
The Prague Bulletin of Mathematical Linguistics
NUMBER 104 OCTOBER 2015

EDITORIAL BOARD

Editor-in-Chief

Jan Hajič

Editorial staff

Martin Popel
Ondřej Bojar

Editorial Assistant

Kateřina Bryanová

Editorial board

Nicoletta Calzolari, Pisa
Walther von Hahn, Hamburg
Jan Hajič, Prague
Eva Hajičová, Prague
Erhard Hinrichs, Tübingen
Aravind Joshi, Philadelphia
Philipp Koehn, Edinburgh
Jaroslav Peregrin, Prague
Patrice Pognan, Paris
Alexandr Rosen, Prague
Petr Sgall, Prague
Hans Uszkoreit, Saarbrücken

Published twice a year by Charles University in Prague

Editorial office and subscription inquiries:
ÚFAL MFF UK, Malostranské náměstí 25, 118 00, Prague 1, Czech Republic
E-mail: pbml@ufal.mff.cuni.cz

ISSN 0032-6585

© 2015 PBML. All rights reserved.

The Prague Bulletin of Mathematical Linguistics
NUMBER 104 OCTOBER 2015

CONTENTS

Articles

Joshua 6: A phrase-based and hierarchical
statistical machine translation system
Matt Post, Yuan Cao, Gaurav Kumar

5

Evaluating MT systems with BEER
Miloš Stanojević, Khalil Sima’an

17

Box: Natural Language Processing Research Using Amazon Web Services
Amittai Axelrod

27

Sampling Phrase Tables for the
Moses Statistical Machine Translation System
Ulrich Germann

39

Grasp: Randomised Semiring Parsing
Wilker Aziz

51

MT-ComparEval: Graphical evaluation interface
for Machine Translation development
Ondřej Klejch, Eleftherios Avramidis, Aljoscha Burchardt, Martin Popel

63

TmTriangulate: A Tool for Phrase Table Triangulation
Duc Tam Hoang, Ondřej Bojar

75

Instructions for Authors 87

© 2015 PBML. All rights reserved.

The Prague Bulletin of Mathematical Linguistics
NUMBER 104 OCTOBER 2015 5–16

Joshua 6: A phrase-based and hierarchical
statistical machine translation system

Matt Posta, Yuan Caob, Gaurav Kumarb
a Human Language Technology Center of Excellence, Johns Hopkins University

b Center for Language and Speech Processing, Johns Hopkins University

Abstract
We describe the version six release of Joshua, an open-source statistical machine transla-

tion toolkit. The main difference from release five is the introduction of a simple, unlexical-
ized, phrase-based stack decoder. This phrase-based decoder shares a hypergraph format with
the syntax-based systems, permitting a tight coupling with the existing codebase of feature
functions and hypergraph tools. Joshua 6 also includes a number of large-scale discriminative
tuners and a simplified sparse feature function interface with reflection-based loading, which
allows new features to be used by writing a single function. Finally, Joshua includes a number
of simplifications and improvements focused on usability for both researchers and end-users,
including the release of language packs — precompiled models that can be run as black boxes.

1. Introduction

Joshua1 is an open-source toolkit for statistical machine translation of human lan-
guages. The Joshua 6 release introduces a phrase-based decoder that uses the stan-
dard priority-queue-based decoding algorithm (Koehn et al., 2003) to construct a hy-
pergraph whose format is shared with the existing CKY+-based hierarchical decoding
algorithms. This release also introduces a number of speed, memory, documentation,
and infrastructure improvements designed to maximize usability in both research and
production environments. This paper highlights these improvements and provides a

1http://joshua-decoder.org

© 2015 PBML. Distributed under CC BY-NC-ND. Corresponding author: post@cs.jhu.edu
Cite as: Matt Post, Yuan Cao, Gaurav Kumar. Joshua 6: A phrase-based and hierarchical statistical machine
translation system. The Prague Bulletin of Mathematical Linguistics No. 104, 2015, pp. 5–16.
doi: 10.1515/pralin-2015-0009.

http://joshua-decoder.org
http://creativecommons.org/licenses/by-nc-nd/3.0/

PBML 104 OCTOBER 2015

examples and usage notes for both the decoder and the Joshua pipeline, which takes
care of all the steps of building and testing machine translation systems.

The original version of Joshua (Li et al., 2009) was a port from Python of the Hiero
hierarchical machine translation system introduced by Chiang (2007). It was later
extended (Li et al., 2010) to support grammars with rich syntactic labels, particu-
larly “syntax-augmented” models (Zollmann and Venugopal, 2006) . Subsequent
versions produced Thrax, the extensible Hadoop-based grammar extraction tool for
synchronous context-free grammars (Weese et al., 2011), later extended to support
pivoting-based paraphrase extraction (Ganitkevitch et al., 2012). Joshua 5 (Post et al.,
2013) introduced a sparse feature representation, support for GHKM (Galley et al.,
2004, 2006) model construction, and large-scale discriminative tuners, as well as a
number of significant improvements to speed and memory requirements.

2. Phrase-based decoder

The main feature of Joshua 6 is the introduction of a phrase-based decoder that is
tightly integrated with the existing codebase. The phrase-based decoder is a varia-
tion of the classic priority-queue algorithm for phrase-decoding (Koehn et al., 2003).
Briefly, the target-side sentence is built left-to-right, and the source sentence con-
sumed in any order, subject to the distortion limit (controlled by the -reordering-
limit flag, which defaults to 8). Joshua uses cube-pruning to moderate the search
(Chiang, 2007; Huang and Chiang, 2007). Decoding iterates over stacks organized
by the number of source words covered. A two-dimensional cube is constructed for
each pairing of (a) a group of hypotheses from smaller stacks with identical cover-
age vectors and (b) the set of translations of a permissible source phrase extension
of those hypotheses (with the number of translation options determined by -num-
translation-options, defaulting to 20). Each cube is then added to a priority queue.
Joshua iteratively consumes the top cube from the priority queue, extending the cube
(a) to the next hypothesis with the same coverage vector and (b) to the next transla-
tion, and adding these extensions to the priority queue. Popping proceeds until the
pop limit (-pop-limit, default 100) has been reached.

2.1. The hypergraph

Phrase-based decoding is typically presented as building a lattice, where nodes
represent states (typically shared coverage vectors and target-side language model
context) and arcs represent phrasal extensions. Conceptually, this is what Joshua
does, but internally, it is using the same generalized hypergraph code used in the
syntax-based decoder. To accomplish this, all phrases are read in as hierarchical rules
with a single nonterminal on the left-hand side (essentially, phrases are reinterpreted
as strictly left-branching grammar rules of arity 1). All applications of phrases must

6

Matt Post, Yuan Cao, and Gaurav Kumar Joshua 6 (5–16)

dress

<s> la robe noire </s>

X[2,3]

0 1 2 3 4 5

X[1,4] the ___ black

X[0,5]

X[�����,1]

X[�����,2] X[�����,4] X[�����,3]

X[�����,5]

the black dress

Figure 1. Shared hypergraph format when translating the French sentence la robe
noire into English with the hierarchical (above) and phrase-based (below) decoders.
The nodes are states in the hypergraph and contain the nonterminal label (here, X)

and the input span (hierarchical) or coverage vector and last-translated word
(phrase-based), as well as the target-side words produced by the incoming hyperedge.

extend an existing hypothesis, which is trivial since the stack decoding algorithm is
seeded with an empty hypothesis representing the start of the sentence (Figure 1).

Sharing the hypergraph representation between the decoding algorithms provides
many benefits. Feature functions can be written once and used for both decoders,2
visualization tools work for both, and hypergraph operations such as minimum Bayes’
risk rescoring (Kumar and Byrne, 2004) work without modification.

2.2. Pipeline

Joshua’s pipeline.pl script can be invoked with a single command to run the en-
tire process of building, tuning, and testing MT systems. The phrase-based decoder
has been integrated, and can be enabled with the --type {moses,phrase} flag. The
moses type uses Moses to build the phrase table, whereas phrase uses Joshua’s gram-
mar extractor, Thrax (Weese et al., 2011). For example, the following command will
do all of this for a Spanish–English Europarl system:

2This doesn’t preclude features that only make sense in one context; for example, the Distortion feature
throws an error if its tail node can’t be recast as a phrase-based hypothesis with a coverage vector.

7

PBML 104 OCTOBER 2015

$JOSHUA/bin/pipeline.pl \
--rundir 1 --readme "Baseline phrase-based model" \
--type phrase --source es --target en --corpus input/europarl-v7.es-en \
--tune input/newstest2012 --test input/newstest2013 \
--aligner berkeley --tuner mert --threads 2
There are many other options and intricacies to the pipeline; more information can

be found with the Joshua documentation at http://joshua-decoder.org/6.0/.

2.3. Next Steps

Joshua’s phrase-based decoder is currently a “bare-bones” decoder, lacking state-
of-the-art features such as lexicalized distortion and the operation sequence model
(Durrani et al., 2011). We believe, however, that many of these gains can be imple-
mented using the sparse feature framework (cf. Cherry (2013); Green et al. (2013))
rather than with hard-coded specialized modules.

We also plan to add a lattice decoding feature, which currently only works for the
CKY+-based hierarchical system (where the implementation is simpler).

3. Feature function interface

Joshua’s feature functions are templates that contribute features to the global names-
pace. Whenever an edge is formed in the hypergraph, each feature function is asked
to score it. During decoding, these are immediately scored against the weight vec-
tor to produce a scalar score; the individual feature values are then discarded, so as
to avoid the overhead of storing the vectors. These values can be recovered later if
desired (such as for parameter tuning) by replaying the feature functions.

Feature functions are written by extending the FeatureFunction class and over-
loading compute(...). For example, the following WordCounter feature counts the
number of times each target word is used:
package joshua.decoder.ff;

class WordCounter extends FeatureFunction {
public DPState compute(Rule rule, List<HGNode> tails, int i, int j,

Sentence sentence, Accumulator acc) {

for (int id: rule.getEnglish())
if (id > 0) // skip nonterminals
acc.add(String.format("WordCounter_%s", Vocab.word(id)), 1);

return null;
}

}

8

http://joshua-decoder.org/6.0/

Matt Post, Yuan Cao, and Gaurav Kumar Joshua 6 (5–16)

By convention, fired features are prefixed with the template name, so as to avoid
clashes in the global namespace. The Accumulator object increments feature val-
ues and transparently handles either computing the feature dot product against the
weight vector (during decoding) or retaining the actual feature values (during tun-
ing). The null return value indicates that this function contributes no state.3

Features can be activated from the config file or command line:
$JOSHUA/bin/joshua-decoder -feature-function WordPenalty -key1 value ...
Joshua’s features are loaded by reflection, so after compiling, there is no need to add
stub code for recognizing and activating them. They also include a generic key-value
argument-processing framework for passing parameters to the feature functions.

4. Class-based Language Models

Class based language models for machine translation (Wuebker et al., 2013) were
proposed to combat data sparsity by building a language model over automatically-
clustered words. The standard approach is to use a small number of classes (in the
hundreds). This LM is generally used in addition to standard word-based LMs.

Joshua 6 allows the use of arbitrary word-classes for the purpose of class language
model generation. The Joshua pipeline accepts a class map and proceeds to generate
a class LM if this file exists.
$JOSHUA/bin/pipeline.pl [...] -class-map map.txt [...]

Class maps can be enabled in the decoder directly by passing the -class-map ar-
gument to the instantiation of a language model feature:
$JOSHUA/bin/joshua-decoder -feature-function 'LanguageModel \
-path lm.kenlm -order 5 -class-map map.txt'
The class mapping file contains lines with a word followed by the class (space-

delimited).

5. Parameter Tuning

Joshua 4 included the PRO tuner. Joshua 6 adds two new large-scale discriminative
decoders: k-best batch MIRA (Crammer et al., 2006; Cherry and Foster, 2012) and
AdaGrad (Duchi et al., 2011; Green et al., 2012). The usages of these tuners (as well as
Z-MERT, which has always been a part of Joshua) are consistent, except for the class
names and a few lines specifying the parameters in the configuration files.

A difficulty with decoding with large feature sets is that the set of observed fea-
tures is not known prior to tuning. Joshua’s discriminative tuners do not make any
distinction between dense and sparse features, and will incorporate newly-fired fea-
tures into their learning procedures, as those features are generated and encountered
during the tuning process.

3e.g., language models are feature functions returning a state object representing the target-side context.

9

PBML 104 OCTOBER 2015

5.1. k-best batch MIRA

k-best batch MIRA is a variant of the “hope-fear” MIRA (Chiang et al., 2008) which
uses k-best translations as approximate search spaces, and has been implemented in
the Moses decoder (Cherry and Foster, 2012). In our implementation, in addition to
the “hope-fear” pair (which balance the model and metric scores), we provide flexibil-
ity for also including the oracle (metric-best) and anti-oracle (metric-worst), similar to
the hypothesis selection procedure proposed in Eidelman (2012). What is more, since
MIRA is just like stochastic gradient descent (SGD) but with an adaptive learning rate,
our implementation also allows using mini-batches for loss gradient estimation which
reduces the estimation variance.

5.2. AdaGrad

AdaGrad is one of the best-performing online learning algorithms that has re-
cently been applied to many NLP and deep learning tasks (Socher et al., 2013; Mnih
and Kavukcuoglu, 2013; Chen and Manning, 2014) and to machine translation (Green
et al., 2012). Our implementation includes the choice of using either L1 and L2 reg-
ularization. In the latter case, no closed-form solution to the update equation can be
found (Duchi et al., 2011). However, we used a squared regularization term instead,
which permits a closed-form update. We also use the structured hinge-loss as the ob-
jective, just like in the MIRA case, and mini-batch estimation of the gradient is also
supported. Since when a large number of sparse features are defined, only a small
part of them are active in each training sample, we use lazy update strategy in both
the L1 and L2 regularization cases for those features that do not fire in each training
sample.

6. Experiments

We present experiments on two language pairs: a hierarchical Chinese–English
system, and a phrase-based Spanish–English system. The Chinese–English system
was constructed from a variety of LDC resources, totaling just over 2M sentence pairs.
The Hiero grammar was extracted with the default settings for Thrax, Joshua’s gram-
mar extraction tool. A language model was built on Gigaword. We used the OpenMT
2012 data for tuning and evaluated against the NIST 2008 test set.

The Spanish–English system was built from Europarl using the --type moses flag
to the Joshua pipeline. For tuning, we used the WMT 2012 news test set, and for
testing, the 2013 one.

6.1. Phrase-based decoding

We compiled both Moses and mtplz (Heafield et al., 2014) with a number of opti-
mizations (static linking, debug symbols off, max factors = 1, max kenlm order 5) and

10

Matt Post, Yuan Cao, and Gaurav Kumar Joshua 6 (5–16)
Ru

nt
im

e
(s

ec
on

ds
)

1

10

100

1000

Pop limit
1 10 100 1000

Moses (2.1.1)
Joshua
mtplz
Moses (3.0)

runtime (seconds)
beam Joshua Moses 2 Moses 3 mtplz
1 15 9 5 3
5 18 15 7 5
10 21 20 10 7
20 25 31 14 11
50 40 56 25 21
100 58 100 41 36
200 95 178 70 67
500 176 393 151 154
1000 355 775 293 294

Figure 2. Decoding speeds for the 3,000-sentence newstest2013, varying the pop
limits.

computed runtime for decoding all sentences in our ES-EN test set in single-threaded
mode, not counting the model load time (except for mtplz, which includes it). Figure 2
plots run times as a function of the decoder pop limit. Joshua is mostly faster than
Moses 2 except at the lowest two pop limits, but Moses 3 and mtplz are then about
twice as fast again as Joshua at very low pop limits, which advantage disappears as
the beam size is increased.

6.2. Parameter Estimation

We compare the performance of all the tuners implemented in Joshua (MERT,
PRO, MIRA, AdaGrad) on the Spanish–English and Chinese–English systems. For
each tuner, we repeated experiments five times with the training samples randomly
shuffled. We compared systems with dense features only and dense+sparse features.
The ten dense features are the regular MT features including phrase translation prob-
abilities, the language model, word penalties, etc. The sparse features we use are the
bigrams on the translation hypotheses. For the Spanish–English system, there are
about 270k such features and for the Chinese–English system the number is about
60k. We ran each tuner 10 epochs on the tuning data set with a k-best list of size 300.

For PRO, we used the built-in binary Perceptron as the classifier. We sampled
8k training pairs from each k-best list and extracted the top 50 pairs to the classifier
training set. For MIRA, the parameter C is set to 0.01, and we used mini-batch of size
10. For AdaGrad, we set λ = 0.05 and η=0.1 for both L1 and L2 regularizations, and
also used mini-batch of size 10.

The experimental results on the test sets are given in Table 1. With only the small
(dense) feature sets, all tuning algorithms in general give similar results, suggesting
that they have probably found near-optimal solutions. When the bigram sparse fea-

11

PBML 104 OCTOBER 2015

Tuner and Feature Spanish–English Chinese–English
Avg Stdev Avg Stdev

MERT (dense) 24.26 0.21 21.55 0.42
PRO (dense) 23.93 0.03 21.59 0.15
PRO (dense+sparse) 24.22 0.02 22.11 0.13
MIRA (dense) 24.22 0.05 21.81 0.07
MIRA (dense+sparse) 23.83 0.05 21.65 0.09
AG-1 (dense) 24.30 0.04 21.33 0.29
AG-2 (dense) 24.29 0.06 20.69 0.14
AG-1 (dense+sparse) 24.73 0.11 20.68 0.07
AG-2 (dense+sparse) 24.68 0.04 21.11 0.19

Table 1. A comparison of tuning algorithms implemented in Joshua. Here we show the
average BLEU scores on the test set and their standard deviations of five repeated

experiments on the Spanish–English and Chinese–English systems. AG-1, AG-2 means
AdaGrad with L1 and L2 regularization respectively. The best average scores for each

system are marked in bold.

tures are added, AdaGrad and PRO performed very well on the Spanish–English and
Chinese–English systems, and yielded the best results. Although MIRA performed
reasonably well when only dense features were present, it seems to suffer from over-
fitting when a large number of sparse features were added — we observed very good
results on the tuning set but failed to see improvements on the test set. Finally, while
AdaGrad gave the best results on the Spanish–English system, it did not perform as
well on the Chinese–English system. Since AdaGrad makes use of the gradient infor-
mation to scale the learing step in each dimension, it is very sensitive to magnitudes
of gradient vectors (see the theoretical analysis in Duchi et al. (2011)). We therefore
suspect that for the Chinese–English system, the loss gradients are very noisy and
misguided AdaGrad to find inappropriate descent directions.

6.3. Class-based Language Models

We show results using Word2Vec (Mikolov et al., 2013) to generate word classes
(though it would be just as easy to use Brown clusters (Brown et al., 1992; Liang,
2005) or any other deterministic mapping of words to classes). The word vectors were
trained on the train partitions of each dataset. Results can be found in Table 2. We
experimented with word vectors of various dimensions. Using this language model
in addition to the word-based language model provides a gain of +0.53 BLEU on
the Spanish–English dataset, but no gain on the hierarchical Chinese–English sys-
tem (which may require a greater number of classes or an alternate way of clustering
words into classes).

12

Matt Post, Yuan Cao, and Gaurav Kumar Joshua 6 (5–16)

BLEU score
System Spanish–English Chinese–English
Baseline (Phrase) 23.83 20.47
+ ClassLM (50) 24.08 19.95
+ ClassLM (100) 24.36 18.81
+ ClassLM (200) 24.35 19.27
+ ClassLM (300) 24.20 17.94

Table 2. A comparison of phrase-based systems that use class-based language model
with a baseline phrase-based system. Classes are generated by clustering word

vectors obtained by using Word2Vec. We show results for word vectors of dimensions
50, 100, 200 and 300. Class-LMs provide a significant BLEU gain with the

Spanish–English system.

7. Language Packs

Even with the single-command pipeline invocation provided with Joshua, there
are many impediments to building machine translation systems: one must select and
obtain a large enough parallel dataset for training and tuning, have access to sufficient
computing resources, and must have some familiarity with the steps of the pipeline
should problems arise. These and other factors make it difficult for end users to in-
stall their own machine translation systems, and inhibit the adoption of customized
statistical MT systems as tools in larger applications.

For this reason, the Joshua developers have released “language packs”: tuned
models for particular language pairs that can be downloaded and run in a black-
box fashion.4 Language packs include a tuned Joshua configuration file, all reference
model files (the language model and the grammar or phrase table) in their respective
compact, binarized formats, and scripts to perform source-side normalization and to-
kenization consistent with those used during training. The user is responsible for
sentence-level segmentation.

7.1. Building a Language Pack

Building a language pack is simple. Joshua provides a script, run_bundler.py
whose most important inputs are (a) a tuned Joshua configuration file and (b) the un-
filtered translation model. The bundler creates a new directory and copies the model
files into it, “packing” the Joshua translation model into its efficient binarized for-
mat. It then also copies the preprocessing scripts and the config file, relativizing path
names and updating them to point to the unfiltered, packed, translation model. Fi-
nally, a shell script is created that serves as the entry point to running the decoder. An

4Available at http://joshua-decoder.org/language-packs/

13

http://joshua-decoder.org/language-packs/

PBML 104 OCTOBER 2015

example usage follows, where a pipeline run has taken place in the current directory
and is being bundled into the directory language-pack:
$JOSHUA/bin/run_bundler.py tune/joshua.config.final language-pack \

--copy-config-options '-top-n 0 -output-format %s -mark-oovs false' \
--pack-grammar model/phrase-table.gz
The --copy-config-options parameters allows the config file options to be over-

ridden (the values listed are the defaults), and --pack-grammarpoints to the unfiltered
phrase table and requests that it be packed.

