
The Prague Bulletin of Mathematical Linguistics
NUMBER 106 OCTOBER 2016 31–44

Predicting the Performance of Parsing with
Referential Translation Machines

Ergun Biçici
ADAPT Research Center, School of Computing, Dublin City University, Ireland

Abstract
Referential translation machine (RTM) is a prediction engine used for predicting the per-

formance of natural language processing tasks including parsing, machine translation, and se-
mantic similarity pioneering language, task, and domain independence. RTM results for pre-
dicting the performance of parsing (PPP) in out-of-domain or in-domain settings with different
training sets and types of features present results independent of language or parser. RTM PPP
models can be used without parsing using only text input and without any parser or language
dependent information. Our results detail prediction performance, top selected features, and
lower bound on the prediction error of PPP.

1. Predicting Parsing Performance with Referential Translation Machines

Training parsers and parsing can be computationally costly and labeled data scarce
or expensive to obtain. Predicting the performance of parsing (PPP) can be useful for
parsing technology, for filtering sentences in noisy domains such as informal text or
speech, for estimating the effort for understanding text, for determining whether a
sentence is well-formed and meaningful enough to send to other natural language
processing (NLP) tasks such as machine translation in an NLP pipeline. PPP involves
finding a function f:

f(MP,Dtrain, S [, SP
′]) ≈ eval(SP

′, SP) (1)

where
•MP is a parsing model built using Dtrain for training,
• Dtrain is the set of training sentences and Dtest is test data,

© 2016 PBML. Distributed under CC BY-NC-ND. Corresponding author: ergun.bicici@yahoo.com
Cite as: Ergun Biçici. Predicting the Performance of Parsing with Referential Translation Machines. The Prague
Bulletin of Mathematical Linguistics No. 106, 2016, pp. 31–44. doi: 10.1515/pralin-2016-0010.

http://creativecommons.org/licenses/by-nc-nd/3.0/


PBML 106 OCTOBER 2016

• SP
′ refers to parsing output obtained on S ∈ Dtest and its reference is SP,

• eval returns the bracketing F1 score by EVALB (Sekine and Collins, 1997)
implementing the PARSEVAL F1 measure,
• the performance of MP, which use Dtrain, is being predicted for input S,
• f predicts the value of the eval function to approximate the performance

without the reference SP given a training set and a test set not necessarily after
training a parsing model or parsing.

Ravi et al. (2008) predict the performance of Charniak and Johnson (CJ) parser (Char-
niak and Johnson, 2005) using text-based and parser-based features, and additional
parser output (Bikel parser (Bikel, 2002)). Additional parser output is used as a ref-
erence to obtain a feature with bracketing F1 score. In Section 3.3, we achieve better
results using only textual features and obtain similar results without any parser or
label dependent information or without an additional parser or its output.

Each referential translation machine (RTM) (Biçici and Way, 2015) model is a data
translation prediction model between the instances in the training set and the test set,
and translation acts are indicators of the data transformation and translation. RTM
effectively judges monolingual and bilingual similarity while identifying translation
acts between any two data sets with respect to a reference corpus. RTM allows de-
velopment of prediction models specially prepared for a given training and test set
pair. RTM PPP models are built for each task emerging from training set, test set,
and label set obtained from a parser. RTMs achieve top results in machine translation
performance prediction (MTPP) in quality estimation task (Biçici et al., 2015b; Biçici,
2016), can achieve better results than open-source MTPP tool QuEst (Shah et al., 2013;
Biçici and Specia, 2015), and can achieve top results in semantic similarity prediction
tasks (Biçici and Way, 2015). We provide a current picture on PPP detailing prediction
performance, top selected features, and lower bound on prediction error of PPP.

