation tasks. We concluded that in order to speed up the training and enhance the
performance in terms of both BLEU and TER, one could apply Adam followed by
Annealing-Adam. Experiments done on WMT 2016 En→Ro and WMT 2015 De→En
show that the mentioned technique leads to 1.6% BLEU improvements on newstest16
for En→Ro, and 3.1% BLEU on newstest15 for De→En. Moreover, it results to faster
convergence of 50% as well as the training stability. We showed that using Annealing-
Adam compensates the offset between the best model and the averaged-best. We rec-
ommend that, if someone does not utilize the annealing scheme to reduce the learn-
ing rate, he should average the best training points to increase the translation per-
formance. Similar to NMT, we hope that the proposed techniques would help other
neural network training including non-sequential models.

Acknowledgements

The work reported in this paper results from two projects, SE-
QCLAS and QT21. SEQCLAS has received funding from the Eu-
ropean Research Council (ERC) under the European Union’s Hori-
zon 2020 research and innovation program under grant agreement
no 694537. QT21 has received funding from the European Union’s

23



PBML 108 JUNE 2017

Horizon 2020 research and innovation program under grant agreement no 645452.
The work reflects only the authors’ views and neither the European Commission nor
the European Research Council Executive Agency is responsible for any use that may
be made of the information it contains. Tamer Alkhouli was partly funded by the 2016
Google PhD Fellowship for North America, Europe and the Middle East.

Bibliography

Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio. Neural Machine Translation by
Jointly Learning to Align and Translate. CoRR, abs/1409.0473, 2015.

Bastien, Frédéric, Pascal Lamblin, Razvan Pascanu, James Bergstra, Ian J. Goodfellow, Arnaud
Bergeron, Nicolas Bouchard, and Yoshua Bengio. Theano: new features and speed im-
provements. Deep Learning and Unsupervised Feature Learning NIPS 2012 Workshop,
2012.

Britz, Denny, Anna Goldie, Thang Luong, and Quoc Le. Massive Exploration of Neural Ma-
chine Translation Architectures. arXiv preprint arXiv:1703.03906, 2017.

Cho, Kyunghyun, Bart van Merrienboer, Dzmitry Bahdanau, and Yoshua Bengio. On the
Properties of Neural Machine Translation: Encoder-Decoder Approaches. In Proceedings
of SSST@EMNLP 2014, Eighth Workshop on Syntax, Semantics and Structure in Statistical Trans-
lation, Qatar, pages 103–111, 2014.

Clark, Jonathan H., Chris Dyer, Alon Lavie, and Noah A. Smith. Better Hypothesis Testing
for Statistical Machine Translation: Controlling for Optimizer Instability. In 49th Annual
Meeting of the Association for Computational Linguistics, pages 176––181, USA, 2011.

Dozat, Timothy. Incorporating Nesterov momentum into Adam. Technical report, 2015.
Duchi, John C., Elad Hazan, and Yoram Singer. Adaptive Subgradient Methods for Online

Learning and Stochastic Optimization. Journal of Machine Learning Research, 12:2121–2159,
2011.

Farajian, M Amin, Rajen Chatterjee, Costanza Conforti, Shahab Jalalvand, Vevake Balaraman,
Mattia A Di Gangi, Duygu Ataman, Marco Turchi, Matteo Negri, and Marcello Federico.
FBK’s Neural Machine Translation Systems for IWSLT 2016. In Proceedings of the ninth Inter-
national Workshop on Spoken Language Translation, USA, 2016.

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.
Hinton, Geoffrey, N Srivastava, and Kevin Swersky. Lecture 6a overview of mini–batch gradient

descent. Coursera Lecture slides https://class.coursera.org/neuralnets-2012-001/, 2012.
Im, Daniel Jiwoong, Michael Tao, and Kristin Branson. An Empirical Analysis of Deep Network

Loss Surfaces. CoRR, abs/1612.04010, 2016.
Jean, Sébastien, Orhan Firat, Kyunghyun Cho, Roland Memisevic, and Yoshua Bengio. Mon-

treal Neural Machine Translation Systems for WMT’15. In Proceedings of the Tenth Workshop
on Statistical Machine Translation, WMT 2015, Portugal, pages 134–140, 2015.

Junczys-Dowmunt, Marcin, Tomasz Dwojak, and Rico Sennrich. The AMU-UEDIN Submis-
sion to the WMT16 News Translation Task: Attention-based NMT Models as Feature Func-
tions in Phrase-based SMT. In Proceedings of the First Conference on Machine Translation, WMT
2016, Germany, pages 319–325, 2016.

24



P. Bahar et al Optimization Algorithms in NMT (13–25)

Kingma, Diederik P. and Jimmy Ba. Adam: A Method for Stochastic Optimization. CoRR,
abs/1412.6980, 2014.

Merriënboer, Bart, Dzmitry Bahdanau, Vincent Dumoulin, Dmitriy Serdyuk, David Warde-
Farley, Jan Chorowski, and Yoshua Bengio. Blocks and Fuel: Frameworks for deep learning.
2015.

Papineni, Kishore, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a Method for Automatic
Evaluation of Machine Translation. In Proceedings of the 41st Annual Meeting of the Association
for Computational Linguistics, pages 311–318, USA, 2002.

Robbins, Herbert and Sutton Monro. A stochastic approximation method. The annals of mathe-
matical statistics, pages 400–407, 1951.

Ruder, Sebastian. An overview of gradient descent optimization algorithms. CoRR,
abs/1609.04747, 2016.

Sennrich, Rico, Barry Haddow, and Alexandra Birch. Neural Machine Translation of Rare
Words with Subword Units. In Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics, ACL 2016, Germany, 2016.

Snover, Matthew, Bonnie Dorr, Richard Schwartz, Linnea Micciulla, and John Makhoul. A
Study of Translation Edit Rate with Targeted Human Annotation. In Proceedings of the 7th
Conference of the Association for Machine Translation in the Americas, pages 223–231, USA, 2006.

Sutskever, Ilya, Oriol Vinyals, and Quoc V. Le. Sequence to Sequence Learning with Neural
Networks. In Advances in Neural Information Processing Systems 27: Annual Conference on
Neural Information Processing Systems 2014, Canada, pages 3104–3112, 2014.

Wu, Yonghui, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi, Wolfgang
Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus, et al. Google’s Neural Machine
Translation System: Bridging the Gap between Human and Machine Translation. CoRR,
abs/1609.08144, 2016.

Zeiler, Matthew D. ADADELTA: An Adaptive Learning Rate Method. CoRR, abs/1212.5701,
2012.

Zeyer, Albert, Patrick Doetsch, Paul Voigtlaender, Ralf Schlüter, and Hermann Ney. A Compre-
hensive Study of Deep Bidirectional LSTM RNNs for Acoustic Modeling in Speech Recog-
nition. CoRR, abs/1606.06871, 2017.

Address for correspondence:
Parnia Bahar
bahar@i6.informatik.rwth-aachen.de
Human Language Technology and Pattern Recognition Group,
RWTH Aachen University,
Ahornstraße 55, 52074 Aachen, Germany

25


	Introduction
	Related Work

	Neural Machine Translation
	Optimization
	Stochastic Gradient Descent
	Adagrad
	RmsProp
	Adadelta
	Adam
	Combination of Optimizers

	Experiments
	Analysis
	Translation Quality
	Training Stability
	Convergence Speed

	Conclusion