7.2. Running Language Packs

Language packs are run by executing the script language-pack/run-joshua.sh,
which is meant to be used in the standard unix pipe fashion, taking input on STDIN
and writing it to STDOUT. It is important that the user take care to pass sentences one
per line, and to normalize and tokenize the input appropriately. This is accomplished
with the prepare.sh script in the language pack. An example invocation is:
cat zh.txt | language-pack/prepare.sh | language-pack/run-joshua.sh > en.txt

Because of the overhead in loading models, language packs can also be run in
server mode:
language-pack/run-joshua.sh -server-port 5867
cat zh.txt | language-pack/prepare.sh | nc localhost 5867 > en.txt

8. Summary

Joshua 6 is the result of a significant research, engineering, and usability effort that
we hope will be of service to the research and open-source communities. In addition
to the user-focused releases available at joshua-decoder.org,5 we encourage develop-
ers to contribute to the Github-hosted project at github.com/joshua-decoder/joshua.
Mailing lists, linked from the main Joshua page, are available for both.

Acknowledgments Joshua’s phrase-based stack decoding algorithm began as a port
of Kenneth Heafield’s ‘mtplz‘ at MT Marathon 2014 in Trento, Italy.

Bibliography

Brown, Peter F., Peter V. deSouza, Robert L. Mercer, Vincent J. Della Pietra, and Jenifer C. Lai.
Class-Based n-gram Models of Natural Language. Computational Linguistics, 18:467–479,
1992.

Chen, Danqi and Christopher Manning. A Fast and Accurate Dependency Parser using Neural
Networks. In Proceedings of EMNLP, Doha, Qatar, October 2014. ACL.

5All the features discussed in this paper are available as of Joshua 6.0.5.

14

http://joshua-decoder.org
https://github.com/joshua-decoder/joshua

Matt Post, Yuan Cao, and Gaurav Kumar Joshua 6 (5–16)

Cherry, Colin. Improved Reordering for Phrase-Based Translation using Sparse Features. In
HLT-NAACL, pages 22–31. Citeseer, 2013.

Cherry, Colin and George Foster. Batch Tuning Strategies for Statistical Machine Translation.
In Proceedings of the 2012 Conference of the North American Chapter of the ACL: Human Language
Technologies, pages 427–436, Montréal, Canada, June 2012. ACL.

Chiang, David. Hierarchical Phrase-Based Translation. Computational Linguistics, 33(2):201–
228, 2007.

Chiang, David, Yuval Marton, and Philip Resnik. Online Large-Margin Training of Syntactic
and Structural Translation Features. In Proceedings of EMNLP, Waikiki, Honolulu, Hawaii,
October 2008. ACL.

Crammer, Koby, Ofer Dekel, Joseph Keshet, Shai Shalev-Shwartz, and Yoram Singer. Online
Passive-Aggressive Algorithms. Journal of Machine Learning Research, 7:551–585, March 2006.

Duchi, John, Elad Hazan, and Yoram Singer. Adaptive Subgradient Methods for Online Learn-
ing and Stochastic Optimization. Journal of Machine Learning Research, 12:2121–2159, July
2011.

Durrani, Nadir, Helmut Schmid, and Alexander Fraser. A Joint Sequence Translation Model
with Integrated Reordering. In Proceedings of the 49th Annual Meeting of the ACL: Human
Language Technologies, pages 1045–1054, Portland, Oregon, USA, June 2011. ACL.

Eidelman, Vladimir. Optimization Strategies for Online Large-Margin Learning in Machine
Translation. In Proceedings of the 7th Workshop on Statistical Machine Translation, Montréal,
Canada, June 2012. ACL.

Galley, Michel, Mark Hopkins, Kevin Knight, and Daniel Marcu. What’s in a translation rule?
In Proceedings of NAACL, Boston, Massachusetts, USA, May 2004.

Galley, Michel, Jonathan Graehl, Kevin Knight, Daniel Marcu, Steve DeNeefe, Wei Wang, and
Ignacio Thayer. Scalable Inference and Training of Context-Rich Syntactic Translation Mod-
els. In Proceedings of ACL, Sydney, Australia, July 2006.

Ganitkevitch, Juri, Yuan Cao, Jonathan Weese, Matt Post, and Chris Callison-Burch. Joshua
4.0: Packing, PRO, and Paraphrases. In Proceedings of the 7th Workshop on Statistical Machine
Translation, Montréal, Canada, June 2012. ACL.

Green, Spence, Sida Wang, Daniel Cer, and Christopher D. Manning. Fast and Adaptive Online
Training of Feature-Rich Translation Models. In Proceedings of ACL, Sofia, Bulgaria, August
2012. ACL.

Green, Spence, Sida Wang, Daniel Cer, and Christopher D. Manning. Fast and Adaptive Online
Training of Feature-Rich Translation Models. In Proceedings of the 51st Annual Meeting of the
ACL (Volume 1: Long Papers), pages 311–321, Sofia, Bulgaria, August 2013. ACL.

Heafield, Kenneth, Michael Kayser, and Christopher D. Manning. Faster Phrase-Based Decod-
ing by Refining Feature State. In Proceedings of the ACL, Baltimore, MD, USA, June 2014.

Huang, Liang and David Chiang. Faster algorithms for decoding with integrated language
models. In Proceedings of ACL, 2007.

Koehn, Philipp, Franz Josef Och, and Daniel Marcu. Statistical phrase-based translation. In
Proceedings of NAACL, Edmonton, Alberta, Canada, May–June 2003.

15

PBML 104 OCTOBER 2015

Kumar, Shankar and William Byrne. Minimum bayes-risk decoding for statistical machine
translation. In Proceedings of NAACL, Boston, Massachusetts, USA, May 2004.

Li, Zhifei, Chris Callison-Burch, Chris Dyer, Juri Ganitkevitch, Sanjeev Khudanpur, Lane
Schwartz, Wren N.G. Thornton, Jonathan Weese, and Omar F. Zaidan. Joshua: An open
source toolkit for parsing-based machine translation. In Proceedings of the Fourth Workshop
on Statistical Machine Translation, 2009.

Li, Zhifei, Chris Callison-Burch, Chris Dyer, Juri Ganitkevitch, Ann Irvine, Sanjeev Khudanpur,
Lane Schwartz, Wren N.G. Thornton, Ziyuan Wang, Jonathan Weese, and Omar F. Zaidan.
Joshua 2.0: a toolkit for parsing-based machine translation with syntax, semirings, discrim-
inative training and other goodies. In Proceedings of the Fifth Workshop on Statistical Machine
Translation, 2010.

Liang, Percy. Semi-supervised learning for natural language. Master’s thesis, MIT, 2005.
Mikolov, Tomas, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient Estimation of Word Rep-

resentations in Vector Space. CoRR, abs/1301.3781, 2013.
Mnih, Andriy and Koray Kavukcuoglu. Learning Word Embeddings Efficiently with Noise-

Contrastive Estimation. In Proceedings of NIPS, Lake Tahoe, NV, USA, December 2013.
Post, Matt, Juri Ganitkevitch, Luke Orland, Jonathan Weese, Yuan Cao, and Chris Callison-

Burch. Joshua 5.0: Sparser, Better, Faster, Server. In Proceedings of the Eighth Workshop on
Statistical Machine Translation, pages 206–212, Sofia, Bulgaria, August 2013. ACL.

Socher, Richard, Alex Perelygin, Jean Y. Wu, Jason Chuang, Christopher D. Manning, Andrew Y.
Ng, and Christopher Potts. Recursive Deep Models for Semantic Compositionality Over a
Sentiment Treebank. In Proceedings of EMNLP, Seattle, USA, October 2013. ACL.

Weese, Jonathan, Juri Ganitkevitch, Chris Callison-Burch, Matt Post, and Adam Lopez. Joshua
3.0: Syntax-based machine translation with the Thrax grammar extractor. In Proceedings of
the Sixth Workshop on Statistical Machine Translation, 2011.

Wuebker, Joern, Stephan Peitz, Felix Rietig, and Hermann Ney. Improving Statistical Machine
Translation with Word Class Models. In Conference on Empirical Methods in Natural Language
Processing, pages 1377–1381, Seattle, WA, USA, Oct. 2013.

Zollmann, Andreas and Ashish Venugopal. Syntax augmented machine translation via chart
parsing. In Proceedings of the Workshop on Statistical Machine Translation, New York, New
York, USA, June 2006.

Address for correspondence:
Matt Post
post@cs.jhu.edu
Human Language Technology Center of Excellence, Johns Hopkins University
810 Wyman Park Drive, Baltimore, MD 21211

16

The Prague Bulletin of Mathematical Linguistics
NUMBER 104 OCTOBER 2015 17–26

Evaluating MT systems with BEER

Miloš Stanojević, Khalil Sima’an
Institute for Logic, Language and Computation, University of Amsterdam

Abstract
We present BEER, an open source implementation of a machine translation evaluation met-

ric. BEER is a metric trained for high correlation with human ranking by using learning-to-rank
training methods. For evaluation of lexical accuracy it uses sub-word units (character n-grams)
while for measuring word order it uses hierarchical representations based on PETs (permuta-
tion trees). During the last WMT metrics tasks, BEER has shown high correlation with human
judgments both on the sentence and the corpus levels. In this paper we will show how BEER
can be used for (i) full evaluation of MT output, (ii) isolated evaluation of word order and (iii)
tuning MT systems.

1. Introduction

Machine Translation (MT) evaluation deals with the estimation of a measure (pos-
sibly distance) of the quality of some hypothesis MT output to given human transla-
tions, usually treated as gold standard translations. Often times, simplistic heuristics,
such as counts of n-gram matches, are used. When the two corpora being compared
are of relatively large size (>2000 sentences) the estimate can be reliable, even with
simple measures such as BLEU (Papineni et al., 2002), because the collected sufficient
statistic is reliable enough.

However, when we turn to evaluation at the sentence level, we cannot get away
with such simple heuristic measures based on simple counting of too sparse statis-
tics. We believe that evaluation should be treated as a modeling task (just like parsing
or POS tagging or other NLP tasks) where we should train our models to learn the
specific aspects of language processing, using a wide range of quality indicators (fea-
tures). This is the motivation for making BEER a trained metric.

© 2015 PBML. Distributed under CC BY-NC-ND. Corresponding author: m.stanojevic@uva.nl
Cite as: Miloš Stanojević, Khalil Sima’an. Evaluating MT systems with BEER. The Prague Bulletin of Mathe-
matical Linguistics No. 104, 2015, pp. 17–26. doi: 10.1515/pralin-2015-0010.

http://creativecommons.org/licenses/by-nc-nd/3.0/

PBML 104 OCTOBER 2015

It is no surprise that trained metrics perform much better than heuristic metrics.
BEER has been the best sentence level metric on WMT14 metrics task (Macháček and
Bojar, 2014), and one of the best on both corpus and sentence level on WMT15 metrics
task (Stanojević et al., 2015a). On the WMT15 tuning task for Czech-English BEER
was the best submitted system falling behind only over the strong baseline (Stanojević
et al., 2015b).

Unfortunately, trained metrics are often not that easy to use. Furthermore, these
metrics are mostly made for the metrics tasks and often not published online, and
when they are published online, this is done without the trained models or without
suitable documentation. With this paper we aim to document BEER as a trained met-
ric that performs well but also is easy to use, offering a range of attractive properties
that researchers are used to see in the simple measures (for example statistical testing,
tuning and many more).

In this paper we will concentrate only on the usage of BEER, but BEER has many
interesting aspects that are presented elsewhere:

• evaluation of word order using permutation trees (PETs)
(Stanojević and Sima’an, 2014b)

• character n-gram matching (Stanojević and Sima’an, 2014a)
• a learning-to-rank model (Stanojević and Sima’an, 2014a)
• a corpus level score that decomposes to sentence level scores

(Stanojević and Sima’an, 2015)
• a tuning model that is not biased for recall (Stanojević and Sima’an, 2015)
• a Treepel version based on syntactic features (Stanojević and Sima’an, 2015)

In the next section we will briefly summarize some these aspects.

2. BEER basics

The model underying the BEER metric is flexible for the integration of an arbitrary
number of new features and has a training method that is targeted for producing
good rankings among systems. Two other characteristic properties of BEER are its
hierarchical reordering component and char n-grams lexical matching component.

BEER is essentially a linear model with which the score can be computed in the
following way:

score(h, r) =
∑
i

wi × ϕi(h, r) = w⃗ · ϕ⃗ (1)

where w⃗ is a weight vector and ϕ⃗ is a feature vector.

2.1. Learning-to-rank

Since the task on which our model is going to be evaluated is ranking translations
it comes natural to train the model using learning-to-rank techniques.

18

M. Stanojević, K. Sima’an Evaluating MT systems with BEER (17–26)

Our training data consists of pairs of “good” and “bad” translations. By using a
feature vector ϕ⃗good for a good translation and a feature vector ϕ⃗bad for a bad trans-
lation then using the following equations we can transform the ranking problem into
a binary classification problem (Herbrich et al., 1999):

score(hgood, r) > score(hbad, r) ⇔
w⃗ · ϕ⃗good > w⃗ · ϕ⃗bad ⇔

w⃗ · ϕ⃗good − w⃗ · ϕ⃗bad > 0 ⇔
w⃗ · (ϕ⃗good − ϕ⃗bad) > 0

w⃗ · (ϕ⃗bad − ϕ⃗good) < 0

(2)

If we look at ϕ⃗good− ϕ⃗bad as a positive training instance and at ϕ⃗bad− ϕ⃗good as a
negative training instance, we can train any linear classifier to find weight the vector
w⃗ that minimizes mistakes in ranking on the training set.

In practice BEER uses logistic regression as implemented in Weka toolkit (Hall
et al., 2009). So the estimated weights are used in the following way:

score(h, r) =
2

1+ e−
∑

i wi×(ϕi(h,r)−ϕi(r,r))
(3)

The main difference from Equation1 is that here:
1. first substract features of system translation given reference and reference given

reference
2. apply sigmoid function and then
3. we multiply with 2

This formula does not make a difference in ranking compared to Equation 1 but it
makes a difference in scaling the scores. Motivation for it is explained in Stanojević
and Sima’an (2015). This scaling is important for getting a better corpus level score
that is calculated as average sentence level score over whole corpus:

BEERcorpus(c) =

∑
si∈c BEERsent(si)

|c|
(4)

2.2. Lexical component based on char n-grams

Lexical scoring of BEER relies heavily on character n-grams. Precision, Recall and
F1-score are used with char n-gram orders from 1 until 6. These scores are more
smooth on the sentence level than word n-gram matching that is present in other
metrics like BLEU (Papineni et al., 2002) or METEOR (Michael Denkowski and Alon
Lavie, 2014).

19

PBML 104 OCTOBER 2015

⟨2, 4, 1, 3⟩

2 ⟨2, 1⟩

⟨1, 2⟩

5 6

4

1 3

(a) Complex PET

⟨2, 1⟩

⟨2, 1⟩

4 3

⟨2, 1⟩

2 1

(b) Fully inverted
PET 1

⟨2, 1⟩

⟨2, 1⟩

⟨2, 1⟩

4 3

2

1

(c) Fully inverted
PET 2

Figure 1: Examples of PETs

BEER also uses precision, recall and F1-score on word level (but not with word n-
grams). Matching of words is computed over METEOR alignments that use WordNet,
paraphrasing and stemming to have more accurate alignment.

We also make distinction between function and content words. For more precise
description on used features and their effectiveness you can look at Stanojević and
Sima’an (2014a).

2.3. Reordering component based on PETs

Alignment between system and reference translation can be simplified and consid-
ered as permutation of words from the reference translation in the system translation.
Previous work by Isozaki et al. (2010) and Birch and Osborne (2010) used this permu-
tation view of word order and applied Kendall τ for evaluating its distance from ideal
(monotone) word order.

BEER goes beyond this skip-gram based evaluation and decomposes permutation
into a hierarchical structure which shows how subparts of permutation form small
groups that can be reordered all together. Figure 1a shows PET for permutation
⟨2, 5, 6, 4, 1, 3⟩. Ideally the permutation tree will be filled with nodes ⟨1, 2⟩ which
would say that there is no need to do any reordering (everything is in the right place).
BEER has features that compute the number of different node types and for each dif-
ferent type it assigns a different weight. Sometimes there are more than one PET for
the same permutation. Consider Figure 1b and 1c which are just 2 out of 3 possible
PETs for permutation ⟨4, 3, 2, 1⟩. Counting the number of trees that could be built is
also a good indicator of the permutation quality.

3. Installing BEER

BEER is implemented in Scala so the only requirement for running it is just having
the latest version of Java virtual machine installed (at least version 8). All the de-
pendencies of BEER are included with the installation except METEOR and Stanford

20

M. Stanojević, K. Sima’an Evaluating MT systems with BEER (17–26)

CORE dependency parser (Chen and Manning, 2014) which gets installed automati-
cally the first time BEER is ran.

The basic procedure to install BEER is with the following commands in terminal:

wget https://staff.fnwi.uva.nl/m.stanojevic/beer/beer_1.1.tar.gz
tar xfvz beer_1.1.tar.gz
./beer_1.1/beer # this installs METEOR and Stanford parser
rm beer_1.1.tar.gz

4. Usage from command line

BEER has several working modes. They specify if we want to use BEER for evalu-
ation, for computing features, for training, for evaluating reordering or we want to
use it for interactive evaluation on the terminal. We will explain three modes that are
most useful from these: evaluation, evaluateReordering and interactive mode.

Bellow is an example of using BEER with evaluation working mode, where system
translation is given with parameter -s, reference translation with parameter -r and
language with parameter -l.

./beer --workingMode evaluation -l en -s system.en -r reference.en
Because --workingMode evaluation is the default setting we can also skip that

parameter and just write:

./beer -l en -s system.en -r reference.en
This command will print the corpus level BEER score. To get the sentence level

scores we just need to add --printSentScores to the command. The language pa-
rameter -l is an obligatory parameter for BEER because BEER uses language spe-
cific models for scoring and language specific resources (parsers, function words lists,
paraphrase tables, stemmers...) for aligning reference and system translation. All lan-
guages from WMT13 and WMT14 are supported at this point. There is additional
language other which is recommended in case there is no language specific model
available.

This and some other parameters of BEER are shown in Table 1.

5. Usage in interactive mode

In some use cases the user might want to connect some other application with
BEER. This can be done by using BEER as a library in case the other application exe-
cutes on Java virtual machine, but the more general solution is usage of BEER through
the interactive command line. This allows usage of BEER from any application which
can read and write through pipe to some program. Here we describe this interactive
way of using BEER.

21

PBML 104 OCTOBER 2015

parameter useage
-l input language
-s system translation
-r reference translations separated by column
--printSentScores pritns BEER score for each sentence
--printFeatureValues prints feature values for each sentence
--norm tokenizes the input using METEOR tokenizer
--noLower stops BEER from lowercasing the input
--noPunct excludes punctuation from evaluation
--help prints these and some other parameters of BEER

Table 1: Command line parameters of BEER

To start the interactive shell we need to set the working mode and the language for
evaluation:

./beer --workingMode interactive -l other

When the interactive shell starts, we can type different commands for evaluation.
To evaluate for a sentence level score we can type the following:

EVAL ||| system translation ||| reference 1 ||| reference 2

and then as output we should get the score for each reference translation. If we
want only the best score out of all references we just need to type EVAL BEST instead
of EVAL. In case we need feature values, the format is the same but we use FACTORS
command instead of EVAL. Finally, to exit it is enough to type EXIT.

6. Statistical testing of BEER scores using MultEval

Usually it is not enough to know the final score of the system and whether it is
better (or worse) than the baseline but also to know whether this difference is statis-
tically significant. The tool that became quite popular for this task in MT community
if Multeval (Clark et al., 2011) that has support for BLEU, TER and METEOR. With
BEER we distribute the version of Multeval that contains a metrics module for BEER
with the same interface as for the other metrics.

Here we describe how to use BEER with Multeval. Current implementation has
no bugs that we are aware of, but it is relatively slow (it requires running in parallel
and relatively large amount of RAM memory). This is likely to change soon.

Here is the command for running Multeval with BEER:

22

M. Stanojević, K. Sima’an Evaluating MT systems with BEER (17–26)

./multeval eval --metrics beer \
--beer.language en \
--refs references.en \
--hyps-baseline translations.en.*

Basically the only additional obligatory parameter is --beer.language, but other than
that all other parameters are standard Multeval parameters.

7. Tuning Moses for BEER – beta

BEER has support for tuning Moses (Koehn et al., 2007) systems parameters for
higher BEER score. In principle all Moses optimization algorithms could be used,
but we tested it only with kbmira (Cherry and Foster, 2012). For now, in order to
add support for tuning Moses with BEER the user needs to recompile Moses by first
adding files located in src_moses of BEER installation into Moses directory and then
compiling. In future releases we hope to add support for BEER in the standard Moses
installation so this manual compilation would not be necessary.