RTMs judge the quality or the semantic similarity of texts by using relevant re-
trieved data close to the task instances as interpretants, selected preferably from the
same domain. RTM PPP use parallel and monolingual sentences as interpretants,
which provide context and data for MTPP system (MTPPS) (Biçici and Way, 2015) to
derive features measuring the closeness of the test sentences to the training data, the
difficulty of translating them, and the presence of the acts of translation for build-
ing prediction models. RTMs present an accurate and language-independent model
for NLP performance prediction and provide a parser-independent model, which en-
ables the prediction of the performance of any parser in any language. Figure 1 de-
picts the workflow for a general RTM model and explains the model building process.
Given a training set train, a test set test, and some corpus C, preferably in the same
domain, the RTM steps are:

1. select(train, test, C) → I 4. learn(M,Ftrain) → M
2. MTPP(I, train) → Ftrain 5. predict(M,Ftest) → ŷ

3. MTPP(I, test) → Ftest
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Figure 1. RTM workflow: ParFDA selects interpretants close to the training and test data
using parallel corpus in bilingual settings and monolingual corpus in the target language

or just the monolingual target corpus in monolingual settings; an MTPPS use
interpretants and training data to generate training features and another use

interpretants and test data to generate test features in the same feature space; learning
and prediction takes place taking these features as input.

RTM PPP models use MTPPS to generate features and parallel feature decay algo-
rithms (ParFDA) (Biçici et al., 2015a) for instance selection. The modularity of RTM
enables additional knowledge sources to be retrieved by ParFDA, which can be used
for deriving additional features to be included before learning and prediction.

2. Statistical Lower Bound on Prediction Error

We evaluate the prediction performance with correlation (r), root mean squared
error (RMSE), mean absolute error (MAE), and relative absolute error (RAE). Given
that ŷ, y ∈ Rn are the prediction of F1 and the target F1 respectively:

MAE(ŷ,y) =

n∑
i=1

|ŷi − yi|

n
RAE(ŷ,y) =

n∑
i=1

|ŷi − yi|

n∑
i=1

|ȳ− yi|

(2)
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WSJ24 WSJ02-21
n 1346 6960
µ 0.7095 0.7145
s 0.1636 0.1633
d 0.0087 0.0038

RAE d̂ n̂ d̂ n̂

1% 0.0013 57335 0.0013 58164
5% 0.0067 2296 0.0066 2329
10% 0.0134 576 0.0133 584
20% 0.0268 146 0.0265 148
30% 0.0402 66 0.0398 67
40% 0.0536 38 0.0531 39
50% 0.0670 25 0.0664 26
75% 0.1004 13 0.0995 13
80% 0.1071 12 0.1062 12
85% 0.1138 11 0.1128 11

Table 1. Estimated d and d̂ and n̂ required for the noise levels based on RAE for PPP with
bracketing F1.

We also use relative MAE (MAER) and RAE (MRAER) (Equation (3)) (Biçici and
Way, 2015). We use MAER and MRAER for easier replication and comparability with
relative errors for each instance. Evaluation with MRAER can help identify which
tasks and subtasks require more work by design and RTM PPP results reaching 0.75

MRAER in Section 3 are in line with performance in semantic textual similarity in En-
glish and easier than MTPP (Biçici and Way, 2015). MAE treats errors equally whereas
RMSE is giving more weight to larger errors and can become dominated by the largest
error. Therefore, MAE and RAE and their relative versions MAER and MRAER are
better metrics to evaluate the performance.

MAER(ŷ,y) =

n∑
i=1

|ŷi − yi|

⌊|yi|⌋ϵ
n

MRAER(ŷ,y) =

n∑
i=1

|ŷi − yi|

⌊|ȳ− yi|⌋ϵ
n

(3)

We obtain expected lower bound on the prediction performance and the number
of instances needed given a RAE level. Let y = (y1, . . . , yn)

T represent the target
sampled from a distribution with mean µ and standard deviation σ, then the vari-
ance of

∑n
i=1 yi is nσ2 and of the sample mean, ȳ, is σ2

n
with the standard deviation

becoming σ√
n

. From a statistical perspective, we can predict the number of training
instances we need for learning to increase the signal to noise ratio, SNR = µ

σ
, or the

ratio of the mean to the standard deviation. Increasing the number of instances leads

34



Ergun Biçici Predicting the Performance of Parsing with RTM (31–44)

to decrease in the noise and increase SNR. We want to find a confidence interval,
[ȳ − t s√

n
, ȳ + t s√

n
], where t is found by the Student’s t-distribution for n− 1 degrees

of freedom with confidence level α and s is sample standard deviation. True score
lies in the interval with probability 1− α:1

P(ȳ − t
s√
n

≤ µ ≤ ȳ + t
s√
n
) = 1− α. (4)

The absolute distance to the true mean or the width of the interval, d, is empirically
equal to MAE and the relationship between RAE and MAE is as follows:

RAE =
nMAE∑n
i=1 |ȳ − yi|

(5)

d =
ts√
n

⇒ n =
t2s2

d2
(6)

Using Equation 5, we can derive the MAE or d̂ for a given RAE as an estimate of d.
With α = 0.05 and p = 0.95, we confidently estimate d̂ and the corresponding n̂ to
reach the required noise level for the prediction tasks given a possible RAE level using
Equation 6. Statistical lower bound on PPP error lists how many training instances to
use for PPP (Table 1).

Table 1 presents the d possible for the bracketing F1 score distribution and the
training set sizes required for reaching a specified noise level based on RAE. We
achieved top results in MTPP using RTMs (Biçici et al., 2015b) with a RAE level of
0.84 when predicting HTER, which is a score in the range [0, 1]. We also achieved
good results in MTPP with RTMs as Biçici (2016) presents with a RAE level of 0.82
when predicting HTER.

Table 4 from Section 3.3 presents similar RAE levels in in-domain PPP and with
only 12 labeled instances for PPP, we can reach the top prediction performance, which
achieves 0.84 RAE. Figure 2 samples from normal n-gram F1 (Biçici, 2011) distribu-
tions with µ = 0.2316 from MTPPDAT (Biçici, 2014) for different σ and shows that
prediction error decrease by: (i) increasing n; (ii) decreasing s.2

3. Experiments

We use the Wall Street Journal (WSJ) and Brown corpora distributed with Penn
Treebank version 3 (Marcus et al., 1993, 1999). WSJ02-21 refers to WSJ sections in range
2–21, WSJ24 refers to section 24, WSJ23 refer to section 23, and WSJ0-1-22-24 refer to

1This forms the basis for many statistical significance tests in machine translation (Biçici, 2011).
2MTPPDAT contains document and sentence translation experiments collected from 4 different settings:

tuning, no tuning, multiple perspective learning, and adaptation (Biçici, 2015).
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Figure 2. d̂ decrease by: (i) increasing n; (ii) decreasing s.

sections 00, 01, 22, and 24 combined. BTest refers to the test set formed by selecting
every 10th sentence from the Brown corpus (Ravi et al., 2008). WSJ02-21 contains
39832 sentences in total and WSJ0-1-22-24 contains 6960 sentences. We obtain the raw
format for the Penn Treebank starting from the parse annotated sentences.

3.1. Parsers

CCL: CCL (Seginer, 2007) is an unsupervised parsing algorithm, which allows equiv-
alent classes with reciprocal links between words (link structures).

PCFG: Plain PCFG (probabilistic context free grammar) parser uses the Stanford su-
pervised parser (Klein and Manning, 2003). PCFG model is unlexicalized; it has
context-free rules conditioned on only the parent nodes; it does not have lan-
guage dependent heuristics for unknown word processing; and it selects the left-
most category as the head of the right hand side of a rule.

CJ: Charniak and Johnson (Charniak and Johnson, 2005) develop a parser achieving
the highest performance by reranking 50 best parses with a maximum entropy
reranker.
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Test # sents CCL PCFG CJ

PPP
train WSJ0-1-22-24 6960 0.5508 0.6978 0.9139

WSJ24 1346 0.5489 0.6915 0.9057

test WSJ23 2416 0.5501 0.6933 0.9141
BTest 2425 0.5646 0.6773 0.8561

Table 2. Baseline performance in terms of bracketing F1.