When Moses is compiled with the necessary C++ files, tuning can be done in the
same way as usual by calling mert-moses.pl and by specifying BEER parameters in
--batch-mira-args in the following way:

perl $MOSES/scripts/training/mert-moses.pl \
--batch-mira-args="--sctype BEER --scconfig beerDir:$BEER_DIR,
beerLang:en,beerModelType:tuning,beerThreads:30" ...

With beerDir we specify where Moses can find the installation of BEER that it can use.
Standard models that are trained for human correlation have heavy recall bias and
they are not good for MT tuning. That is why BEER has models without this bias
that perform much better for tuning (Stanojević and Sima’an, 2015). To specify that
we want to use that kind of model we use parameter beerModelType (currently only
English is supported) and beerLang tells which language is evaluated.

8. Evaluating word order with PETs

BEER is a full evaluation metric that scores translation by all ascpects (both fluency
and adequacy). But sometimes we want to put more attention on the evaluation of
ether adequacy or fluency. Evaluating adequacy can be pretty streightforward, which
is not the case for evaluating fluency. Metrics that are more successful in fluency
treat this problem as measuring distance between the permutation of words in system
translation from the ideal permutation (Birch and Osborne, 2010; Isozaki et al., 2010).
In Stanojević and Sima’an (2014b) evaluation over permutations was extended from

23

PBML 104 OCTOBER 2015

function origin
Kendall Birch and Osborne (2010); Isozaki et al. (2010)
Spearman Isozaki et al. (2010)
Ulam Birch et al. (2010)
Hamming Birch and Osborne (2010)
Fuzzy Talbot et al. (2011)
PETrecursiveViterbi Stanojević and Sima’an (2014b)
PEFrecursive Stanojević and Sima’an (2014b)

Table 2: Implemented ordering(·, ·) functions

treating permutations as flat sequential structures to the hierarchical structures that
better explain the reordering patterns.

In BEER installation, appart from standard trained BEER linear models, there is
additionally an implmentation of the following interpolation of lexical and ordering
score:

score(s, r) = α F1(s, r) + (1− α) ordering(s, r) (5)

F1 is the lexical measure over unigrams and ordering(·, ·) is an ordering function
over alignments (permutation) between words from system and reference translation.
There are many implemented ordering(·, ·) functions shown in Table 2.

We can do the scoring with the following command:

./beer --workingMode evaluateReordering \
--alpha 0.5 \
--reorderingMetric PEFrecursive \
-l en -s system.en -r reference.en

Here α parameter is specified with --alpha and ordering(·, ·) function with
--reorderingMetric. Other BEER parameters are mostly the same.

9. Summary

We have presented different ways in which BEER software can be used for eval-
uation and optimization of MT systems. We hope that this software package would
increase usage of tunable metrics with state-of-the-art correlation with human judg-
ment over standard metrics that are based on heuristics and usually perform badly
on corpus and especially sentence level. BEER is licensed under GPL license and is
available at https://github.com/stanojevic/beer.

24

https://github.com/stanojevic/beer

M. Stanojević, K. Sima’an Evaluating MT systems with BEER (17–26)

Acknowledgements

This work is supported by STW grant nr. 12271 and NWO VICI grant nr. 277-89-002.

Bibliography

Birch, Alexandra and Miles Osborne. LRscore for Evaluating Lexical and Reordering Quality
in MT. In Proceedings of the Joint Fifth Workshop on Statistical Machine Translation and Metric-
sMATR, pages 327–332, Uppsala, Sweden, July 2010. Association for Computational Lin-
guistics. URL http://www.aclweb.org/anthology/W10-1749.

Birch, A., M. Osborne, and P. Blunsom. Metrics for MT evaluation: evaluating reordering.
Machine Translation, pages 1–12, 2010. ISSN 0922-6567.

Chen, Danqi and Christopher D Manning. A Fast and Accurate Dependency Parser using Neu-
ral Networks. In Empirical Methods in Natural Language Processing (EMNLP), 2014.

Cherry, Colin and George Foster. Batch Tuning Strategies for Statistical Machine Translation.
In Proceedings of the 2012 Conference of the North American Chapter of the Association for Compu-
tational Linguistics: Human Language Technologies, NAACL HLT ’12, pages 427–436, Strouds-
burg, PA, USA, 2012. Association for Computational Linguistics.

Clark, Jonathan H., Chris Dyer, Alon Lavie, and Noah A. Smith. Better Hypothesis Testing
for Statistical Machine Translation: Controlling for Optimizer Instability. In Proceedings
of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language
Technologies: Short Papers - Volume 2, HLT ’11, pages 176–181, Stroudsburg, PA, USA, 2011.
Association for Computational Linguistics. ISBN 978-1-932432-88-6. URL http://dl.acm.
org/citation.cfm?id=2002736.2002774.

Hall, Mark, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann, and Ian H.
Witten. The WEKA Data Mining Software: An Update. SIGKDD Explor. Newsl., 11(1):10–18,
Nov. 2009. ISSN 1931-0145. doi: 10.1145/1656274.1656278. URL http://doi.acm.org/10.
1145/1656274.1656278.

Herbrich, Ralf, Thore Graepel, and Klaus Obermayer. Support Vector Learning for Ordinal
Regression. In In International Conference on Artificial Neural Networks, pages 97–102, 1999.

Isozaki, Hideki, Tsutomu Hirao, Kevin Duh, Katsuhito Sudoh, and Hajime Tsukada. Automatic
Evaluation of Translation Quality for Distant Language Pairs. In Proceedings of the 2010
Conference on Empirical Methods in Natural Language Processing, EMNLP ’10, pages 944–952,
Stroudsburg, PA, USA, 2010. Association for Computational Linguistics. URL http://dl.
acm.org/citation.cfm?id=1870658.1870750.

Koehn, Philipp, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello Federico, Nicola
Bertoldi, Brooke Cowan, Wade Shen, Christine Moran, Richard Zens, Chris Dyer, Ondřej
Bojar, Alexandra Constantin, and Evan Herbst. Moses: Open Source Toolkit for Statistical
Machine Translation. In Proceedings of the 45th Annual Meeting of the ACL on Interactive Poster
and Demonstration Sessions, ACL ’07, pages 177–180, Stroudsburg, PA, USA, 2007. Associa-
tion for Computational Linguistics.

Macháček, Matouš and Ondřej Bojar. Results of the WMT14 Metrics Shared Task. In Proceedings
of the Ninth Workshop on Statistical Machine Translation, pages 293–301, Baltimore, Maryland,

25

http://www.aclweb.org/anthology/W10-1749
http://dl.acm.org/citation.cfm?id=2002736.2002774
http://dl.acm.org/citation.cfm?id=2002736.2002774
http://doi.acm.org/10.1145/1656274.1656278
http://doi.acm.org/10.1145/1656274.1656278
http://dl.acm.org/citation.cfm?id=1870658.1870750
http://dl.acm.org/citation.cfm?id=1870658.1870750

PBML 104 OCTOBER 2015

USA, June 2014. Association for Computational Linguistics. URL http://www.aclweb.org/
anthology/W/W14/W14-3336.

Michael Denkowski and Alon Lavie. Meteor Universal: Language Specific Translation Evalua-
tion for Any Target Language. In Proceedings of the ACL 2014 Workshop on Statistical Machine
Translation, 2014.

Papineni, Kishore, Salim Roukos, Todd Ward, and Wei-Jing Zhu. BLEU: A Method for Au-
tomatic Evaluation of Machine Translation. In Proceedings of the 40th Annual Meeting on
Association for Computational Linguistics, ACL ’02, pages 311–318, Stroudsburg, PA, USA,
2002. Association for Computational Linguistics. doi: 10.3115/1073083.1073135. URL
http://dx.doi.org/10.3115/1073083.1073135.

Stanojević, Miloš and Khalil Sima’an. Fitting Sentence Level Translation Evaluation with Many
Dense Features. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pages 202–206, Doha, Qatar, October 2014a. Association for Computa-
tional Linguistics. URL http://www.aclweb.org/anthology/D14-1025.

Stanojević, Miloš and Khalil Sima’an. Evaluating Word Order Recursively over Permutation-
Forests. In Proceedings of SSST-8, Eighth Workshop on Syntax, Semantics and Structure in Statis-
tical Translation, pages 138–147, Doha, Qatar, October 2014b. Association for Computational
Linguistics. URL http://www.aclweb.org/anthology/W14-4017.

Stanojević, Miloš and Khalil Sima’an. BEER 1.1: ILLC UvA submission to metrics and tuning
task . In Proceedings of the Tenth Workshop on Statistical Machine Translation, Lisbon, Portugal,
June 2015. Association for Computational Linguistics.

Stanojević, Miloš, Amir Kamran, and Ondřej Bojar. Results of the WMT15 Metrics Shared Task.
In Proceedings of the Tenth Workshop on Statistical Machine Translation, Lisbon, Portugal, June
2015a. Association for Computational Linguistics.

Stanojević, Miloš, Amir Kamran, and Ondřej Bojar. Results of the WMT15 Tuning Shared Task.
In Proceedings of the Tenth Workshop on Statistical Machine Translation, Lisbon, Portugal, June
2015b. Association for Computational Linguistics.

Talbot, David, Hideto Kazawa, Hiroshi Ichikawa, Jason Katz-Brown, Masakazu Seno, and
Franz J. Och. A Lightweight Evaluation Framework for Machine Translation Reordering.
In Proceedings of the Sixth Workshop on Statistical Machine Translation, WMT ’11, pages 12–
21, Stroudsburg, PA, USA, 2011. Association for Computational Linguistics. ISBN 978-1-
937284-12-1. URL http://dl.acm.org/citation.cfm?id=2132960.2132963.

Address for correspondence:
Miloš Stanojević
m.stanojevic@uva.nl
P.O. Box 94242 , Amsterdam, The Netherlands

26

http://www.aclweb.org/anthology/W/W14/W14-3336
http://www.aclweb.org/anthology/W/W14/W14-3336
http://dx.doi.org/10.3115/1073083.1073135
http://www.aclweb.org/anthology/D14-1025
http://www.aclweb.org/anthology/W14-4017
http://dl.acm.org/citation.cfm?id=2132960.2132963

The Prague Bulletin of Mathematical Linguistics
NUMBER 104 OCTOBER 2015 27–38

Box: Natural Language Processing Research
Using Amazon Web Services

Amittai Axelrod
www.BoxResear.ch

Abstract
We present a publicly-available state-of-the-art research and development platform for Ma-

chine Translation and Natural Language Processing that runs on the Amazon Elastic Compute
Cloud. This provides a standardized research environment for all users, and enables perfect
reproducibility and compatibility. Box also enables users to use their hardware budget to avoid
the management and logistical overhead of maintaining a research lab, yet still participate in
global research community with the same state-of-the-art tools.

1. Introduction

Amazon Web Services (AWS) is the umbrella term for all of the remote services that
make up the Amazon cloud-computing platform. AWS includes the Elastic Compute
Cloud (EC2) virtual computer cluster, as well as related services for storage, monitor-
ing, analytics, and others.

We present our mechanism for using the Elastic Compute Cloud as the basis for
a research and development platform for natural language processing researchers,
students, and professionals. Using a cloud-based platform has numerous advan-
tages. Compute nodes (“instances” in EC2 parlance) can start with the exact same
software configuration, including installed tools, directories, and users. In particular,
instances can be launched as direct clones of an existing virtual machine, or Amazon
Machine Image (AMI). Our Box project creates such a disk image, containing open-
source tools of use to the MT and NLP research community. As the disk images are
frozen, identically-configured machines can be launched repeatedly, enabling stable
and reproducible results. Future Box releases will be as separate AMIs, ensuring that

© 2015 PBML. Distributed under CC BY-NC-ND. Corresponding author: amittai.box@gmail.com
Cite as: Amittai Axelrod. Box: Natural Language Processing Research Using Amazon Web Services. The
Prague Bulletin of Mathematical Linguistics No. 104, 2015, pp. 27–38. doi: 10.1515/pralin-2015-0011.

http://creativecommons.org/licenses/by-nc-nd/3.0/

PBML 104 OCTOBER 2015

previous versions are always available, and previous experiments and code can al-
ways be re-run. Users have sudo access to instances they launch, so any Box machine
can be updated or modified as desired.

While each instance has the same software configuration, each one can have a dif-
ferent hardware configuration, depending on the users’ need. Box instances presently
range from 1 vCPU with 3.75 Gb RAM (m3.medium) to 32 vCPU with 60Gb RAM
(c3.8xlarge). The next major release of Box will expand to support a larger range,
from 1 vCPU with 1Gb RAM through 32-40 vCPU with 160-244Gb RAM.

The downside is that while the compute nodes and the installed tools are open-
source and free (“libre, as in software”), running the EC2 instances themselves is
not free (“gratis, as in beer”). Nonetheless, cloud-based computing now enables re-
searchers to spend their hardware budget on an as-needed basis, and scale their exper-
imentation accordingly, rather than paying upfront to purchase, set up, and maintain
a fixed physical cluster. As such, working on Box (or EC2 in general) can yield higher
experimental throughput for a fixed budget.

Box itself comes with many SMT tools pre-installed, with the goal of enabling im-
mediate productivity and lowering the barrier to entry. Furthermore, rather than set-
ting up the complete pipeline for one MT toolkit, as do most research labs, Box comes
with both the Moses (Koehn et al., 2007) and cdec (Dyer et al., 2010) pipelines, as well
as compatible tools: fast_align (Dyer et al., 2013), mgiza (Gao and Vogel, 2008), kenlm
(Heafield, 2011), and Jonathan Clark’s ducttape. We will shortly include Joshua (Li
et al., 2009), as well as other MT tool suites. By doing so, we hope to enable head-
to-head comparisons of MT tools as well as mixing-and-matching. This provides a
reason to avoid parallel development, and reducing duplicated effort.

Box also includes other non-core MT tools to stimulate exploration. This release
includes multeval (Clark et al., 2011), rnnlm (Mikolov et al., 2010), and word2vec
(Mikolov et al., 2013), with the intent to expand the list shortly. There are many open-
source tools that each perform one NLP-related task well, such as speech recognition,
optical character recognition, text-to-speech, dialog systems, and so on. However,
there are few end-to-end open-source multilingual systems available for desirable
tasks such as translating visual input from a smartphone camera, spoken announce-
ments in subway stations, or dialog in real-time. We hope that by providing easy
access to available components, we can accelerate progress.

2. Case Study

Box was intended from the beginning to be used by researchers without sufficient
computational resources to work effectively. Lacking access to a cluster, the experi-
mental results in our dissertation (Axelrod, 2014) were originally scoped for a single
4-core desktop machine. However, that allowed training only one or two MT sys-
tems per week; not conducive to training a thousand systems and graduating effi-
ciently. We therefore architected a workflow to use Amazon’s Elastic Compute Cloud

28

Amittai Axelrod Box: A Cloud-Based Research Platform for MT and NLP (27–38)

to mimic a traditional filesystem and cluster. For financial reasons, we also priori-
tized not leaving machines idle.1 This workflow is independent of Box itself: each
Box instance is also designed to be launched and used as a standalone development
machine. What follows is only one possible way of using Box.

2.1. Instance Specifications

We primarily used three sizes of general-purpose Amazon EC2 instances. Specs
for the current generation of instances are listed in Table 1.2 It is worth mentioning that
instance pricing appears to decrease slightly over time. A medium instance suffices for
training a Moses system on TED-sized data (150k sentence pairs) in a few hours, for
a negligible cost. A medium instance can also be used to run just the Moses decoder
using translation models that have been filtered down to match a particular test set.
A large instance is suitable for training up to around 1.5M sentence pairs, or most of
Europarl, in under a day. For larger corpora we used the xlarge instance type, and
found that the extra cores meant that 2M sentences trained faster on an xlarge than
1M on a large.

Name vCPU Memory (GB) Hourly Cost
m3.medium 1 3.75 $0.067
m3.large 2 7.5 $0.133
m3.xlarge 4 15 $0.266

Table 1. Basic Amazon EC2 instance specifications.

2.2. Workflow

The Amazon Elastic Compute Cloud can be used effectively while only running
the smallest (and cheapest) possible machine (a *.micro instance) full-time. The clus-
ter nodes – termed EC2 instances – cost more, and thus are launched for particular
experiments and terminated immediately afterward. The micro instance (the home in-
stance) is a regular Linux machine, not a Box clone, and it acts as a gateway machine.
The home instance is the white box in the upper right of Figure 1.

The home instance has a very large storage volume attached (volumes are only
accessible if they are mounted to a running instance). This large volume, shown as a
large circle in the lower right of Figure 1, acts as central filesystem storage for corpora

1 If money is no object, then one could launch 20 EC2 instances, and run them year-round without
worrying about idle nodes. However, it is likely cheaper to buy the hardware and hire a sysadmin.

2A Box instance costs 10% more to use per hour than a bare-bones instance, but all other Amazon fees
for data transfer and storage are unchanged.

29

PBML 104 OCTOBER 2015

and experimental results. This avoids the need to upload or download large amounts
of data to the Box instances. Amazon charges users to transfer data, and transferring
data between EC2 instances is faster and cheaper than between EC2 and the non-
Amazon world. As such, it is more efficient to transfer all data at once.

Corpora that are going to be passed to multiple Box instances should be stored in a
data snapshot (shown as the grey circle in the lower left of Figure 1). This snapshot can
then be cloned into new volumes for each experimental node. These cloned volumes
are the white circles in the middle of Figure 1.

Amazon Machine Images (the AMI is the grey box in the upper left of Figure 1) are
snapshots of computers. The AMI is used to launch new machines called instances,
which are the white boxes in the middle of Figure 1. While the instances can have dif-
ferent hardware configurations, they all have the same installed software and setup.

Volume 
1

Instance 
1

Instance 
2

Volume 
2

Instance 
3

Volume 
3

Home  
Instance

Central 
Storage

AMI

Data

Volume 
1

Instance 
1

Instance 
2

Volume 
2

Instance 
3

Volume 
3

Home  
Instance

Central 
Storage

AMI

Data

Figure 1. (Left) Launching instances from an AMI and cloning storage volumes from a
data snapshot. (Right) After the jobs finish, experimental output is stored on the

volume attached to each node.

The new volumes are attached to the new instances, and the experiments are run.
Box instances are configured to be ordinary (yet powerful) computers, so experimen-
tation can either be done by manually logging in to each instance and issuing com-
mands in a normal session, or via writing the entire experiment as a single shell script
and then executing the job on the Box instance. After the jobs finish, we store the ex-
perimental output on the volume attached to each node. The results are illustrated as
grey content on the white data volumes in Figure 1. Having each instance work in a
directory on an attached volume protects the results from accidental termination of
the instance, which deletes all data stored on the instance itself. It is also a cost-saving

30

Amittai Axelrod Box: A Cloud-Based Research Platform for MT and NLP (27–38)

measure, as some cheap instances have little disk space included, and an additional
volume is much cheaper than a larger instance.3

The experimental results are copied from the attached volumes to the central stor-
age volume, and then the instances are killed and the volumes deleted, as shown in
Figure 2.

Volume 
1

Instance 
1

Instance 
2

Volume 
2

Instance 
3

Volume 
3

Home  
Instance

Central 
Storage

AMI

Data

Volume 
1

Instance 
1

Instance 
2

Volume 
2

Instance 
3

Volume 
3

Home  
Instance

Central 
Storage

AMI

Data

Figure 2. (Left) Experimental output is copied from each instance to central storage.
(Right) All instances and attached volumes are deleted.

2.3. Reproducibility

We used the first (alpha) version of Box for all of the dissertation experiments, run
over a two year span. While revising the final document, we were able to re-run exper-
iments from 18 months prior and compare against newer work. This reproducibility
is difficult to achieve even when a researcher has complete control of their develop-
ment environment, as once tools are updated they are rarely rolled back even if they
could be. With Box this is easy, as the development environment can be updated as
needed, but older versions remain frozen yet in running order.

3. Signing up for the Elastic Compute Cloud

To work on the Amazon Web Services cloud, users need: an Amazon.com account,
a telephone number (for account confirmation), and a method of payment and billing
address. There is no charge to set up an account, and there is a year-long free usage tier

3 One gigabyte-month of storage costs less than one compute-hour.

31

PBML 104 OCTOBER 2015

for new customers. There are how-to videos4 for creating an AWS account, launching
instances, and more.

3.1. Setup process

The setup process5 must be done only once, and is as follows:
1. Make an AWS account.

Visit aws.amazon.com, click “sign up”,6 and fill out the forms as instructed.
2. Create AWS security keys (optional).

These are for using the command-line interface to the AWS account instead
of the browser. They are not necessary if the user is prefers to use only the
browser’s GUI console to launch and manage their cluster usage. The names
”Access Key” and ”Secret Access Key” as used by Amazon may be confusing.
They are simply a username/password pair that can be changed independently
of the AWS account name and password. The keys can be generated from the
Identity and Access Management (IAM) console, via User Actions → Manage
Access Keys → Create Access Key7.