Corpus numB depthB avg depthB R/L avg R/L
WSJ02-21 46.4 11.1 0.2678 6.46 6.68
WSJ23 45.6 11.0 0.2728 6.36 6.66
SPCCL

′ 38.6 9.3 0.2829 6.14 6.14
SPPCFG

′ 41.6 10.0 0.2735 6.11 5.72
SPCJ

′ 42.6 11.0 0.2887 5.96 6.27
BTest 38.1 9.6 0.3060 6.09 5.50
SPCCL

′ 31.8 8.8 0.3551 6.77 6.04
SPPCFG

′ 35.1 9.1 0.3165 7.05 5.25
SPCJ

′ 35.6 9.7 0.3248 6.63 5.50

Table 3. Tree structure statistics: number of brackets (numB), depth (depthB), average
depth per node (avg depthB), numB on the right branches over the numB on the left

(R/L), and average right to left branching over all internal tree nodes (avg R/L).

All parsers use WSJ02-21 for training and Table 2 lists the baseline performances
of the parsers in terms of bracketing F1 over all sentences in the test sets along with
the number of sentences in each.3

3.2. Features and Learning Settings

We use WSJ24 or WSJ0-1-22-24 and WMT datasets (Bojar et al., 2015) and LDC
English Gigaword (Parker et al., 2011) for building RTM PPP models. We use features
from three categories where detailed feature descriptions can be found in (Biçici and
Way, 2015): (i) Textual features (Text), which contain coverage and diversity features

3The number of instances are the same as in (Bacchiani et al., 2006) and in (Kummerfeld et al., 2012)
for WSJ23. The number of sentences reported in (Ravi et al., 2008) are lower. CCL lowercases input text
and outputs lowercased trees; hence its performance is independent of casing. The output CCL tree is
composed of text without labels and to be able to use the EVALB bracketing scores, we label each node
with ’NP’ and enclose them with brackets. We could use any tag instead of NP since we are not calculating
tag accuracy.
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about how well test features are found in the training set, language model features,
distributional similarity features, translation features, information retrieval related
features, character n-grams, and sentence length related features; (ii) link structure
based (+CCL), which contain Text features over CCL from CCL parser, which can
be used in all learning settings since CCL is unsupervised; (iii) tree structure based
(+Tree) features, which contain the number of brackets used (numB), depth (depthB),
average depth per node (avg depthB), number of brackets on the right branches over
the number of brackets on the left (R/L),4 and average right to left branching over all
internal tree nodes (avg R/L).

We select up to 100 features from the most frequent parse tree structures and add
10 base tree statistical features for source and target. This feature set is called TreeF in
(Biçici and Way, 2015). Parse tree branching statistics for WSJ2-21, WSJ23, and BTest
together with the parser outputs obtained with different parsers are in Table 3. CCL
output parse trees tend to have fewer branches and less depth. However, CCL out-
puts trees with closer R/L and avg R/L to the test set than PCFG. CJ outputs trees
with closest numB and depthB to the test sets. PCFG achieves the closest avg depthB.
Table 3 indicates that right branching dominates English. We observe that CCL’s per-
formance slightly increases on BTest whereas supervised parsers perform worse.

We present RTM PPP model results for in-domain (WSJ23) and out-of-domain
(BTest) test sets in three different feature settings (Text, Text+CCL, Text+CCL+Tree).
For each combination of training set, test set, and training and test labels obtained
from a parser, we build an RTM model; thus the total number of RTM models we
build is 12. Training set is used for optimizing parameters of the predictor with k-
fold cross validation. The learning model is selected based on the performance on the
training set and it is either bayesian ridge regression (BR) (Tan et al., 2015) or support
vector regression (SVR) after feature selection (FS), partial least squares (PLS), or PLS
after FS (Biçici et al., 2015b).

3.3. In-domain Results

In-domain PPP results are in Table 4 where dim is the actual number of features
used for each row (e.g. after removing non-informative features, after FS, after PLS).
Using more training data improves the performance and we need only 15 feature di-
mensions for reaching top MRAER performance with SVR model with FS+PLS in
setting Text. Previous work (Ravi et al., 2008) obtains 0.42 for r and 0.098 for RMSE
when predicting the performance of CJ on in-domain PPP. We obtain lower r and close
RMSE values however, we do not use any parser or label dependent information or a
top performing reference parser whose performance is close to CJ’s. Ravi et al. (Ravi
et al., 2008) also do not present separate results with the feature sets they use. The top