3. Get SSH keys.
This is a standard RSA keypair, necessary to log into EC2 instances. It is created
via the EC2 console (https://console.aws.amazon.com/ec2/), under Navigation →
Network & Security → Key Pairs.8 The private key will automatically download
– only once! – as a *.pem file. Failing to save the private key will render the ssh
keypair useless and the process must be repeated. 9

The private key must have specific file permissions, and set as follows:
chmod 400 $PRIVATE_SSH_KEYFILE

3.2. A Note on EC2 and Geography

Amazon’s Elastic Compute Cloud is hosted in several locations around the globe,
forming independent sets of resources. Regions are top-level geographical distinctions

4 Video guides: http://aws.amazon.com/getting-started/
5 Setup guide: http://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-set-up.html
6 Or go directly to https://portal.aws.amazon.com/gp/aws/developer/registration/index.html

7 IAM Console: https://console.aws.amazon.com/iam/home?#home
See http://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-set-up.html#cli-signup

8Creating SSH keys:
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html#having-ec2-create-your-key-pair

9Note that the Amazon documentation refers to the SSH private key file as my-key-pair.pem. This im-
plies the existence of an keypair called my-key-pair, but the my-key-pair.pem file contains only the private
key and not the public one! This is not necessarily what might be expected. To avoid confusion, we refer
to the keypair as $SSH_KEYPAIR and the private key file as $PRIVATE_SSH_KEYFILE, with the understanding
that $PRIVATE_SSH_KEYFILE = "$SSH_KEYPAIR.pem".

32

aws.amazon.com
https://console.aws.amazon.com/ec2/
http://aws.amazon.com/getting-started/
http://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-set-up.html
https://portal.aws.amazon.com/gp/aws/developer/registration/index.html
https://console.aws.amazon.com/iam/home?#home
http://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-set-up.html#cli-signup
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html#having-ec2-create-your-key-pair

Amittai Axelrod Box: A Cloud-Based Research Platform for MT and NLP (27–38)

(e.g. “U.S. East”, “South America”). By default, nothing is replicated across multiple
regions, but any user can access any region regardless of where they are located, so
the current version of Box is available only in the us-east-1 region.The primary dif-
ferences between EC2 regions are latency, and resource cost10.

Availability Zones are subdivisions within a single EC2 Region, and named accord-
ingly (e.g. us-east-1a, us-east-1b). By default Amazon will load-balance the avail-
ability zones, resulting in some instances launching in one availability zone, and some
in another. It can be useful to have everything within a single availability zone to en-
sure complete interoperability, particularly if volumes will be each attached to and
detached from multiple instances. The examples in this work assume the user is us-
ing the AWS us-east-1 region and the us-east-1a availability zone, regardless of
where in the world the user is physically located. The us-east-1 region is required
for the current release of Box, but can be changed to adapt the instructions to other
AMIs. The choice of availability zone here is arbitary, and can be set at whim.

4. Signing up for Box

Accessing a community-made paid AMI such as Box requires first adding the as-
sociated product to the user’s account.11 This can be used to grant access to a num-
ber of related AMIs at once. At present there is only one Box AMI (ami-1d678876,
v2015.05.26) in the product, but each future release will be a separate AMI. This en-
sures perfect reproducibility, as new Box AMIs provide expanded and updated re-
search tools, but previous Box releases remain static and accessible. An experiment
done once on a fresh Box instance can always be done on an instance of that Box.12

Amazon does the association of AWS account to Box product via a purchase for
$0.00. As such, users are asked to confirm the payment method and shipping address
from their AWS signup, though nothing is charged and nothing will be shipped. The
link to sign up for Box is here: https://portal.aws.amazon.com/gp/aws/user/subscription/
index.html?offeringCode=49B2A70F. Signing up for Box is free (as in beer). Only the ac-
tual use of Box incurs charges. If accessing other virtual machines on EC2, the cost-
conscious researcher should note that other AWS EC2 products may have upfront fees
or monthly charges in addition to (or instead of) usage costs.

10 The us-east-1 region has historically been the cheapest.
11 Ironically, the Amazon server that handles these transactions is slow, and each page takes 30 seconds

to load. Fortunately this process needs to be done only once.
12 As long as the underlying Linux distribution of the Box (or any) AMI remains compatible with the

hardware used by EC2. At present this is not an issue. All releases of the Amazon Linux AMI (since it exited
Beta in 2011) are still runnable, even the 32-bit ones, indicating Amazon intends to preserve compatibility.

33

https://portal.aws.amazon.com/gp/aws/user/subscription/index.html?offeringCode=49B2A70F
https://portal.aws.amazon.com/gp/aws/user/subscription/index.html?offeringCode=49B2A70F

PBML 104 OCTOBER 2015

5. Basic AWS EC2 Operations

Few commands are necessary to use EC2 as a research resource, whether with Box
or some other virtual machine. It is useful to know how to:

1. Launch a new instance from an existing Amazon Machine Image (AMI)
2. Create a new disk volume (optionally from a snapshot of an existing volume)
3. Attach a volume to an instance
4. Delete a volume
5. Terminate an instance
Of these, only launching and terminating instances are requirements. Being able

to create, delete, and attach new volumes13 is helpful for cloning disk volumes that
already contain corpora, so as to avoid having to copy data over every time.

5.1. AWS EC2 Web Console

All of the instance management for EC2 can be done from the AWS EC2 console
in a web browser14 (Chrome, Firefox, Internet Explorer, and Safari are supported).

5.1.1. Launching a new Box instance via the console

The easiest method of launching a new instance is to use right-click on a run-
ning instance and select “Launch another instance like this one”. The second-easiest
method is to bookmark the URL of the launch wizard for a new Box instance:
https://console.aws.amazon.com/ec2/v2/home?region=us-east-1#LaunchInstanceWizard:ami=ami-1d678876

The wizard presents the user with a series of steps:

Instance Type: For building SMT systems, it is important to pick an instance with
enough memory for the size of the training corpus. Many configuration options can
be found by scrolling down; greyed-out machine types are not available.15

Configure Instance The VPC (Virtual Private Cloud) network type is the default op-
tion and easiest for new users. Any availability zone will work, but creating all instances
and volumes in the same zone is best (see Section 3.2). Monitoring is not useful.16

13 Volumes detach automatically when the instance they are mounted on is terminated.
14 EC2 Console: https://console.aws.amazon.com/ec2/v2/home
15 Complete list of EC2 instance types: https://aws.amazon.com/ec2/instance-types/

Complete list of EC2 instance prices: https://aws.amazon.com/ec2/pricing/
16Monitoring tracks instance state, such as uptime of a customer-facing webservice, but increases costs.

34

https://console.aws.amazon.com/ec2/v2/home?region=us-east-1#LaunchInstanceWizard:ami=ami-1d678876
https://console.aws.amazon.com/ec2/v2/home
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/pricing/

Amittai Axelrod Box: A Cloud-Based Research Platform for MT and NLP (27–38)

Additional Storage Some instance types do not include much disk space. Disk is
cheap, so it is easy to add any desired amount. However, all of this storage is deleted
when the instance is terminated. A useful alternative is to not add additional storage
to the instance directly, and instead create a new EC2 disk volume with plenty of space
and attach it to the instance (see Sections 5.1.2 and 5.1.3). This prevents accidentally
losing data or experimental results when the instance is terminated.

Tag Instance It can be difficult to differentiate instances (and attach a volume to the
correct one, for example) when many are running. Unlike nodes in a regular cluster,
each instance can be given a tag to indicate the experiment or process that is running
on it. Prepending the date to the instance labels (e.g. “150524 building Box beta”) can
help keep the list of instances sorted.

Security Group Box instances are a good way to work on restricted or sensitive
datasets, as corpora can be kept completely separate from other clients’ or users’ data.
That being said, while crucial in fixed-location or long-duration applications, security
settings are less important for a machine that will be terminated sooner rather than
later. The default of “all ports, all sources” is good enough for casual users logging
in with ssh -i $PRIVATE_SSH_KEY.pem. Diligent users can restrict access to port 22
(SSH) only, or permit only a particular port from a particular IP address.

After Launch The final step is to launch the instance and log in. See Section 5.3.

5.1.2. Creating a new storage volume via the console

The AWS console’s sidebar has a section titled “Elastic Block Store”. Clicking
“Volume” → “Create Volume” will pop up a small wizard for making a new vol-
ume that will exist independently of any instances. For Type, “General Purpose SSD”
will suffice. Select the size as needed, and the Availability Zone to match other in-
stances and volumes already created. To clone a volume that already contains the
desired corpora or models, enter the Snapshot ID. If the volume created is larger than
the snapshot it is created from, then the volume will need to be resized with sudo
resize2fs after it is attached to a running instance.

5.1.3. Attaching a volume to a running Box instance via the console

Independent storage volumes must be attached to – and then mounted on – run-
ning instances in order to be accessed. In the Volumes view of the EC2 Console, right-
clicking any Volume ID produces a menu with the option to Attach Volume. Enter
the target instance (the instance name tags from Section 5.1.1 are useful here). Note
that the instance must be in the same Availability Zone. The last option is to select

35

PBML 104 OCTOBER 2015

a Linux device name for the volume. Single-use instances can generally be expected
to have only one attached volume, so attaching all volumes to the same location (e.g.
/dev/xvdf) allows all instances to run the same setup scripts. After attaching the vol-
ume, it must be mounted. This is done with sudo mount after logging in to the
instance.

5.1.4. Deleting a volume

The same right-click menu on a Volume ID contains an option to Delete Volume.
This should only be done after copying all experimental output off of the volume.

5.1.5. Terminating a Box instance via the console

The EC2 Console includes an Instances view, selectable via the sidebar. Right-
clicking any Instance ID shows a menu which includes an option to Terminate Instance.
This kills the instance immediately, deletes everything stored on the instance. Any
attached volumes are unmounted and detached, and their contents are preserved.17

5.2. The Command Line Interface

Experienced researchers may appreciate being able to script these interactions via
the Amazon Web Services Command Line Interface (AWS CLI) tool. The AWS CLI
tool is itself released18 under the Apache 2.0 licence, making it compatible with both
derivative commercial works and the open source community. A detailed guide to
using the AWS CLI for managing instances can be found on our website.

5.3. Logging in to a Box Instance

All EC2 instances take 2-5 minutes to boot after launch. After the instance finishes
booting, its status will change to green in the console. The next step in using Box is to
access the instance. Either its public IP address or DNS name, found by clicking on
the instance in the EC2 Instances view, can be used to log in. The default username is
ec2-user, thus:

ssh -i $PRIVATE_SSH_KEYFILE ec2-user@$IP_ADDRESS
Once the user is logged in to the instance, there are some optional steps to finish

the instance setup. The first is to add some swap space, as by default there is none:
sudo dd if=/dev/zero of=/media/ephemeral0/swapfile bs=3M count=1024
sudo mkswap /media/ephemeral0/swapfile
sudo swapon /media/ephemeral0/swapfile
sudo swapon -s

17This is the advantage of using attached volumes when working on EC2 instances.
18 AWS Git repo: https://github.com/aws/aws-cli

36

https://github.com/aws/aws-cli

Amittai Axelrod Box: A Cloud-Based Research Platform for MT and NLP (27–38)

The second step is to mount any attached volumes:
mkdir -p ~/exp/
sudo mount /dev/xvdf ~/exp/
sudo resize2fs /dev/xvdf

Recall the suggestion that for ease of management, all volumes attached as in Section
5.1.3 be labeled /dev/xvdf. These commands can then be placed at the beginning of
every experiment script and run automatically on all instances.

The Box instance is now ready for use.

6. Collaborating with Box

Multiple users can share a single Box instance. For a quick look around on an in-
stance (e.g. to help debug a lab project on a student’s Box), the $PRIVATE_SSH_KEYFILE
file can be shared with the instructor. As the default username is the same for each
EC2 instance (ec2-user), this is a very fast and simple way of sharing access to an in-
stance. However, this presumes a trusted relationship already exists between the two
parties. Sharing keys is otherwise anti-recommended for semi-permanent instances
open to the outside world, or where multiple users’ work may collide.

For longer or more formal collaborations, it is better to add new users. All Box
instances are Linux machines with sudo privileges for the main user, so this can be
done at will.19 Each new user has their own private ssh key, and can log in separately
just like any other server. The advantage, of course, is that granting access to a shared
research instance does not involve granting access to an entire filesystem within the
users’ organizations. In this way it is possible for researchers to collaborate across
institutional (or academic/industry) administrative boundaries, or to teach an online
course to students who are not formally enrolled in the instructors’ department.

7. Conclusion

The current release of Box provides access to a state-of-the-art research and devel-
opment environment to both experienced and new researchers alike. Box runs on the
Amazon Elastic Compute Cloud, so it can be used to provide computational resources
to those who have none, or to supplement an existing cluster. Standard open-source
toolkits for machine translation and natural language processing are pre-installed on
Box, putting any user in the position to start work immediately. This enables students,
researchers, and developers to contribute to the field without being limited by their
computational resources at hand. By this mechanism we hope to substantially lower
the barrier to entry for the field of NLP.

19Adding users: http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/managing-users.html

37

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/managing-users.html

PBML 104 OCTOBER 2015

Acknowledgements

The author appreciates the early encouragement of Achim Ruopp, who made the
first Moses installation for EC2.

Bibliography

Axelrod, Amittai. Data Selection for Statistical Machine Translation. PhD thesis, University of
Washington, 2014.

Clark, Jonathan H, Chris Dyer, Alon Lavie, and Noah Smith. Better Hypothesis Testing for
Statistical Machine Translation : Controlling for Optimizer Instability. ACL (Association for
Computational Linguistics), 2011.

Dyer, Chris, Adam Lopez, Juri Ganitkevitch, Jonathan Weese, Ferhan Ture, Phil Blumson, Hen-
dra Setiawan, Vladimir Eidelman, and Philip Resnik. cdec: A Decoder, Alignment, and
Learning Framework for Finite-State and Context-Free Translation Models. ACL (Associa-
tion for Computational Linguistics) Interactive Poster and Demonstration Sessions, 2010.

Dyer, Chris, Victor Chahuneau, and Noah A Smith. A Simple, Fast, and Effective Reparameter-
ization of IBM Model 2. NAACL (North American Association for Computational Linguistics),
2013.

Gao, Qin and Stephan Vogel. Parallel Implementations of Word Alignment Tool. Software En-
gineering, Testing, and Quality Assurance for Natural Language Processing, 2008.

Heafield, Kenneth. KenLM : Faster and Smaller Language Model Queries. WMT (Workshop on
Statistical Machine Translation), 2011.

Koehn, Philipp, Alexandra Birch, Chris Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Christine Moran, Chris Dyer, Alexandra Constantin, and Evan Herbst.
Moses: Open Source Toolkit for Statistical Machine Translation. ACL (Association for Com-
putational Linguistics) Interactive Poster and Demonstration Sessions, 2007.

Li, Zhifei, Chris Callison-Burch, Chris Dyer, Juri Ganitkevitch, Sanjeev Khudanpur, Lane
Schwartz, Wren N G Thornton, Jonathan Weese, and Omar F Zaidan. Joshua: An Open
Source Toolkit for Parsing-based Machine Translation. WMT (Workshop on Statistical Ma-
chine Translation), 2009.

Mikolov, T, M Karafiat, L Burget, J Cernocky, and S Khudanpur. Recurrent Neural Network
based Language Model. INTERSPEECH, 2010.

Mikolov, Tomas, Quoc V Le, and Ilya Sutskever. Exploiting Similarities among Languages for
Machine Translation. arXiv preprint arXiv:1309.4168v1, 2013.

Address for correspondence:
Amittai Axelrod
amittai.box@gmail.com
4423 Lehigh Rd #666,
College Park, MD 20740, USA

38

The Prague Bulletin of Mathematical Linguistics
NUMBER 104 OCTOBER 2015 39–50

Sampling Phrase Tables for the
Moses Statistical Machine Translation System

Ulrich Germann
University of Edinburgh

Abstract
The idea of virtual phrase tables for statistical machine translation (SMT) that construct

phrase table entries on demand by sampling a fully indexed bitext was first proposed ten years
ago by Callison-Burch et al. (2005). However, until recently (Germann, 2014) no working and
practical implementation of this approach was available in the Moses SMT system.

We describe and evaluate this implementation in more detail. Sampling phrase tables are
much faster to build and are competitive with conventional phrase tables in terms of translation
quality and speed.

1. Introduction

Phrase-based statistical MT translates by concatenating phrase-level translations that
are looked up in a dictionary called the phrase table. In this context, a phrase is any
sequence of consecutive words, regardless of whether or not it is a phrase from a
linguistic point of view. In addition to the translation options for each phrase, the table
stores for each translation option a number of scores that are used by the translation
engine (decoder) to rank translation hypotheses according to a statistical model.

In the Moses SMT system, the phrase table is traditionally pre-computed as shown
in Fig. 1. First, all pairs of phrases up to an arbitrary length limit (usually between 5
and 7 words), and their corresponding translations are extracted from a word-aligned
parallel corpus, using the word alignment links as a guide to establish translational
correspondence between phrases. Phrase pairs are scored both in the forward and
backward translation direction, i.e., p (target | source) andp (source |target), respectively.
Computing these scores is traditinally done by sorting the lists on disk first to facili-

© 2015 PBML. Distributed under CC BY-NC-ND. Corresponding author: ugermann@inf.ed.ac.uk
Cite as: Ulrich Germann. Sampling Phrase Tables for the Moses Statistical Machine Translation System. The
Prague Bulletin of Mathematical Linguistics No. 104, 2015, pp. 39–50. doi: 10.1515/pralin-2015-0012.

http://creativecommons.org/licenses/by-nc-nd/3.0/

PBML 104 OCTOBER 2015

..word-aligned bitext (parallel corpus).

extract phrase pairs

.

phrase pair list
source ||| target ||| alignment ||| ...

.

phrase pair list
target ||| source ||| alignment ||| ...

.

invert

.

sorted & scored phrase table half
source ||| target ||| alignment ||| ...

.

scored & reverted phr. table half
target ||| source ||| alignment ||| ...

.

sort & score

.

sort, score & revert

.

full phrase table (text format)
source ||| target ||| fwd. & bwd. scores ||| ...

.

scored & sorted phrase table half
source ||| target ||| bwd. scores ||| ...

.

merge

.

sort

.

merge

.

pruned phrase table
source ||| target ||| fwd. & bwd. scores ||| internal word alignment ||| ...

.

binary phrase table

.

prune

.

binarise

Figure 1. Conventional Phrase Table Construction

tate the accumulation of marginals.This approach requires sorting the list of extracted
phrase pairs at least twice: once to obtain joint and marginal counts for estimation of
the forward translation probabilities, and once to calculate the marginals for the back-
ward probabilities. In practice, forward and backward scoring take place in parallel,
as shown in Figure 1.

The resulting phrase tables often have considerable levels of noise, due to mis-
aligned sentence pairs or alignment errors at the word level. Phrase table pruning
removes entries of dubious quality. Even with pruning, conventional phrase tables
built from large amounts of parallel data are often too large to be loaded and stored
completely in memory. Therefore, various binary phrase table implementations were
developed in Moses over the years, providing access to disk-based data base structures
(Zens and Ney, 2007)1 or using compressed representations that can be mapped into
memory and “unpacked” on demand (Junczys-Dowmunt, 2012).

1The original implementation by R. Zens (PhraseDictionaryBinary) has recently been replaced in Moses
by PhraseDictionaryOnDisk (H. Huang, personal communication).

40

U. Germann Sampling Phrase Tables for Moses (39–50)

Due to the way they are built, conventional phrase tables for Moses are fundamen-
tally static in nature: they cannot be updated easily without repeating the entire costly
creation process.

2. Phrase tables with on-demand sampling

7 suffix array
10 suffixarr ay
3 su ffixarray
4 suf fixarray
5 suff ixarray
9 suffixar ray
8 suffixa rray
1 suffixarray
2 s uffixarray
6 suffi xarray

11 suffixarra y

Figure 2. Letter-based
suffix array over the word

‘suffixarray’

As an alternative to pre-computed phrase tables, Callison-
Burch et al. (2005) suggested the use of suffix arrays (Man-
ber and Myers, 1990) to index the parallel training data
for full-text search, and to create phrase table entries on
demand at translation time, by sampling in the bitext oc-
currences of each source phrase in question, extracting
counts and statistics as necessary.

A suffix array over a corpus ⟨w1, . . . ,wn⟩ is an array
⟨1 . . . n⟩ of all token positions in that corpus, sorted in lex-
icographic order of the token sequences that start at the
respective positions. Figure 2 shows a letter-based suffix
array over the word ‘suffixarray’. For bitext indexing for
MT, we index at the word level.

Given a suffix array and the underlying corpus, we can
easily find all occurrences of a given search sequence by performing a binary search
in the array to determine the first item that is greater or equal to the search sequence,
and a second search to find the first item that is strictly greater. Every item in this sub-
range of the array is the start position of an occurrence of the search sequence in the
corpus. From this pool of occurrences, we extract phrase translations for a reasonably
large sample using the usual phrase extraction heuristics.

Lopez (2007, 2008) explored this approach in detail in the context of hierarchical
phrase-based translation (Chiang, 2007). Schwartz and Callison-Burch (2010) imple-
mented Lopez’s methods in the Joshua decoder (Li et al., 2009). Suffix array-based
translation rule extraction is also used in cdec (Dyer et al., 2010). However, until re-
cently (Germann, 2014), no efficient, working implementation of sampling phrase ta-
bles was available in the Moses decoder. The purpose of this article is to document this
implementation in detail, and to present results of empirical evaluations that demon-
strate that sampling phrase tables are an attractive, efficient, and competitive alterna-
tive to conventional phrase tables for phrase-based SMT.

The apparent lack of interest in sampling phrase tables in the phrase-based SMT
community may have been partly due to the fact that naïve implementations of the
approach tend perform worse than conventional phrase tables. To illustrate this point,
we repeat in Table 1 the results of a comparison of systems from Germann (2014). Sev-
eral German-to-English systems were constructed with conventional and sampling
phrase tables. All systems were trained on ca. 2 million parallel sentence pairs from
Europarl (Version 7) and the News Commentary corpus (Version 9), both available

41

PBML 104 OCTOBER 2015

method low high median mean 95% conf.
intervala runs

1 precomp., Kneser-Ney smoothing 18.36 18.50 18.45 18.43 17.93 – 18.95 10
2 precomp., Good-Turing smoothing 18.29 18.63 18.54 18.52 18.05 – 19.05 10
3 precomp., Good-Turing smoothing, filteredb 18.43 18.61 18.53 18.53 18.04 – 19.08 10
4 precomp., no smoothing 17.86 18.12 18.07 18.05 17.58 – 18.61 10
5 max. 1000 smpl., no sm., no bwd. prob. 16.70 16.92 16.84 16.79 16.35 – 17.32 10
6 max. 1000 smpl., no sm., with bwd. prob. 17.61 17.72 17.69 17.68 17.14 – 18.22 8
7 max. 1000 smpl., α = .05, with bwd. prob.c 18.35 18.43 18.38 18.38 17.86 – 18.90 10
8 max. 1000 smpl., α = .01, with bwd. prob. 18.43 18.65 18.53 18.52 18.03 – 19.12 10
9 max. 0100 smpl., α = .01, with bwd. prob. 18.40 18.55 18.46 18.46 17.94 – 19.00 10

table adapted from Germann (2014)a computed via bootstrap resampling for the median system in the group.
b top 100 entries per source phrase selected according to p (t | s).
c α: one-sided confidence level of the Clopper-Pearson confidence interval for the observed counts.

Table 1. B scores (de → en) with different phrase score computation methods.

from the web site of the 2014 Workshop on Statistical Machine Translation (WMT).2 They
were tuned on the NewsTest 2013 data set, and evaluated on the NewsTest 2014 data
set from the Shared Translation Tasks at WMT-2013 and WMT-2014, respectively. The
systems differ in the number of feature functions used (with and without backwards
phrase-level translation probabilities) and smoothing methods applied. No lexical-
ized reordering model was used in these experiments.

Each system was tuned 8-10 times in independent tuning runs with Minimum
Error Rate Training (MERT; Och, 2003). Table 1 shows low, high, median, and mean
scores over the multiple tuning runs for each system.

The first risk in the use of sampling phrase tables is that it is tempting to forfeit the
backwards phrase-level translation probabilities in the scoring. The basic sampling
and phrase extraction procedure produces source-side marginal and joint counts over
a sample of the data, but not the target-side marginal counts necessary to compute
p (source | target). These backwards probabilities are, however, important indicators
of phrase-level translation quality, and leaving them out hurts performance, as illus-
trated by a comparison of Lines 2 and 5 in Tab. 1 (standard setup vs. naïve implemen-
tation of the sampling approach without backward probabilities and smoothing).

While it is technically possible to “back-sample” phrase translation candidates by
performing the sampling and gathering of counts inversely for each phrase translation
candidate, this would greatly increase the computational effort required at translation
time, and slow down the decoder. A convenient and effective short-cut, however,
is to simply scale the target-side global phrase occurence counts of each translation

2http://www.statmt.org/wmt14/translation-task.html#download

42

http://www.statmt.org/wmt14/translation-task.html#download

U. Germann Sampling Phrase Tables for Moses (39–50)

candidate by the proportion of sample size to total source phrase count:

p (source | target) ≈ joint phr. count in sample
total target phr. count · total source phr. count

of source phr. sampled (1)

As Line 6 in Tab. 1 shows, this method narrows the performance gap between con-
ventional systems and sampling phrase tables, althout it does not perform as well as
“proper” computation of the backwards probabilities (cf. Line 4 in the table).

The second disadvantage of the sampling approach is that it cannot use the stan-
dard smoothing techniques used to compute smoothed phrase table scores in con-
ventional phrase tables, i.e. Good-Turing or Kneser-Ney, as these require global in-
formation about the phrase table that is not available when sampling. The results in
Lines 4 and 6 (vs. Line 2) confirm the finding by Foster et al. (2006) that phrase table
smoothing improves translation quality.

One particular problem with maximum likelihood (ML) estimates in the context
of translation modeling is the over-estimatation of the observations in small samples.
The smaller the sample, the bigger the estimation error. Since the decoder is free
to choose the segmentation of the input into source phrases, it has an incentive to
pick long, rare phrases. The smaller sample sizes result in bigger over-estimation of
the true translation probabilities. This in turn leads to higher model scores, which is
what the decoder aims for. Alas, in this case higher model scores usually do not mean
higher translation quality — ML estimates introduce modelling errors. Smoothing
dampens this effect.

.....
50

.
100

.
150

.
200

.
250

.
300

.0 .

0.1

.

0.2

.

0.3

.

number of trials

.

lo
w
er

bo
un

d

.

. ..75% confidence interval

. ..90% confidence interval

. ..95% confidence interval

. ..99% confidence interval

Figure 3. Lower bound of binomial
confidence interval for success rate 1

3

In lieu of the established smoothing
techniques, we counteract the lure of
small sample sizes by replacing max-
imum likelihood estimates with the
lower bound of the binomial confidence
interval (Clopper and Pearson, 1934) for
the observed counts in the actual sam-
ple, at an appropriate level of confi-
dence.3 Figure 3 shows the “response
curve” of this method for a constant suc-
cess rate of 1/3, as the underlying sam-
ple size increases. In practice, a confidence level of 99% appears to be a reasonable
choice: in our German-to-English experiments, using the lower bound of the binomial
confidence interval at this level brought the BLEU performance of the system with a
sampling phrase table back to the level of decoding with a conventional phrase table
(cf. Line 8 vs. Line 2 in Tab. 1).

3An alternative is the use of additional features that keep track of quantized raw joint phrase counts,
e.g., how many phrase translations used in a translation hypothesis were actually observed at most once,
twice, three times, or more frequently (Mauser et al., 2007).

43

PBML 104 OCTOBER 2015

Another concern about sampling phrase tables is speed. After all, phrase extrac-
tion and assembly of phrase table entries on the fly do require more computation at
translation time. However, caching of entries once created as well as multi-threaded
sampling make the current implementation of sampling phrase tables in Moses very
competitive with their alternatives.

A comparision of translation times for a large French–English system with sam-
pling phrase tables vs. the compressed phrase tables of Junczys-Dowmunt (2012)
(CompactPT) is given in Tab. 3 (Sec. 7) below. CompactPT is the fastest phrase table
implementation available in Moses for translation in practice.

3. Lexicalised reordering model

Lexicalized reordering models improve the quality of translation (Galley and Man-
ning, 2008). Sampled lexicalised reordering models were not available for the work
presented in Germann (2014), but have been implemented since. Our sampling proce-
dure keeps track of the necessary information for hierarchical lexicalized reordering
(Galley and Manning, 2008) and communicates this information to the lexicalised re-
ordering model.

4. Dynamic updates

One special feature of the sampling phrase table implementation in Moses is that it al-
lows to add parallel text dynamically through an RPC call when moses is run in server
mode. This is useful, for example, when Moses serves as the MT back-end in an inter-
active post-editing scenario, where bilingual humans post-edit the MT output. Dy-
namic updates allow immediate exploitation of the newly created high-quality data
to improve MT performance on the spot.

To accommodate these updates, the phrase table maintains two separate bitexts:
the memory-mapped, static background bitext whose build process was just described,
and a dynamic foreground bitext that is kept entirely in-memory. The phrase table’s
built-in feature functions can be configured to compute separate scores for foreground
and background corpus, or to simply pool the counts. Details for use of this feature
are available in the Moses online documentation.4

5. Building and using sampling phrase tables in Moses

5.1. Moses compilation

Compile Moses as usual, but with the switch --with-mm:5
./bjam --with-mm --prefix=...

4http://www.statmt.org/moses
5Suffix-array based sampling phrase tables are scheduled to be included with the standard built soon.

44

http://www.statmt.org/moses

U. Germann Sampling Phrase Tables for Moses (39–50)

The binaries mtt-build, symal2mam, and mmlex-build will be placed in the same di-
rectory as the moses executable.

5.2. Binarizing the word-aligned parallel corpus

Binarisation converts the corpus from a text representation into large arrays of 32-bit
word IDs, and creates the suffix arrays. Word alignment information is also converted
from a text representation (symal output format) to a binary format. In addition, a
probabilistic word translation lexicon is extracted from the word-aligned corpus and
also stored in binary format. All files are designed to be mapped directly in to memory
for fast loading.

Let corpus be the base name of the parallel corpus. The tags src and trg are lan-
guage tags that identify the source and the target language. Normally, these tags are
mnemonic tags such as en, fr, de, etc.

• corpus.src is the source side of the corpus (one sentence per line, tokenized);
• corpus.trg is the respective target side in the same format;
• corpus.src-trg.symal is the word alignment between the two in the format pro-

duced by the symal word alignment symmetriser;
• /some/path/ is the path where the binarized model files will be stored. It must ex-

ist prior to running the binarizers. The path specification may include a file pre-
fix bname. for the individual file names, in which case /some/path/bname. should
be used instead of /some/path/ in all steps.

Binarisation consists of four steps, the first three of which can be run in parallel. The
Step 1: binarise source side: mtt-build < corpus.src -i -o /some/path/src
Step 2: binarise target side: mtt-build < corpus.trg -i -o /some/path/trg
Step 3: binarise word alignments

symal2mam < corpus.src-trg.symal /some/path/src-trg.mam
Step 4: produce a word lexicon for lexical scoring

mmlex-build corpus. src trg -o /some/path/src-trg.lex
Steps 1 and 2 will produce 3 files each: a map from word strings to word IDs and vice
versa (*.tdx), a file with the binarized corpus (*.mct), and the corresponding suffix
array (*.sfa). Steps 3 and 4 produce one file each (*.mam and *.lex, respectively).

5.3. Setting up entries in the moses.ini file

In the section [feature], add the following two entries.
LexicalReordering name=DM0 type=hier-mslr-bidirectional-fe-allff
Mmsapt name=PT0 lrfunc=DM0 path=/some/path/ L1=src L2=trg sample=1000

Note that the value of the path parameter must end in ‘/’ or ‘.’, depending on whether
it points to a directory or includes a file name prefix. The value of the parameter
lrfunc must match the name of the lexical reordering feature.

45

PBML 104 OCTOBER 2015

5.4. Setting up sampling phrase tables in EMS

In Moses’s Experiment Management System (EMS), the use of sampling phrase tables
can be specified by adding the following two lines to the EMS configuration file.

mmsapt = "sample=1000"
binarize-all = $moses-script-dir/training/binarize-model.perl

6. Configuring the phrase table

The phrase table implementation offers numerous configuration options. Due to space
constraints, we list only the most important ones here; the full documentation can be
found in the online Moses documentation at http://statmt.org/moses. All options
can be specified in the phrase table’s configuration line in moses.ini in the format
key=value. Below, the letter ‘n’ designates numbers in N, ‘f ’ floating point numbers,
and ‘s’ strings.

6.1. General Options

sample=n the maximum number of samples considered per source phrase.
smooth=f the “smoothing” parameter. A value of 0.01 corresponds to a 99% confi-

dence interval.
workers=n the degree of parallelism for sampling. By default (workers=0), all avail-

able cores are used. The phrase table implements its own thread pool; the gen-
eral Moses option threads has no effect here.

cache=n size of the cache. Once the limit is reached, the least recently used entries
are dropped first.

ttable-limit=n maximum number of distinct translations to return.
extra=s path to additional word-aligned parallel data to seed the foreground corpus

for use in an interactive dynamic scenario where phrase tables can be updated
while the server is running. This use case is explained in more detail in Germann
(2014).

6.2. Feature Functions

Currently, word-level lexical translation scores are always computed and provided.
Below we list some core feature scores that the phrase table can provide. A compre-
hensive list including experimental features is provided online at http://statmt.
org/moses.
pfwd=g[+] forward phrase-level translation probability. If g+ is specified, scores are

computed and reported separately for the static background and the dynamic
foreground corpus. Otherwise, the underlying counts are pooled.

pbwd=g[+] backwards phrase-level translation probability with the same interpre-
tation of the value specified as for pfwd.

46

http://statmt.org/moses
http://statmt.org/moses
http://statmt.org/moses

U. Germann Sampling Phrase Tables for Moses (39–50)

source sentence pairs French tokens English tokens
CommonCrawl 3.2 M 86 M 78 M
EuroParl 2.0 M 58 M 52 M
Fr–En Gigaword 21.4 M 678 M 562 M
News Commentary 0.2 M 6 M 5 M
UN 12.3 M 367 M 318 M
Total for TM training 39.1 M 1,185 M 1,016 M
News data for LM training 140.0 M 2,874 M

Table 2. Corpus statistics for the parallel WMT-2015 French-English training data.

lenrat={0|1} phrase length ratio score (off/on). Phrase pair creation is modelled as
a Bernoulli process with a biased coin: ‘heads’: produce a word in L1, ‘tails’:
produce a word in L2. The bias of the coin is determined by the ratio of the
lengths (in words) of the two sides of the training corpus. This score is the log
of the probability that the phrase length ratio is no more extreme (removed from
the mean) than observed.

rare=f rarity penalty: f
f+j

, where j is the phrase pair joint count. This feature is always
computed on the pooled counts of foreground and background corpus.

prov=f provenance reward: j
f+j

. This feature is always computed separately for fore-
ground and background corpus.

7. Performance on a large dataset
Table 3 shows build times and translation performance of two systems built with
the large French–English data set available for the WMT-2015 shared translation task
(cf. Tab. 2). The first system uses a pruned conventional phrase table binarized as a
compact phrase table (Junczys-Dowmunt, 2012) (tuning was performed with an un-
pruned, filtered in-memory phrase table); the other system uses a sampling phrase
table. The systems were tuned on 760 sentence pairs from the newsdiscussdev2015
development set and evaluated on the newsdiscusstest2015 test set.

For technical reasons, we were not able to run the build processes on dedicated
machines with identical specifications; build times reported are therefore only ap-
proximate numbers. To give the conventional phrase table construction process the
benefit of the doubt, the data binarization for the sampling phrase table was per-
formed on a less powerful machine (8 cores) than conventional phrase table construc-
tion (24-32 cores), although not all steps in the process can utilize multiple cores. Nev-
ertheless, even under these slightly unfair conditions the time savings of the sampling
approach are obvious. The translation speed experiments were performed with cube
pruning (pop limit: 1000) on the same 24-core machine with 148GB of memory, trans-
lating the test set of 1500 sentences (30,000 words) in bulk using all available cores on

47

PBML 104 OCTOBER 2015

conventional system sampling phrase tables
phrase table build time ≫ 20 hrs. ca. 1h 30m
Model features: total: 28 total: 18
• word penalty yes yes
• phrase penalty yes yes
• distortion distance yes yes
• language model 5-gram Markov model 5-gram Markov model
• TM: phrase transl. forward, backward forward, backward

w/ Good-Turing sm. lower bound of 99% conf. interv.
• TM: lexical transl. forward, backward forward, backward
• rare counts 6 bins: 1/2/3/4/6/10 rarity penalty
• lex. reord. model hierarchical-fe-mslr-all-ff hierarchical-fe-mslr-all-ff
• phrase length ratio no yes
Evaluation
(newsdiscusstest2015) 3 independend tuning runs

run BLEU 95% conf. interval
via boostrap resampling

#1 33.16 32.07 – 34.21
batch MIRA #2 33.42 32.42 – 34.52

#3 33.30 32.16 – 34.39
#1 32.19 31.15 – 33.13

MERT #2 32.93 31.90 – 34.08
#3 31.53 30.39 – 32.68

run BLEU 95% conf. interval
via boostrap resampling

#1 33.16 31.96 – 34.27
#2 32.89 31.74 – 34.04
#3 33.12 32.03 – 34.20
#1 34.25 33.11 – 35.37
#2 34.11 32.91 – 35.37
#3 33.80 32.69 – 34.90

translation speed
unpruned top30

threads 8 24
wrds./sec. (sec./wrd.) 13 (0.075) 547 (0.002)

snts./sec. (sec./snt.) 0.7 (1.498) 27 (0.037)
BLEU (best system) 33.42 33.55

sample=1000 sample=100
24 24

300 (0.003) 501 (0.002)
15 (0.067) 25 (0.040)

34.25 33.82

Table 3. Features used and translation performance for the WMT15 fr–en experiments.

the machine. Prior to the start of Moses, all model files were copied to /dev/null
to push them into the operating system’s file cache. Due to race conditions between
threads, we limited the number of threads to 8 for the legacy system with the un-
pruned phrase table.

Notice that in terms of BLEU scores, the two systems perform differently with
different tuning methods. The lower performance of MERT for the conventional sys-
tem with 28 features is not surprising: it is well known that MERT tends to perform
poorly when the number of features exceeds 20. That MIRA fares worse than MERT
for the sampling phrase tables may be due to a sub-optimal choice of MIRA’s meta-
parameters (cf. Hasler et al., 2011 for details on MIRA’s meta-parameters).

48

U. Germann Sampling Phrase Tables for Moses (39–50)

8. Conclusion

We have presented an efficient implementation of sampling phrase tables in Moses.
With the recent integration of hierarchical lexicalized reordering models into the ap-
proach, sampling phrase tables reach the same level of translation quality while ap-
proaching CompactPT in terms of speed. In addition, sampling phrase tables offer the
following advantages that make them an attractive option both for experimentation
and research, and for use in production environments:

• They are much faster to build.
• They offer flexibility in the choice of feature functions used. Feature functions

can be added or disabled without creating the need to re-run the entire phrase
table construction pipeline.

• They have a lower memory footprint. It is not necessary to filter or prune the
phrase tables prior to translation.

9. Availability

Sampling phrase tables are included in the master branch of Moses in the Moses github
repository at http://github.com/moses-smt/mosesdecoder.git.

Acknowledgements

This work was supported by the European Union’s Horizon 2020 research and
innovation programme (H2020) under grant agreements 645487 (MMT) and

645452 (QT21). It extends work supported by the EU’s Framework 7 (FP7) program un-
der grant agreements 287688 (MateCat), 287576 (CasMaCat), and 287576 (ACCEPT).

Bibliography

Callison-Burch, Chris, Colin Bannard, and Josh Schroeder. Scaling Phrase-Based Statistical
Machine Translation to Larger Corpora and Longer Phrases. In 43rd Annual Meeting of the
Association for Computational Linguistics (ACL ’05), pages 255–262, Ann Arbor, Michigan,
2005.

Chiang, David. Hierarchical Phrase-Based Translation. Computational Linguistics, 33(2):1–28,
2007.

Clopper, C.J. and E.S. Pearson. The use of confidence or fiducial limits illustrated in the case of
the binomial. Biometrika, 1934.

Dyer, Chris, Adam Lopez, Juri Ganitkevitch, Jonathan Weese, Ferhan Ture, Phil Blunsom, Hen-
dra Setiawan, Vladimir Eidelman, and Philip Resnik. cdec: A Decoder, Alignment, and
Learning Framework for Finite-State and Context-Free Translation Models. In Proceedings
of the ACL 2010 System Demonstrations, pages 7–12, Uppsala, Sweden, 2010.

49

http://github.com/moses-smt/mosesdecoder.git

PBML 104 OCTOBER 2015

Foster, George F., Roland Kuhn, and Howard Johnson. Phrasetable Smoothing for Statistical
Machine Translation. In EMNLP, pages 53–61, 2006.

Galley, Michel and Christopher D. Manning. A Simple and Effective Hierarchical Phrase Re-
ordering Model. In Proceedings of the 2008 Conference on Empirical Methods in Natural Language
Processing, pages 848–856, Honolulu, Hawaii, 2008.

Germann, Ulrich. Dynamic Phrase Tables for Machine Translation in an Interactive Post-editing
Scenario. In Proceedings of the Workshop on Interactive and Adaptive Machine Translation, pages
20–31, 2014.

Hasler, Eva, Barry Haddow, and Philipp Koehn. Margin Infused Relaxed Algorithm for Moses.
The Prague Bulletin of Mathematical Linguistics, 96:69–78, 2011.

Junczys-Dowmunt, Marcin. Phrasal Rank-Encoding: Exploiting Phrase Redundancy and
Translational Relations for Phrase Table Compression. Prague Bull. Math. Linguistics, 98:
63–74, 2012.

Li, Zhifei, Chris Callison-Burch, Chris Dyer, Sanjeev Khudanpur, Lane Schwartz, Wren Thorn-
ton, Jonathan Weese, and Omar Zaidan. Joshua: An Open Source Toolkit for Parsing-Based
Machine Translation. In Fourth Workshop on Statistical Machine Translation, pages 135–139,
Athens, Greece, 2009.