4For nodes with uneven number of children, the nodes in the odd child contribute to the right branches.
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Train Setting Parser Model dim r RMSE MAE RAE MAER MRAER

W
SJ

24

Text CCL SVR 305 0.47 0.135 0.1074 0.87 0.226 0.83
Text PCFG FS+PLS-BR 5 0.31 0.162 0.1265 0.95 0.275 0.88
Text CJ FS-SVR 16 0.26 0.104 0.0699 0.88 0.107 0.78
Text+CCL CCL FS-BR 16 0.47 0.135 0.1084 0.88 0.223 0.84
Text+CCL PCFG SVR 331 0.3 0.163 0.1241 0.93 0.292 0.85
Text+CCL CJ FS-SVR 16 0.27 0.104 0.0698 0.88 0.107 0.78
Text+CCL+Tree CCL SVR 384 0.47 0.135 0.1071 0.87 0.225 0.83
Text+CCL+Tree PCFG FS+PLS-SVR 15 0.26 0.17 0.1295 0.97 0.291 0.95
Text+CCL+Tree CJ SVR 386 0.27 0.103 0.0699 0.88 0.107 0.78

W
SJ

0-
1-

22
-2

4

Text CCL SVR 310 0.49 0.133 0.1052 0.85 0.221 0.82
Text PCFG SVR 310 0.37 0.16 0.1224 0.91 0.272 0.88
Text CJ FS+PLS-SVR 15 0.25 0.108 0.0675 0.85 0.106 0.75
Text+CCL CCL SVR 336 0.49 0.133 0.1052 0.85 0.221 0.82
Text+CCL PCFG SVR 336 0.37 0.16 0.1222 0.91 0.271 0.87
Text+CCL CJ PLS-SVR 90 0.26 0.107 0.0678 0.85 0.106 0.75
Text+CCL+Tree CCL SVR 387 0.5 0.132 0.1041 0.84 0.219 0.82
Text+CCL+Tree PCFG FS-SVR 248 0.38 0.159 0.122 0.91 0.271 0.87
Text+CCL+Tree CJ PLS-SVR 80 0.27 0.106 0.0677 0.85 0.105 0.75

Table 4. RTM top predictor results with in-domain test set WSJ23. Using more training
data improves the performance. Text reach top MRAER performance with only 15

dimensions. Best result for each metric is in bold.

r they obtain with their text-based features is 0.19, which is lower than our results in
setting Text.

A high RAE indicates that PPP is hard and currently, we can only reduce the error
with respect to knowing and predicting the mean by about 16%. CJ parsing output
is the easiest to predict as we see from the MRAER results. The MAE we achieve for
PPP of CJ is 0.0675 and it is about 7.4% of the 0.9141 overall F1 score for CJ on WSJ23.
This error percentage is 17.6% and 18.9% for PCFG and CCL respectively. Figure 3
lists plots about the top RTM PPP predictor’s performance in terms of absolute error
and absolute error relative to the magnitude of the target in WSJ23 where instances
are sorted according to the magnitude of the target F1 scores.

3.4. Out-of-domain Results

Out-of-domain parsing decreases the performance of supervised parsers (Table 2)
but not the the performance of CCL, which is unsupervised, since it uses limited do-
main dependent information and CCL’s performance is actually slightly increased.
RTM results in out-of-domain PPP are lower than in in-domain (Table 5). Adding
Tree features in out-of-domain improves the performance more compared with the
improvement in in-domain. Previous work (Ravi et al., 2008) obtains 0.129 RMSE for
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Figure 3. RTM top predictor performance using WSJ0-1-22-24 training set, WSJ23 test set,
and Text+CCL+Tree setting. At the top are plots with prediction vs. the absolute error

(distribution below) and at the bottom are plots with prediction vs. AER or absolute error
relative to the magnitude of the target (distribution below).

CJ in out-of-domain PPP. RTM obtains about 36% larger RMSE but without using an
additional parser output or parser specific features. We also note that the number of
sentences reported in (Ravi et al., 2008) for datasets WSJ23, WSJ24, and BTest is less
than the official datasets released as part of Penn Treebank (Marcus et al., 1993). RTM
for CJ achieves better MRAER than top sentence MTPP with 0.84MRAER (Biçici et al.,
2015b). Figure 4 lists plots from the top RTM predictor’s performance in BTest.