Lopez, Adam. Hierarchical Phrase-Based Translation with Suffix Arrays. In EMNLP-CoNLL,
pages 976–985, 2007.

Lopez, Adam. Machine Translation by Pattern Matching. PhD thesis, University of Maryland,
College Park, MD, USA, 2008.

Manber, Udi and Gene Myers. Suffix Arrays: A New Method for On-line String Searches. In
Proceedings of the First Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’90, pages
319–327, Philadelphia, PA, USA, 1990. ISBN 0-89871-251-3.

Mauser, Arne, David Vilar, Gregor Leusch, Yuqi Zhang, and Hermann Ney. The RWTH Ma-
chine Translation System for IWSLT 2007. In Proceedings of the International Workshop on
Spoken Language Translation (IWSLT), 2007.

Och, Franz Josef. Minimum Error Rate Training in Statistical Machine Translation. In Proceed-
ings of the 41st Annual Meeting of the Association for Computational Linguistics, pages 160–167,
Sapporo, Japan, 2003.

Schwartz, Lane and Chris Callison-Burch. Hierarchical Phrase-Based Grammar Extraction in
Joshua: Suffix Arrays and Prefix Trees. The Prague Bulletin of Mathematical Linguistics, 93:
157–166, 2010.

Zens, Richard and Hermann Ney. Efficient Phrase-Table Representation for Machine Transla-
tion with Applications to Online MT and Speech Translation. In Human Language Technology
Conference of the North American Chapter of the Association for Computational Linguistics (HLT-
NAACL ’07), pages 492–499, Rochester, New York, 2007.

Address for correspondence:
Ulrich Germann
ugermann@inf.ed.ac.uk
University of Edinburgh • 10 Crichton Street • Edinburgh, EH8 9AB, United Kingdom

50

The Prague Bulletin of Mathematical Linguistics
NUMBER 104 OCTOBER 2015 51–62

Grasp: Randomised Semiring Parsing

Wilker Aziz
Universiteit van Amsterdam

Abstract
We present a suite of algorithms for inference tasks over (finite and infinite) context-free sets.

For generality and clarity, we have chosen the framework of semiring parsing with support to the
most common semirings (e.g. F, V, k- and I). We see parsing from the more
general viewpoint of weighted deduction allowing for arbitrary weighted finite-state input and
provide implementations of both bottom-up (CKY-inspired) and top-down (E-inspired)
algorithms. We focus on approximate inference by Monte Carlo methods and provide imple-
mentations of ancestral sampling and slice sampling. In principle, sampling methods can deal
with models whose independence assumptions are weaker than what is feasible by standard
dynamic programming. We envision applications such as monolingual constituency parsing,
synchronous parsing, context-free models of reordering for machine translation, and machine
translation decoding.

1. Introduction

Many inference tasks in Natural Language Processing (NLP) involve operations
over weighted context-free sets of solutions. Typical examples are constituency pars-
ing and hierarchical Statistical Machine Translation (SMT). These weighted sets rep-
resent functions over large spaces of tree-structured solutions. We focus on cases
where these functions have a probabilistic interpretation and can be represented by
a weighted Context-Free Grammar (CFG). Common inference tasks involve finding
the solution which maximises the underlying function (optimisation), or the one which
minimises an expected loss (minimum Bayes risk, MBR), or the one that is marginally
optimum. Depending on the complexity of the underlying distribution, these decision
rules can be hard to compute. Particularly, in its most general form, the marginalisa-
tion problem is NP-complete (Sima’an, 1996). The MBR objective can also become

© 2015 PBML. Distributed under CC BY-NC-ND. Corresponding author: w.aziz@uva.nl
Cite as: Wilker Aziz. Grasp: Randomised Semiring Parsing. The Prague Bulletin of Mathematical Linguistics
No. 104, 2015, pp. 51–62. doi: 10.1515/pralin-2015-0013.

http://creativecommons.org/licenses/by-nc-nd/3.0/

PBML 104 OCTOBER 2015

unwieldy depending on the complexity of the loss function. To all such tasks, Monte
Carlo (MC) methods provide sound approximations (often with some guarantees)
based on random simulation techniques. We investigate and propose a framework
towards a general and flexible MC approach to inference with weighted CFGs.

2. Semiring parsing

A first step in generalising parsing is understanding it as the intersection between
the language of a grammar and that of a Finite-State Automaton (FSA) (Bar-Hillel
et al., 1961; Billot and Lang, 1989). This insight motivates a generalisation of parsing
to arbitrary weighted finite-state input (Nederhof and Satta, 2003; Dyer and Resnik,
2010). In this context, not only the set intersection is computed, but strings in the
resulting set are weighted by the product of their input weights. Parsing (or intersect-
ing) an automaton finds use in applications where it is natural to represent uncertainty
over finite-state input, for instance due to automatic pre-processing.

Another general view of parsing, orthogonal to the previous point, arises from the
relationship between parsing and logic deductive systems (Pereira and Warren, 1983).
Specifying a parser by means of a deductive system abstracts away from implemen-
tation details redirecting attention back to the parsing strategy itself. Shieber et al.
(1995) lay down the principles of parsing as deduction and offer an extensive discus-
sion regarding implementation. Arguably their most exciting result is to uncover the
relationship between parsers for different grammar formalisms (context-free and be-
yond) which turn out to share the same (or very closely related) set of deduction rules
under perhaps different control mechanisms.

In deductive parsing, a deduction rule is a template A1...Ak

B
C1 . . . Cj, whereA1 . . . Ak

(called antecedents), C1 . . . Cj (called side condition) and B (called consequent) are items.
A rule states that, if the side condition holds and the antecedents have already been
inferred, we can infer the consequent. Each possible way to deduce an item from the
grammar rules by instantiation of deduction rules is called an item derivation and de-
noted by D. Any given instance x of an item implicitly defines a set Dx of possible
ways to infer x. To test membership, the parser needs to prove at least one item deriva-
tion (a sequence of instantiation of deduction rules) that leads to a goal item form, or to
show that no such sequence exists. A parse forest can be thought of as the exhaustive
instantiation of all item derivations compatible with the grammar and the input.1

On top of this item-based description, parsing can be further generalised to com-
ply with an algebraic view of formal languages (Goodman, 1999). In this view, a
parser does not simply test for membership, instead, it performs abstract computa-

1The word exhaustive here does not imply inefficiency. In fact, item derivations are defined recursively
which leads to efficient representation. Suppose a1...ak

b
c1 . . . cj an instantiation of a deduction rule and

Da1
. . . Dak

sets of item derivations deducing a1 . . . ak, then ⟨b : Da1
, . . . , Dak

⟩ is itself an item deriva-
tion. This is very similar to the use of back-pointers in chart parsing (Billot and Lang, 1989).

52

Wilker Aziz Grasp: Randomised Semiring Parsing (51–62)

tions under a given semiring.2 Goodman (1999) combines the representational power
of deductive systems with the generality of semirings to describe, under a uniform
and simple representation, parsers that perform a multitude of tasks from recogni-
tion (B semiring) to best-first enumeration (k- semiring).

In this work, we provide implementation of semiring parsing for CFGs and the fol-
lowing semirings: B and C for recognition and counting; I used
to compute the probability of a string; V used to compute the probability of the
best derivation; 1- and k- used to enumerate derivations in best-first order;
and F used to represent the set of all derivations in some compact manner.

We deploy semiring parsing as deductive programs which intersect an epsilon-free
weighted CFG with a weighted deterministic FSA. Because CFGs are closed under in-
tersection with automata (Hopcroft and Ullman, 1979), the result is another CFG. We
observe from the state of the deductive program’s execution a parse forest which we
represent using a hypergraph (Gallo et al., 1993).3 This is basically our implemen-
tation of the F semiring. Computing values in the other semirings follows by
direct application of the value recursion (Goodman, 1999, Equations 5 and 7) using
the corresponding semiring operators (Goodman, 1999, Figure 5). In solving the value
recursion, we consult the forest as a data structure which compactly organises items
and their derivations.

We present G, a toolkit which incorporates these ideas while facilitating re-
search on sampling methods for structured prediction problems, particularly, pars-
ing and machine translation. In the remainder of this paper we present its design as
well as S and S, two novel semirings which play a central role in delivering
sampling algorithms for complex distributions over context-free sets of solutions.

3. Randomised semiring parsing

Our goal is to sample probabilistically from a distribution proportional to f(d) de-
fined over a support DG(x), where x is an input object and DG(x) is the derivation
forest resulting of intersecting G (a CFG) and an FSA based on x. Moreover, we as-
sume f to factorise as shown in Equation 1, whereψ(d) is some non-negative function
of d which is not assumed to factorise further (we call ψ a nonlocal parameterisation),
and θ(d) is some non-negative function of d compliant with the independence as-
sumptions of G which underlie DG(x) (we call θ a local parameterisation). Equation

2A semiring is an algebraic structure with operations that generalise the arithmetic addition and mul-
tiplication. The generalisation extends beyond numerical objects and may be defined over arbitrary sets
(e.g. the tree-language of a context-free grammar).

3A hypergraph, more specifically a backward-hypergraph, is a generalisation of a graph where an edge
connects a sequence of tail nodes under a head node and carries a weight. The nodes can be thought of as
grouping item derivations, an edge can be thought of as an instantiated deduction rule. Hypergraphs are
popular data structures in parsing (Klein and Manning, 2005) and MT (Huang, 2008).

53

PBML 104 OCTOBER 2015

2 illustrates how θ(d) factorises in terms of the rules used in the derivation d, where
rs is a rule headed by s and θrs is the rule’s value.

f(d) = ψ(d)× θ(d) (1)

= ψ(d)×
∏
rs∈d

θrs (2)

The nonlocal dependencies introduced by ψ(d) make inference over f(d) a very
difficult task. In order to make inference feasible, we resort to the principle of sam-
pling by data augmentation (Tanner and Wong, 1987). In Data Agumentation (DA),
we extend the target distribution with auxiliary variables u that make sampling from
the joint f(d,u) easier than sampling from the original distribution. Simulation then
follows by Gibbs sampling, a Markov Chain Monte Carlo (MCMC) technique, whereby
we sample each component in turn holding the remaining components fixed. That is,
if we draw u ∼ f(u|d) followed by a draw d ∼ f(d|u), then the pair (u,d) is a draw
from the joint distribution, and d is a draw from the target.

The benefit of DA comes from the fact that we can choose the shape of the joint
relatively flexibly, and we do so aiming at conditionals f(u|d) and f(d|u) that are easy
to sample from. A common choice of joint for functions of the form shown in Equation
2 is illustrated in Equation 3,4 where δA(x) is the Dirac’s measure which equals 1 iff
x ∈ A. This principle underlies, and can be seen as a multivariate generalisation of,
a univariate sampling technique called slice sampling (Neal, 2003). With such a choice
of joint, we typically call the auxiliary variables slice variables. They define a “slice” of
the distribution, i.e. a subset of DG(x) for which f(d,u) > 0.

f(d,u) = ψ(d)×
∏

s:rs∈d

δ(0,θrs)
(us)×

∏
s:rs ̸∈d

ϕ(us;ααα) (3)

First, we make the harmless independence assumption that f(u|d) =
∏

us
f(us|d),

where the auxiliary random vector u is indexed by items in the derivation forest
(nodes in the hypergraph), and f factorises as a product of independent distributions
(one for each item). Then, we specify the conditional f(us|d) as shown in Equation 4,
whereϕ is a probability distribution with parametersααα. Basically, the conditional is a
uniform distribution when the item associated with us participates in the condition-
ing derivation through rule rs, and it falls back to a given less informed distribution
ϕ otherwise.

f(us|d) =

{
δ(0,θrs)(us)

θrs
if rs ∈ d

ϕ(us;ααα) otherwise
(4)

4Errata: after publication, we noticed that we had misrepresented f(d,u) in Equation 3, a mistake we
remedy in this electronic version.

54

Wilker Aziz Grasp: Randomised Semiring Parsing (51–62)

Blunsom and Cohn (2010) devised a special case of this slice sampling technique
for binary Inversion Transduction Grammars (ITGs) in the context of Bayesian gram-
mar induction for translation. In their work, s represents a pair of aligned spans,
0 ≤ θrs ≤ 1 with

∑
rs
θrs = 1 for any given s are the parameters of a probabilis-

tic ITG, and there is no ψ(d) (otherwise thought of as ψ(d) = 1). Thus they choose
ϕ(us;ααα) = Beta(us;a, b), a Beta distribution with shape parameters a and b. We
generalise their work to arbitrary weighted CFGs including those parameterised by
log-linear models as common in SMT. To do so, we extend s to correspond to an
arbitrary item in the derivation forest program, and we choose ϕ in different ways.5

The final step in the design of our sampler is to derive what f(d|u) turns out to be
under the conditions above. Equations 5 to 7 are crucial, particularly, the latter implies
that every derivation for which some θrs ≤ us will have zero probability regardless
of the assignments of other slice variables. This basically means that f(d|u) can be
represented by a “truncated” derivation forest such that us < θrs for every rs. We
can interpret the slice variables as random thresholds on the values associated with
item derivations of a given item.

f(d|u) ∝ f(d)× f(u|d) (5)

= ψ(d)×
∏
rs

θrs ×
∏

us:rs∈d

δ(0,θrs)
(us)

θrs
×

∏
us:rs ̸∈d

ϕ(us;ααα) (6)

∝ ψ(d)×
∏
rs

δ(0,θrs)
(us)

ϕ(us;ααα)
(7)

Obviously, becauseψ(d) breaks context-free independence assumptions, sampling
from f(d|u) (Equation 7) might remain challenging. On the one hand, if ψ(d) makes
a low-order Markov assumption, exactly rescoring the slice might be possible, partic-
ularly, if slices are sufficiently thin. On the other hand, thin slices reduce the mobility
of the sampler increasing autocorrelation. Moreover, if slices are deterministically
too thin, we may risk trapping the sampler to a subset of the state space, which would
compromise ergodicity. A more general solution is not to assume that we can sample
from ψ(d) exactly, and rely on MCMC techniques instead. One possible technique is
to uniformly sample a subset (of some predetermined size) of the slice, and evaluate
Equation 7 only for the derivations in that subset.

Finally, we note a connection to semiring parsing. We can define a S semiring
which is to the I semiring as 1- is to V. Informally, by modifying the
1- addition operation so that it samples from the distribution associated with the
I values of item derivations (instead of maximising over their V values), we

5For example, for log-linear models ϕ(us;ααα) = Exp(us, λ), an exponential distribution with rate pa-
rameter λ. Note that the greater λ, the thicker the slice (the mean of the exponential distribution is λ−1).

55

PBML 104 OCTOBER 2015

1 # Create and source a dedicated virtual environment for Grasp
2 ~$ virtualenv -p python3 ~/envs/grasp; source ~/envs/grasp/bin/activate
3 # Clone and install kenlm (if you intend to use Grasp's decoder)
4 (grasp)~$ git clone https://github.com/kpu/kenlm.git; cd kenlm
5 (grasp)~$ python setup.py install; cd ..
6 # Install general dependencies
7 (grasp)~/grasp$ pip install numpy scipy cython
8 # Clone and install Grasp
9 (grasp)~$ git clone https://github.com/wilkeraziz/grasp.git; cd grasp

10 (grasp)~/grasp$ python setup.py install
11 # A better option for contributors is: python setup.py develop

Figure 1. Installing Grasp.

get an independent random sample. Similarly, we can define a S semiring which
is analogous to the F semiring, however, it produces a sliced forest. S condi-
tions on random assignments of an auxiliary vector based on a previous sample.6

4. G

Our toolkit is available on github https://github.com/wilkeraziz/grasp under
Apache 2.0 license. It is written in python3 and cython, it builds trivially with setuptools,
and it has very few (rather standard) dependencies. G is primarily developed for
U-based systems (e.g. Linux and OS X). Figure 1 illustrates how to install G
using a dedicated virtual environment running python3.

G comes with a CFG parser and a hierarchical SMT decoder. Figure 2 il-
lustrates how to run the parser in two different modes. The first command illus-
trates exact inference (which requires complete parse forests) and outputs the V
derivation, the 100-best derivations (--kbest 100), and 1000 independent samples
(--samples 1000). The second command illustrates slice sampling, where ϕ(us;ααα)
defaults to Beta(us; 0.1, 1). In both cases, python -m grasph.cfg.parser invokes the
parser; wsj00 is an example grammar shipped with G, and output specifies a di-
rectory where output files are stored. The last command illustrates the output direc-
tory structure: it contains the independent ancestral samples, the k-best derivations,
the Viterbi derivation, the slice samples and a configuration file which documents the
experiment (args.ini).7

6An initial derivation can be obtained by sampling from the local model alone. If the grammar is too
large, an initial sample can be obtained from a smaller grammar sharing a subset of the nonterminals of
the original one (or where a coarse-to-fine mapping exists).

7A complete list of features and options can be found at https://github.com/wilkeraziz/grasp/blob/
master/grasp/cfg/README.md.

56

https://github.com/wilkeraziz/grasp
https://github.com/wilkeraziz/grasp/blob/master/grasp/cfg/README.md
https://github.com/wilkeraziz/grasp/blob/master/grasp/cfg/README.md

Wilker Aziz Grasp: Randomised Semiring Parsing (51–62)

1 # Framework: exact inference
2 (grasp)~/grasp/examples/ptb$ echo -e 'I was given a million dollars .' | \
3 python -m grasp.cfg.parser wsj00 output --grammarfmt discodop --start TOP \
4 --unkmodel stfd6 --log --viterbi --kbest 100 --samples 1000 --experiment mtm -v
5 # Framework: slice sampling
6 (grasp)~/grasp/examples/ptb$ echo -e 'I was given a million dollars .' | \
7 python -m grasp.cfg.parser wsj00 output --grammarfmt discodop --start TOP \
8 --unkmodel stfd6 --log --samples 1000 --framework slice --experiment mtm -v
9 # Output directory

10 (grasp)~/grasp/examples/ptb$ tree --charset=ascii output/mtm/
11 output/mtm/
12 |-- ancestral |-- args.ini |-- slice
13 | |-- derivations |-- kbest | |-- derivations
14 | | |-- 0.gz | |-- 0.gz | | |-- 0.gz
15 | |-- trees |-- viterbi | |-- trees
16 | |-- 0.gz |-- 0.gz | |-- 0.gz

Figure 2. Example run of Grasp’s CFG parser.

Figure 3 illustrates how to run the hierarchical decoder. The first command il-
lustrates exact inference. Note that with exhaustive forest rescoring, we cannot go
beyond a bigram language model and very short sentences. The second command il-
lustrates sliced rescoring: ϕ(us;ααα) is set to Exp(us; 1) (--prior const 1), each slice is
uniformly subsampled (--within uniform) making small fixed-size batches (--batch
100) for rescoring (Equation 7). In both cases, python -m grasph.cfg.decoder in-
vokes the decoder; synchronous grammars are stored in grammars; --weights specify
model weights for model components such as rule table (--rt), word penalty (--wp),
arity penalty (--ap), and language model (--lm) . The output directory structure is
very similar to the one produced by the parser.8 Output files are sorted lists of hy-
potheses (best-first), as the last command illustrates.

In this section we also provide some preliminary experiments with our proposed
sampler in the context of decoding for hierarchical phrase-based (hiero) models (Chi-
ang, 2005). We report on experiments conducted using the BTEC Chinese-English cor-
pus (Takezawa et al., 2002). Grammar extraction follows the approach of Lopez (2007),
we use the implementation of Baltescu and Blunsom (2014). We use cdec (Dyer et al.,
2010) to train a linear model with MIRA (Cherry and Foster, 2012).9 We trained mod-

8A complete list of features and options can be found at https://github.com/wilkeraziz/grasp/blob/
master/grasp/mt/README.md.

9Such models are not inherently probabilistic, thus we need to artificially scale the parameters returned
by the optimiser. In the experiments in this paper, we multiplied the weights by 10 (--temperature 0.1).

57

https://github.com/wilkeraziz/grasp/blob/master/grasp/mt/README.md
https://github.com/wilkeraziz/grasp/blob/master/grasp/mt/README.md

PBML 104 OCTOBER 2015

1 # Framework: exact inference
2 (grasp)~/grasp/examples/mt$ head -n1 input | python -m grasp.mt.decoder output \
3 --grammars grammars --glue-grammar glue --pass-through \
4 --rt --wp WordPenalty -0.43429466 --ap Arity -0.43429466 \
5 --lm LanguageModel 2 btec.klm2 --weights mira/lm2-p \
6 --temperature 0.1 --viterbi --kbest 100 --samples 1000 --experiment mtm -v
7 # Framework: slice sampling
8 (grasp)~/grasp/examples/mt$ head -n1 input | python -m grasp.mt.decoder output \
9 --grammars grammars --glue-grammar glue --pass-through \

10 --rt --wp WordPenalty -0.43429466 --ap Arity -0.43429466 \
11 --lm LanguageModel 3 btec.klm3 --weights mira/lm3-p \
12 --temperature 0.1 --temperature0 10 --samples 1000 --framework slice \
13 --batch 100 --within uniform --prior const 1 --experiment mtm -v
14 (grasp)~/grasp/examples/mt$ zcat < output/mtm/slice/yields/0.gz
15 # MCMC samples=1000
16 # estimate count derivations yield
17 0.601 601 5 a throbbing pain .
18 0.271 271 5 throbbing pain .
19 0.065 65 4 is a throbbing pain .
20 0.032 32 4 is throbbing pain .
21 0.027 27 2 throbbing pain in my temples .
22 0.002 2 1 throbbing pain in pain .
23 0.001 1 1 throbbing pain the pain .
24 0.001 1 1 throbbing pain hurts my .

Figure 3. Example run of Grasp’s hierarchical SMT decoder.

els using standard features as well as a bigram/trigram Language Model (LM) com-
ponent. Language modelling and LM queries are done with lmplz/kenlm (Heafield,
2011; Heafield et al., 2013). Additionally, we trained two locally parameterised mod-
els whose LMs were made stateless, i.e. n-grams are scored using as much context as
available within translation rules, but context information (LM state) is discarded at
the boundaries of nonterminals. Finally, as a decision rule, G uses an approxima-
tion to MBR known as consensus decoding (DeNero et al., 2009) based on an empirical
distribution estimated from 2, 000 samples.

We report BLEU scores (Papineni et al., 2002) from multibleu, an implementation
distributed with Moses (Koehn et al., 2007). Results are averaged over 3 runs for a
random subset comprising of 20% of BTEC’s development set.10 Table 1 compares
G’s performance to cdec’s. The stateless models can be decoded exactly by both
cdec (which uses a Viterbi decision rule) and G (which applies consensus decod-

10The exact subset is available at the tool’s repository on github.

58

Wilker Aziz Grasp: Randomised Semiring Parsing (51–62)

System LM BLEU
1 cdec 2-gram (stateless) 33.6

2 G 2-gram (stateless) 33.85

3 G (batch=100) 2-gram 36.59± 0.61
4 G (batch=200) 2-gram 37.47± 0.67
5 cdec (pop=200) 2-gram 41.46

6 cdec 3-gram (stateless) 33.92

7 G 3-gram (stateless) 33.9

8 G (batch=100) 3-gram 37.78± 0.64
9 G (batch=200) 3-gram 38.89± 0.67
10 cdec (pop=200) 3-gram 46.33

Table 1. Slice sampler using ϕ(us;ααα) = Exp(us; λ = 1.0).

ing to 2,000 ancestral samples), thus both systems perform equally well (rows 1-2 and
6-7). For nonlocal models, cdec employs cube pruning (pop limit 200), and G em-
ploys the proposed slice sampling procedure uniformly subsampling slices to produce
batches of 100 or 200 samples. We can see that G succeeds to incorporate the
language model to a certain extent, it outperforms stateless models by about 5 BLEU
points (rows 3-4 vs rows 1-2, and rows 8-9 vs rows 6-7). However, it still lags behind
cube pruning (rows 5 and 10). By rescoring larger batches from each slice (row 4 vs
row 3, and row 9 vs row 8), we notice significant improvements, which indicates that
sampling from f(d|u) is indeed a bottleneck.

In order to improve G’s translation accuracy, we need to sample more effi-
ciently from slices. The general aim is to increase the sampler’s mobility and reduce
autocorrelation. Indeed, subsampling slices uniformly is a very simple strategy. We
are currently investigating alternatives based on more sophisticated sampling tech-
niques. In the experiments reported, G draws on average 7.5 samples per second
(with batch=100) and 4.7 samples per second (with batch=200). Note that to obtain
a sample, G must first obtain a slice (a random subset of the complete forest),
subsample such slice reducing it to a fixed-size batch, rescore the batch producing an
empirical distribution for f(d|u) (Equation 7), and finally, sample a derivation from
this empirical distribution. To improve G’s time performance we are translating
to cython some of the core procedures associated with these steps.

Finally, Figure 4 lists the features G currently supports (this set is growing at
a fast pace!).

59

PBML 104 OCTOBER 2015

Grammar formalism epsilon-free CFGs
Weighted deduction bottom-up (exact and sliced), top-down (exact and sliced)
Forest rescoring top-down (exact and sliced)
Real-valued semirings B, C, V, I
Value recursion robust to cycles
Derivation semirings 1-, k-, S, F, S
Sampling algorithms ancestral sampling, slice sampling
LM queries kenlm
Applications constituency parsing, decoding for hiero models

Figure 4. Features in Grasp’s current release.

5. Conclusion

We have given a quick overview of semiring parsing and discussed a novel sam-
pling technique for inference over complex structured spaces which is compatible
with this general framework. We have presented G, a toolkit for new directions in
inference for applications such as parsing and machine translation. With this release,
we hope to lower the initial implementation burden associated with complex struc-
tured state spaces, and we invite contributors to explore new sampling algorithms as
well as new applications.

Acknowledgements

This research is funded by The Netherlands Organisation for Scientific Research
(NWO), NWO VICI grant nr. 277-89-002.

Bibliography

Baltescu, Paul and Phil Blunsom. A Fast and Simple Online Synchronous Context Free Gram-
mar Extractor. The Prague Bulletin of Mathematical Linguistics, 102(1):17–26, October 2014.

Bar-Hillel, Yehoshua, Micha A. Perles, and Eli Shamir. On formal properties of simple
phrase structure grammars. Zeitschrift für Phonetik, Sprachwissenschaft und Kommunikations-
forschung, (14):143–172, 1961.

Billot, Sylvie and Bernard Lang. The Structure of Shared Forests in Ambiguous Parsing. In
Proceedings of the 27th Annual Meeting of the Association for Computational Linguistics, pages
143–151, Vancouver, British Columbia, Canada, June 1989. Association for Computational
Linguistics.

Blunsom, Phil and Trevor Cohn. Inducing Synchronous Grammars with Slice Sampling. In
Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the
Association for Computational Linguistics, pages 238–241, Los Angeles, California, June 2010.
Association for Computational Linguistics.

60

Wilker Aziz Grasp: Randomised Semiring Parsing (51–62)

Cherry, Colin and George Foster. Batch Tuning Strategies for Statistical Machine Translation.
In Proceedings of the 2012 Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies, pages 427–436, Montréal, Canada, June
2012. Association for Computational Linguistics.

Chiang, David. A Hierarchical Phrase-Based Model for Statistical Machine Translation. In
Proceedings of the 43rd Annual Meeting of the Association for Computational Linguistics (ACL’05),
pages 263–270, Ann Arbor, Michigan, June 2005. Association for Computational Linguistics.

DeNero, John, David Chiang, and Kevin Knight. Fast Consensus Decoding over Translation
Forests. In Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the
4th International Joint Conference on Natural Language Processing of the AFNLP: Volume 2 - Vol-
ume 2, ACL ’09, pages 567–575, Stroudsburg, PA, USA, 2009. Association for Computational
Linguistics.

Dyer, Chris and Philip Resnik. Context-free Reordering, Finite-state Translation. In Human
Language Technologies: The 2010 Annual Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics, HLT ’10, pages 858–866, Stroudsburg, PA, USA, 2010.
Association for Computational Linguistics.

Dyer, Chris, Jonathan Weese, Hendra Setiawan, Adam Lopez, Ferhan Ture, Vladimir Eidel-
man, Juri Ganitkevitch, Phil Blunsom, and Philip Resnik. cdec: a decoder, alignment, and
learning framework for finite-state and context-free translation models. In Proceedings of the
ACL 2010 System Demonstrations, ACLDemos ’10, pages 7–12, Stroudsburg, PA, USA, 2010.
Association for Computational Linguistics.

Gallo, Giorgio, Giustino Longo, Stefano Pallottino, and Sang Nguyen. Directed hypergraphs
and applications. Discrete Applied Mathematics, 42(2-3):177–201, Apr. 1993.

Goodman, Joshua. Semiring parsing. Computational Linguistics, 25(4):573–605, Dec. 1999.

Heafield, Kenneth. KenLM: faster and smaller language model queries. In Proceedings of the
Sixth Workshop on Statistical Machine Translation, WMT ’11, pages 187–197, Stroudsburg, PA,
USA, 2011. Association for Computational Linguistics.

Heafield, Kenneth, Ivan Pouzyrevsky, Jonathan H. Clark, and Philipp Koehn. Scalable Mod-
ified Kneser-Ney Language Model Estimation. In Proceedings of the 51st Annual Meeting of
the Association for Computational Linguistics (Volume 2: Short Papers), pages 690–696, Sofia,
Bulgaria, August 2013. Association for Computational Linguistics.

Hopcroft, John E. and Jeffrey D. Ullman. Introduction To Automata Theory, Languages, And Com-
putation. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1st edition,
1979.

Huang, Liang. Advanced Dynamic Programming in Semiring and Hypergraph Frameworks.
In Coling 2008: Advanced Dynamic Programming in Computational Linguistics: Theory, Algo-
rithms and Applications - Tutorial notes, pages 1–18, Manchester, UK, August 2008. Coling
2008 Organizing Committee.

Klein, Dan and ChristopherD. Manning. Parsing and Hypergraphs. In Bunt, Harry, John Car-
roll, and Giorgio Satta, editors, New Developments in Parsing Technology, volume 23 of Text,
Speech and Language Technology, pages 351–372. Springer Netherlands, 2005.

61

PBML 104 OCTOBER 2015

Koehn, Philipp, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello Federico, Nicola
Bertoldi, Brooke Cowan, Wade Shen, Christine Moran, Richard Zens, Chris Dyer, Ondřej
Bojar, Alexandra Constantin, and Evan Herbst. Moses: open source toolkit for statistical
machine translation. In Proceedings of the 45th Annual Meeting of the ACL on Interactive Poster
and Demonstration Sessions, ACL ’07, pages 177–180, Stroudsburg, PA, USA, 2007. Associa-
tion for Computational Linguistics.

Lopez, Adam. Hierarchical Phrase-Based Translation with Suffix Arrays. In Proceedings of the
2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational
Natural Language Learning (EMNLP-CoNLL), pages 976–985, Prague, Czech Republic, June
2007. Association for Computational Linguistics.

Neal, Radford M. Slice Sampling. Annals of statistics, 31:705–741, June 2003.
Nederhof, Mark-Jan and Giorgio Satta. Probabilistic parsing as intersection. In 8th International

Workshop on Parsing Technologies, pages 137–148, Nacy, France, April 2003.
Papineni, Kishore, Salim Roukos, Todd Ward, and Wei-Jing Zhu. BLEU: A Method for Auto-

matic Evaluation of Machine Translation. In Proceedings of the 40th Annual Meeting on As-
sociation for Computational Linguistics, ACL ’02, pages 311–318, Stroudsburg, PA, USA, 2002.
Association for Computational Linguistics.

Pereira, Fernando C. N. and David H. D. Warren. Parsing As Deduction. In Proceedings of
the 21st Annual Meeting on Association for Computational Linguistics, ACL ’83, pages 137–144,
Stroudsburg, PA, USA, 1983. Association for Computational Linguistics.

Shieber, Stuart M., Yves Schabes, and Fernando C. N. Pereira. Principles and implementation
of deductive parsing. Journal of Logic Programming, 24:3–36, 1995.

Sima’an, Khalil. Computational complexity of probabilistic disambiguation by means of tree-
grammars. In Proceedings of the 16th conference on Computational linguistics - Volume 2, COL-
ING ’96, pages 1175–1180, Stroudsburg, PA, USA, 1996. Association for Computational Lin-
guistics.

Takezawa, Toshiyuki, Eiichiro Sumita, Fumiaki Sugaya, Hirofumi Yamamoto, and Seiichi Ya-
mamoto. Toward a Broad-coverage Bilingual Corpus for Speech Translation of Travel Con-
versations in the Real World. In Third International Conference on Language Resources and
Evaluation, LREC, Las Palmas, Canary Islands - Spain, May 2002. European Language Re-
sources Association.

Tanner, Martin A. and Wing Hung Wong. The Calculation of Posterior Distributions by Data
Augmentation. Journal of the American Statistical Association, 82(398):528–540, June 1987.

Address for correspondence:
Wilker Aziz
w.aziz@uva.nl
Institute for Logic, Language and Computation
Universiteit van Amsterdam
Science Park 107, F2.11
Netherlands

62

The Prague Bulletin of Mathematical Linguistics
NUMBER 104 OCTOBER 2015 63–74

MT-ComparEval: Graphical evaluation interface
for Machine Translation development

Ondřej Klejcha, Eleftherios Avramidisb, Aljoscha Burchardtb,
Martin Popela

a Charles University in Prague, Faculty of Mathematics and Physics, Institute of Formal and Applied Linguistics
b German Research Center for Artificial Intelligence (DFKI), Language Technology Lab

Abstract
The tool described in this article has been designed to help MT developers by implementing

a web-based graphical user interface that allows to systematically compare and evaluate various
MT engines/experiments using comparative analysis via automatic measures and statistics.
The evaluation panel provides graphs, tests for statistical significance and n-gram statistics.
We also present a demo server http://wmt.ufal.cz with WMT14 and WMT15 translations.

1. Introduction

For language processing tasks like parsing or fact extraction, the expected results
can be more or less clearly defined and it is comparably easy to assess the quality
of a given system output. Due to the variation of language, ambiguity, etc. evalu-
ating Machine Translation (MT) output can be almost as difficult as the translation
itself. The evaluation methods and tools used in practice range from automatic mea-
sures that compare MT output against human reference translations via human error
annotation up to usability studies. Even if we focus on automatic measures, we are
confronted with several measures, options, and ways of measuring that have certain
strengths and weaknesses in their diagnostic capacities and that often lead to differ-
ent assessments of given systems or system variants to be compared. Therefore, often
a mix of measures and eventual examination of random samples are used in devel-

© 2015 PBML. Distributed under CC BY-NC-ND. Corresponding author: popel@ufal.mff.cuni.cz
Cite as: Ondřej Klejch, Eleftherios Avramidis, Aljoscha Burchardt, Martin Popel. MT-ComparEval: Graphical
evaluation interface for Machine Translation development. The Prague Bulletin of Mathematical Linguistics
No. 104, 2015, pp. 63–74. doi: 10.1515/pralin-2015-0014.

http://wmt.ufal.cz
http://creativecommons.org/licenses/by-nc-nd/3.0/

PBML 104 OCTOBER 2015

opment cycles. However, the common practice of running many experiments over a
period of time soon makes bookkeeping and tracing results challenging.

MT-ComparEval, the open-source tool described in this article has been designed
in order to help MT developers by implementing a back-end evaluation system with
a graphical user interface that allows comparing and evaluating different MT en-
gines/experiments and settings through the use of several measures that represent
the current best practice. The system helps to tie the development cycles together by
linking three ingredients:

• An evaluation panel, which provides a graphical interface for comparing the per-
formance of various systems on the same output, visualizing automatic scores
and various types of statistics and manual checking of translation quality on a
sentence level.

• A back-end that monitors some pre-defined storage locations for the addition of
new translation outputs. Whenever a new translation output is detected, a new
task is added in the background database.

• An evaluation mechanism that calculates MT evaluation scores based on a set of
automatic evaluation metrics and statistical tests. These results are associated
with the translation tasks in the database

The structure of this paper is as following: Section 2 compares our tool with pre-
vious work. Section 3 outlines the main functionality of the graphical interface. Sec-
tion 4 describes the back-end and the evaluation mechanism and Section 5 provides
information about the requirements, installation and implementation. Finally, Sec-
tion 6 includes a summary and our aims for further improvements.

Demo server

In order to showcase the features of MT-ComparEval, we present a demonstration
server http://wmt.ufal.cz. The interface includes pre-loaded system outputs from
the WMT Shared Task 2014 and 2015 (Bojar et al., 2014, 2015).

2. Related Work

The state-of-the-art MT decoder Moses (Koehn et al., 2006) provides a similar eval-
uation interface as part of the Experiment Management System (Koehn, 2010). EMS
is a set of scripts that automate and parallelize the full pipeline of training and testing
SMT models with variable settings. On the one end of this pipeline, the developers
have the possibility to display the testing results in a web-based interface. Comparing
and contrasting our tool with EMS, we can see that:

• similar to our tool, the EMS interface organizes trained systems into groups of
experiments. It includes a table for comparing the performance of different con-
figurations of the same experiment, based on automatic scores, statistical signif-

64

http://wmt.ufal.cz

Klejch et al. MT-ComparEval (63–74)

icance tests, n-gram statistics and color-coded n-gram correctness markup for
the output sentences.

• additional to our tool, EMS provides features due to its tight binding with the
developed SMT systems, such as the phrase table coverage and the bilingual
concordance analysis.

• contrary to EMS, which is tightly connected with the training pipeline and op-
timized for the Moses SMT scripts, our tool provides more flexibility, since the
evaluation interface can be run independently of the production of the transla-
tion systems. The users can therefore import any translation, irrelevant of how
it was constructed. Apart from SMT output, one can therefore import output
by other types of systems, such as rule-based, dependency-based or hybrid sys-
tems.

• MT-ComparEval focuses on comparing two systems and shows their transla-
tions sorted by the difference in sentence-level BLEU (or another metric). Also
the color highlighting shows the n-grams where one system is better than the
other (while in EMS, the color corresponds to the length of the matching n-
gram).

Similar evaluation panels are available through websites such as Evaluation Ma-
trix,1 which is used for displaying comparable scores for the translation system out-
puts participating in the translation shared task of the Workshop of Machine Transla-
tion (Callison-Burch et al., 2007). Commercial MT services, such as Kantan and Asia
Online2 also include graphical panels with automatic evaluations in their interface
for training models. No system mentioned in this paragraph offers open-source code
nor advanced sentence-level comparisons, to the best of our knowledge.

The concept of sentence-by-sentence evaluation is available within post-editing
tools such as PET (Aziz et al., 2012) or human evaluation panels such as Appraise
(Federmann, 2010), although these include no automatic evaluation scores and graph-
ical comparison panels. MT-EQuAl (Girardi et al., 2014), a graphical tool for manual
error annotation, allows for visualizing erroneous words and phrases that have been
pre-computed by Hjerson (Popović, 2011), based on edit distance from the reference.
Hjerson has been integrated also into Addicter3 (Zeman et al., 2011; Berka et al., 2012),
which shows sentences (from the train or test corpus) with source-target alignment,
manual or automatic word-level error classification and color highlighting and overall
summaries.

1http://matrix.statmt.org
2 https://www.kantanmt.com/ and http://www.asiaonline.net
3https://wiki.ufal.ms.mff.cuni.cz/user:zeman:addicter

65

http://matrix.statmt.org
https://www.kantanmt.com/
http://www.asiaonline.net
https://wiki.ufal.ms.mff.cuni.cz/user:zeman:addicter

PBML 104 OCTOBER 2015

MultEval4 (Clark et al., 2011) focuses on computing statistical signficance using
approximate randomization (Riezler and Maxwell, 2005) for three metrics: BLEU, TER
and METEOR.

Similarities to our tool can also be seen in Asiya (Giménez and Màrquez, 2010), in
the sense that it wraps the functionality of many automatic evaluation metrics in one
program, although there is no graphical interface.

See MT-ComparEval wiki for a table of comparison with related tools.5

3. Evaluation Panel

Figure 1. Part of the start-up screen of
the evaluation panel with a list

available experiments at wmt.ufal.cz.

Here, we present all basic screens and
panes of the Evaluation panel, which is the
graphical front-end of MT-ComparEval.

3.1. Listing of experiments and tasks

The start-up screen of the evaluation
panel (Figure 1) provides a list of all the ex-
periments that have been imported. An ex-
periment consists of several tasks – varia-
tions of the same experiment with different
settings. All tasks of the same experiment
share the same source and reference trans-
lation and only the translated text varies. So
a task can be a new version of a previously
imported system, or a totally different sys-
tem that nevertheless has been run on the
same data.

Once the user selects an experiment, an evaluation table with all relevant tasks
(Figure 2) is shown. The table contains (document-level) scores for each task entry
calculated by (a selected subset of) the included automated metrics. The panel also
includes a graphical representation to monitor the improvement of the scores among
different versions of the same system.6 The metrics currently supported are Preci-
sion, Recall and F-score (all based on arithmetic average of 1-grams up to 4-grams)
and BLEU (Papineni et al., 2002).7 MT-ComparEval computes both case-sensitive and

4https://github.com/jhclark/multeval
5 https://github.com/choko/MT-ComparEval/wiki/Related-tools (updates are welcome)
6 The line graph can be switched to a bar graph, which is more suitable for comparing unrelated systems.
7 BLEU uses a geometric mean of 1-grams up to 4-grams, so it needs smoothing for sentence-level

scores. We have reimplemented the “official” BLEU script ftp://jaguar.ncsl.nist.gov/mt/resources/
mteval-v13a.pl with the option --international-tokenization.

66

http://wmt.ufal.cz
https://github.com/jhclark/multeval
https://github.com/choko/MT-ComparEval/wiki/Related-tools
ftp://jaguar.ncsl.nist.gov/mt/resources/mteval-v13a.pl
ftp://jaguar.ncsl.nist.gov/mt/resources/mteval-v13a.pl

Klejch et al. MT-ComparEval (63–74)

Figure 2. Listing of tasks of the “Newstest 2015 en-cs” experiment at wmt.ufal.cz.

case-insensitive (CIS) versions of the four metrics, but the current default setup is to
show only case-sensitive versions in the Tasks screen. Users are able to turn the indi-
vidual metrics on and off, to allow for easier comparisons.