3.5. Feature Selection Results

We select features with recursive feature elimination (RFE) (Guyon et al., 2002;
Pedregosa et al., 2011), which iteratively removes least informative features according
to their weights provided by a learning model and this removal process provides their
ranking. We use the following abbreviations: GM is the geometric mean between the
precision and recall and T is used for target; ⟨P(T |S), b1⟩ is the backward 1-gram log
probability of the translation probability of target translation T given source sentence
S and ⟨P(S, T), 2, 5⟩ is the average joint logprob of the joint translation probability over
2-grams among top 5 selected instances; avgD20 is a relative entropy distance measure
over the top 20 instances; and bpw is the bits per word. We observe that translation

40



Ergun Biçici Predicting the Performance of Parsing with RTM (31–44)

Train Setting Parser Model dim r RMSE MAE RAE MAER MRAER

W
SJ

24

Text CCL SVR 305 0.45 0.144 0.1153 0.91 0.221 0.9
Text PCFG FS+PLS-BR 8 0.25 0.182 0.1414 0.95 0.342 0.87
Text CJ SVR 305 0.23 0.168 0.1043 0.87 0.244 0.77
Text+CCL CCL FS-SVR 16 0.44 0.145 0.1161 0.91 0.223 0.92
Text+CCL PCFG FS+PLS-BR 7 0.31 0.177 0.1388 0.94 0.329 0.87
Text+CCL CJ FS+PLS-SVR 3 0.25 0.167 0.1031 0.86 0.242 0.76
Text+CCL+Tree CCL SVR 383 0.45 0.143 0.115 0.91 0.221 0.91
Text+CCL+Tree PCFG SVR 386 0.27 0.183 0.1376 0.93 0.352 0.85
Text+CCL+Tree CJ SVR 386 0.23 0.168 0.1042 0.87 0.244 0.77

W
SJ

0-
1-

22
-2

4

Text CCL SVR 310 0.45 0.143 0.1143 0.9 0.22 0.9
Text PCFG PLS-SVR 70 0.29 0.182 0.1376 0.93 0.344 0.87
Text CJ PLS-SVR 35 0.24 0.174 0.1045 0.88 0.248 0.79
Text+CCL CCL SVR 336 0.46 0.142 0.1138 0.9 0.219 0.9
Text+CCL PCFG SVR 336 0.35 0.177 0.1351 0.91 0.335 0.85
Text+CCL CJ FS-SVR 21 0.24 0.175 0.105 0.88 0.249 0.8
Text+CCL+Tree CCL SVR 386 0.46 0.142 0.1135 0.89 0.219 0.9
Text+CCL+Tree PCFG SVR 394 0.32 0.181 0.1359 0.92 0.344 0.86
Text+CCL+Tree CJ FS-SVR 22 0.24 0.175 0.1048 0.88 0.249 0.8

Table 5. RTM top predictor results with out-of-domain test set BTest. Text+CCL reach top
MRAER performance with only 3 dimensions. Best result for each metric is in bold.

features dominate in the ranking of the top 2 features after FS for each PPP setting
(Table 6) with only 7 out of 36 entries are not translation features.

4. Contributions

RTM PPP models work without training a parser or without parsing with it or
without any parser dependent information by using only text input. We have con-
tributed to the state-of-the-art in prediction science with results for PPP with RTM
system and with expected lower bound on the prediction performance and the num-
ber of instances needed for prediction given a RAE level. RTM results on PPP allow
better setting of expectations for each task and domain. Our results show that to ob-
tain the top performance we only need 12 labeled instances and we can reach the top
performance in a 15 dimensional space. Ability to predict outcomes enables prepara-
tion and savings in computational effort and can reduce costs in industrial settings.
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and Text+CCL+Tree setting. At the top are plots with prediction vs. the absolute error

(distribution below) and at the bottom are plots with prediction vs. AER or absolute error
relative to the magnitude of the target (distribution below).
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