Additionally, the users have the possibility to delete or hide particular tasks from
this panel, e.g. in order to focus on a comparison between particular versions of their
systems which show specific progress.

The name and the description of each task is editable,8 whereas the description
text is collapsed by default to permit a better appearance of the table. The table can
be re-sorted on demand, based on each automatic metric.

For inspection of the differences between two tasks (say, systemA and systemB),
the user needs to mark the tasks’ checkboxes and click “Compare”. A new screen
presents four panes: Sentences, Statistics, Confirmed n-grams and Unconfirmed n-
grams, which are described in the following subsections.

8 Editing descriptions and deleting tasks and experiments is disabled at wmt.ufal.cz.

67

http://wmt.ufal.cz
http://wmt.ufal.cz

PBML 104 OCTOBER 2015

Figure 3. Sentences pane with one sentence shown.

3.2. Sentences pane

This pane displays all sentences from the given testset translated by both the sys-
tems, one below the other, along with source sentence, reference sentence and scores
(see Figure 3).9 The sentences are sorted according to the differences in the chosen
sentence-level metric scores. This means that the sentences shown at the top are
those, where systemB outperforms systemA the most. Such a view is very useful
when checking for regressions of new versions of an MT system against a baseline or
a previous version of the same system.

A set of checkboxes allow the user to highlight differences between the two systems
in several ways:

• Confirmed n-grams are n-grams occurring both in the system output and in
the reference.10 These are shown with light yellow (for systemA) and blue (for

9 The sentences are loaded lazily as needed when the user scrolls down.
10 If a given n-gram occurs e.g. three times in the system output and only twice in the reference, a heuristic

algorithm (based on the longest common subsequence) is used to select two occurrences of the n-gram that
will be marked as confirmed in the system output.

68

Klejch et al. MT-ComparEval (63–74)

systemB) background. The confirmed n-grams are highlighted also in the ref-
erence, where light green color marks n-grams occurring in both system.

• Improving n-grams are confirmed n-grams occurring in only one of the sys-
tems. These are highlighted in the system outputs with darker yellow and blue.

• Worsening n-grams are unconfirmed n-grams (i.e. probably wrong transla-
tions) occurring in only one of the systems. These are highlighted with red.

• Diff of the reference and one of the systems: words in the longest common sub-
sequence of the two sentences are underlined in green, other words in red.

Although multiple kinds of highlighting and sentences can be displayed simulta-
neously, users usually use checkbox options to enable only those they are currently
interested in. One can for example hide everything except for the references with con-
firmed n-grams highlighted in light yellow, blue and green (for n-grams occurring in
systemA only, systemB only and both systems, respectively). Highlighting the im-
proving and worsening n-grams is also very useful because these are the “culprits”
of the BLEU scores differences. Diff is useful e.g. for checking word-order differences
(an n-gram may be confirmed, but not underlined in green because it is not in the
same position as in the reference).

Figure 4. Evaluation panel for bootstrap resampling

69

PBML 104 OCTOBER 2015

3.3. Statistics pane (Bootstrap resampling)

This pane shows four area charts depicted at Figure 4 and all document-level met-
ric scores (not depicted here). The bottom two charts show (non-paired) bootstrap resam-
pling (Koehn, 2004) for systemA and systemB, respectively, to assess BLEU confidence
intervals for the individual systems. The x-axis lists 1,000 resamples (generated from
the original testset) sorted by their (document-level) BLEU, which is the y-axis.

The upper right chart shows paired bootstrap resampling (Koehn, 2004), where the
x-axis lists 1,000 resamples and the y-axis is the difference in BLEU between systemA
and systemB for the given resample. One-tailed p-value is in the chart header.

The upper left chart shows sentence-level BLEU difference (y-axis) for all the sen-
tences in the testset (x-axis).11

3.4. Confirmed and unconfirmed n-grams panes

Figure 5. Confirmed 1-grams overview.

MT-ComparEval counts how many times
was an n-gram seen as improving for sys-
temA (as defined in 3.2) in the whole testset.
The top ten n-grams are shown in table “sys-
temA wins” in the Confirmed n-grams pane
(there are four such tables: for 1-grams up
to 4-grams, but Figure 5 shows only the 1-
grams). Similarly, the “systemB wins” ta-
ble shows the top ten n-grams improving
systemB. Unconfirmed n-grams work analog-
ically for n-grams worsening systemA/B (the
tables are labeled “systemA/B loses”). The
user can click on any n-gram in the tables
to see all sentences containing the n-gram
(with the n-gram highlighted).

In near future, we would like to improve this pane to show the difference of current
“systemA wins” and “systemB wins” scores for each n-gram, so the top 10 n-grams
shown are more informative about the real problems and differences in the two sys-
tems.

11 According to this chart in Figure 4, about third of the sentences are translated better by Neural-MT
(green area), third by uedin-jhu-phrase (red area) and for the last third the BLEU difference is negligible (or
exactly zero). Also the confidence intervals in the bottom two charts are overlapping. Note that those two
observations are not enough to conclude that the BLEU difference is not significant. For such claim we need
a proper significance test, e.g. by paired bootstrap resampling, as shown in the upper right chart, which
says that Neural-MT wins in only 36.7% of the resampled testsets, so it is worse than uedin-jhu-phrase, but
not significantly (p-value=0.367 is higher than the conventional threshold 0.05, marked by the vertical red
line at 95%).

70

Klejch et al. MT-ComparEval (63–74)

4. Back-end

The back-end is responsible for monitoring a particular directory for new experi-
ments and systems. The directory has to be specified in a configuration file. Conse-
quently, a new experiment has to be imported in a new directory containing the source
and the reference, and several sub-directories, one for each task (system). Addition-
ally, metadata files allow adding names and descriptions to the imported experiments
and tasks.

Once a new experiment directory or task sub-directory is detected, a set of back-
ground processes make sure that the sentences are analyzed and evaluated by the
metrics and statistics. The sentences and the pre-computed results are entered into
the database, so that they can be displayed without re-computation.

Sentences can be imported with conventional file moving options (scp, sftp). One
additional possibility for fixed development cycles of wider development communi-
ties, is to sync the development translations with a storage cloud or a version manage-
ment system, such as git, and include the commit ID in the description of each task.
This has been tested in practice within the QTLeap project.12

5. System Description

5.1. Requirements and installation

MT-ComparEval has been designed and implemented to run in a Linux environ-
ment based on common free software utilities. The basic requirements needed to run
MT-ComparEval are PHP 5.4 and SQLite 3.13 In the basic installation, no webserver
is required to run MT-ComparEval because a simple webserver packaged with PHP
is available. In a more optimized installation, webservers like Apache or Nginx can
be also used.14 Database storage can be optimized through the use of more robust
database engines, such as MySQL or MariaDB.

Concerning the installation, MT-ComparEval comes with a script bin/install.sh
that installs locally all required PHP packages.

After the installation is finished, there are two scripts that are needed to run MT-
ComparEval. First, bin/server.sh, which runs the application on localhost:8080.
Second, bin/watcher.sh, which monitors the data directory data and imports all new
experiments and tasks added to this folder.

12http://qtleap.eu/
13 https://php.net/ and https://www.sqlite.org/
14 http://httpd.apache.org/ and https://www.nginx.com/

71

localhost:8080
http://qtleap.eu/
https://php.net/
https://www.sqlite.org/
http://httpd.apache.org/
https://www.nginx.com/

PBML 104 OCTOBER 2015

5.2. Implementation

MT-ComparEval is an open-source tool developed in PHP, based on the Nette
framework.15 This provides an architecture with a set of de-coupled and reusable
PHP components, which is highly extensible. The visual interface is organized by a
template engine, whereas there is easy access to the database and error logging. The
modular interface can allow several extensions, such as the easy inclusion of addi-
tional automatic metrics.

The development process has been organized via a Git repository,16 so that it can
continue as a community effort. All insights and ideas for extensions and improve-
ments are collected as GitHub issues.

6. Summary and Further Work

We have outlined the main functionality of the evaluation panel and back-end of
MT-ComparEval. The system includes several functions for aiding the process of eval-
uating systems with automatic scores, pairwise bootstrapping etc.

Although the evaluation interface already offers a vast amount of evaluation func-
tions, we consider its expansion with more automatic metrics, which could possibly
focus on specific issues and phenomena. Additionally, the possibility to have it run
as a multi-user environment, where registered users can upload their systems’ out-
put and organize them in projects or based on their language pair, is considered to
be a valuable extension. Finally, a set of exporting functions for tables and images in
common flexible formats (comma-separated values, LaTeX, PDF) would be useful for
aiding the authoring of academic papers and project reports.

Acknowledgments

This work was supported by the grants FP7-ICT-2013-10-610516 (QTLeap), SVV 260 104,
and it is using language resources hosted by the LINDAT/CLARIN project LM2010013
of the Ministry of Education, Youth and Sports.

Bibliography

Aziz, Wilker, S Castilho, and Lucia Specia. PET: a Tool for Post-editing and Assessing Ma-
chine Translation. In Eighth International Conference on Language Resources and Evaluation,
pages 3982–3987, Istanbul, Turkey, 2012. URL http://wilkeraziz.github.io/dcs-site/
publications/2012/AZIZ+LREC2012.pdf.

Berka, Jan, Ondřej Bojar, Mark Fishel, Maja Popović, and Daniel Zeman. Automatic MT Er-
ror Analysis: Hjerson Helping Addicter. In Proceedings of the 8th International Conference

15http://nette.org
16https://github.com/choko/MT-ComparEval

72

http://wilkeraziz.github.io/dcs-site/publications/2012/AZIZ+LREC2012.pdf
http://wilkeraziz.github.io/dcs-site/publications/2012/AZIZ+LREC2012.pdf
http://nette.org
https://github.com/choko/MT-ComparEval

Klejch et al. MT-ComparEval (63–74)

on Language Resources and Evaluation (LREC 2012), pages 2158–2163, İstanbul, Turkey, 2012.
European Language Resources Association. ISBN 978-2-9517408-7-7.

Bojar, Ondřej, Christian Buck, Christian Federmann, Barry Haddow, Philipp Koehn, Johannes
Leveling, Christof Monz, Pavel Pecina, Matt Post, Herve Saint-Amand, Radu Soricut, Lucia
Specia, and Aleš Tamchyna. Findings of the 2014 Workshop on Statistical Machine Trans-
lation. In Proceedings of the Ninth Workshop on Statistical Machine Translation, pages 12–58,
Baltimore, USA, 2014. ACL. URL http://www.aclweb.org/anthology/W/W14/W14-3302.

Bojar, Ondřej, Rajen Chatterjee, Christian Federmann, Barry Haddow, Matthias Huck, Chris
Hokamp, Philipp Koehn, Varvara Logacheva, Christof Monz, Matteo Negri, Matt Post, Car-
olina Scarton, Lucia Specia, and Marco Turchi. Findings of the 2015 Workshop on Statistical
Machine Translation. In Proceedings of the Tenth Workshop on Statistical Machine Translation,
pages 1–46, Lisboa, Portugal, September 2015. Association for Computational Linguistics.
URL http://aclweb.org/anthology/W15-3001.

Callison-Burch, Chris, Cameron Fordyce, Philipp Koehn, Christof Monz, and Josh Schroeder.
(Meta-) Evaluation of Machine Translation. In Proceedings of the Second Workshop on Statistical
Machine Translation, pages 136–158, Prague, Czech Republic, June 2007. ACL.

Clark, Jonathan H., Chris Dyer, Alon Lavie, and Noah A. Smith. Better Hypothesis Testing for
Statistical Machine Translation: Controlling for Optimizer Instability. In Proceedings of the
49th Annual Meeting of the Association for Computational Linguistics: Human Language Tech-
nologies, pages 176–181, Portland, Oregon, USA, June 2011. Association for Computational
Linguistics. URL http://www.aclweb.org/anthology/P11-2031.

Federmann, Christian. Appraise: An Open-Source Toolkit for Manual Phrase-Based Evaluation
of Translations. In LREC 2010, pages 1731–1734, Valletta, Malta, May 2010. European Lan-
guage Resources Association (ELRA). ISBN 2-9517408-6-7. URL http://www.lrec-conf.
org/proceedings/lrec2010/pdf/197_Paper.pdf.

Giménez, J and L Màrquez. Asiya: An Open Toolkit for Automatic Machine Translation
(Meta-)Evaluation. The Prague Bulletin of Mathematical Linguistics, 2010. URL http://ufal.
mff.cuni.cz/pbml/94/art-gimenez-marques-evaluation.pdf.

Girardi, Christian, Luisa Bentivogli, Mohammad Amin Farajian, and Marcello Federico. MT-
EQuAl: a Toolkit for Human Assessment of Machine Translation Output. In COLING 2014,
pages 120–123, Dublin, Ireland, Aug. 2014. Dublin City University and ACL. URL http:
//www.aclweb.org/anthology/C14-2026.

Koehn, Philipp. Statistical significance tests for machine translation evaluation. In Lin, Dekang
and Dekai Wu, editors, Proceedings of the 2004 Conference on Empirical Methods in Natural
Language Processing, pages 388–395, Barcelona, Spain, 2004. ACL.

Koehn, Philipp. An Experimental Management System. The Prague Bulletin of Mathematical
Linguistics, 94:87–96, 2010. doi: 10.2478/v10108-010-0023-5. URL http://ufal.mff.cuni.
cz/pbml/94/art-koehn-ems.pdf.

Koehn, Philipp, Wade Shen, Marcello Federico, Nicola Bertoldi, Chris Callison-Burch, Brooke
Cowan, Chris Dyer, Hieu Hoang, Ondrej Bojar, Richard Zens, Alexandra Constantin, Evan
Herbst, and Christine Moran. Open Source Toolkit for Statistical Machine Translation. In
Proceedings of ACL, pages 177–180, Prague, Czech Republic, June 2006.

73

http://www.aclweb.org/anthology/W/W14/W14-3302
http://aclweb.org/anthology/W15-3001
http://www.aclweb.org/anthology/P11-2031
http://www.lrec-conf.org/proceedings/lrec2010/pdf/197_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2010/pdf/197_Paper.pdf
http://ufal.mff.cuni.cz/pbml/94/art-gimenez-marques-evaluation.pdf
http://ufal.mff.cuni.cz/pbml/94/art-gimenez-marques-evaluation.pdf
http://www.aclweb.org/anthology/C14-2026
http://www.aclweb.org/anthology/C14-2026
http://ufal.mff.cuni.cz/pbml/94/art-koehn-ems.pdf
http://ufal.mff.cuni.cz/pbml/94/art-koehn-ems.pdf

PBML 104 OCTOBER 2015

Papineni, Kishore, Salim Roukos, Todd Ward, and Wei-Jing Zhu. BLEU: a method for automatic
evaluation of machine translation. In Proc. of ACL, pages 311–318, Stroudsburg, PA, USA,
2002. ACL. URL http://dx.doi.org/10.3115/1073083.1073135.

Popović, Maja. Hjerson: An Open Source Tool for Automatic Error Classification of Machine
Translation Output. The Prague Bulletin of Mathematical Linguistics, 96:59–68, 2011. doi: 10.
2478/v10108-011-0011-4. URL http://ufal.mff.cuni.cz/pbml/96/art-popovic.pdf.

Riezler, Stefan and John T. Maxwell. On Some Pitfalls in Automatic Evaluation and Signifi-
cance Testing for MT. In Proceedings of the ACL Workshop on Intrinsic and Extrinsic Evalua-
tion Measures for Machine Translation and/or Summarization, pages 57–64, Ann Arbor, Michi-
gan, June 2005. Association for Computational Linguistics. URL http://www.aclweb.org/
anthology/W/W05/W05-0908.

Zeman, Daniel, Mark Fishel, Jan Berka, and Ondřej Bojar. Addicter: What Is Wrong with My
Translations? The Prague Bulletin of Mathematical Linguistics, 96:79–88, 2011. ISSN 0032-6585.

Address for correspondence:
Martin Popel
popel@ufal.mff.cuni.cz
Institute of Formal and Applied Linguistics
Faculty of Mathematics and Physics, Charles University in Prague
Malostranské náměstí 25, 118 00 Praha 1, Czech Republic

74

http://dx.doi.org/10.3115/1073083.1073135
http://ufal.mff.cuni.cz/pbml/96/art-popovic.pdf
http://www.aclweb.org/anthology/W/W05/W05-0908
http://www.aclweb.org/anthology/W/W05/W05-0908

The Prague Bulletin of Mathematical Linguistics
NUMBER 104 OCTOBER 2015 75–86

TmTriangulate: A Tool for Phrase Table Triangulation

Duc Tam Hoang, Ondřej Bojar
Charles University in Prague, Faculty of Mathematics and Physics, Institute of Formal and Applied Linguistics

Abstract
Over the past years, pivoting methods, i.e. machine translation via a third language, gained

respectable attention. Various experiments with different approaches and datasets have been
carried out but the lack of open-source tools makes it difficult to replicate the results of these
experiments. This paper presents a new tool for pivoting for phrase-based statistical machine
translation by so called phrase-table triangulation. Besides the tool description, this paper dis-
cusses the strong and weak points of various triangulation techniques implemented in the tool.

1. Introduction
Training algorithms for statistical machine translation (SMT) generally rely on a

large parallel corpus between the source language and target language. This paradigm
may suffer from serious problems for under-resourced language pairs, for which such
bilingual data are insufficient. In fact, if we randomly pick two living human lan-
guages, the pair will likely be under-resourced. Hence, most of the language pairs
cannot benefit from standard SMT algorithms.

To alleviate the problem of data scarcity, pivoting has been introduced. It involves
the use of another language, called pivot language, bridge language or the third language,
to include resources available for the pivot language in the system. Over the years,
a number of pivoting methods have been proposed, including system cascades, syn-
thetic corpus, phrase table translation and most recently, phrase table triangulation.

Figure 1 shows a schematic overview of the SMT process and the interaction with
various pivoting methods.

“System cascades” basically consist of translating the input from the source lan-
guage into the pivot language, e.g. English, and then translating the obtained hy-
potheses into the target language. In the synthetic corpus method, the pivot side of a

© 2015 PBML. Distributed under CC BY-NC-ND. Corresponding author: bojar@ufal.mff.cuni.cz
Cite as: Duc Tam Hoang, Ondřej Bojar. TmTriangulate: A Tool for Phrase Table Triangulation. The Prague
Bulletin of Mathematical Linguistics No. 104, 2015, pp. 75–86. doi: 10.1515/pralin-2015-0015.

http://creativecommons.org/licenses/by-nc-nd/3.0/

PBML 104 OCTOBER 2015

..

Translation

.
Phrase-table

.

Alignment

.

Parallel
Corpus

.

Source text

.

Target text

.

Synthetic Corpus

.

Phrase
Translation

.

Phrase
Triangulation

.
System Cascades

....

Figure 1: Pivoting methods

source-pivot or pivot-target parallel corpus is first translated to obtain a source-target
corpus where one side is synthetic. A standard system is then trained from the ob-
tained corpus. In the phrase table translation method, one side of an existing pivot-
source or pivot-target phrase table is translated. And finally, the phrase table trian-
gulation method (sometimes called simply triangulation method) combines two phrase
tables, namely source-pivot and pivot-target, into an artificial source-target phrase
table. Phrase table triangulation and translation thus manipulate directly with the in-
ternals of the SMT system, compared to system cascades, which uses source-to-pivot
and pivot-to-target systems as black boxes, and synthetic corpus, which adjusts the
training corpus.

Deploying system cascades in practice requires the two black-box systems running.
Phrase table triangulation removes this requirement, capturing the new knowledge in a
standard static file. This phrase table can then be used with any other SMT technique,
see e.g. Zhu et al. (2014). One of the common operations is to merge several phrase
tables for one language pair into one. The Moses toolkit (Koehn et al., 2007) includes
a number of methods or tools for this: alternative decoding paths, phrase table interpola-
tion (tmcombine; Sennrich, 2012) and phrase table fill-up (combine-ptables; Nakov, 2008;
Bisazza et al., 2011).

In the past few years, promising results have been reported using phrase table
triangulation methods (Cohn and Lapata, 2007; Razmara and Sarkar, 2013; Zhu et al.,

76

Tam Hoang, Ondřej Bojar TmTriangulate (75–86)

2014), but without releasing any open-source tool. We decided to fill this gap and
implement an easy-to-use tool for phrase table triangulation in its severals variants.

2. Phrase Table Triangulation

In short, phrase table triangulation fuses together source-pivot and pivot-target
phrase tables, generating an artificial source-target phrase table as the output. Since
each of the phrase tables usually consists of millions of phrase pairs, phrase table
triangulation is computationally demanding (but lends itself relatively easily to par-
allelization).

When constructing the source-target table, we need to provide the set of:

1. source and target phrases, s-t,
2. word alignment a between them,1
3. scores (direct and reverse phrase and lexical translation probabilities).

Two techniques were examined for the last step, namely pivoting probabilities (see
Section 2.3; Cohn and Lapata, 2007; Utiyama and Isahara, 2007; Wu and Wang, 2007)
and pivoting co-occurrence counts (see Section 2.4; Zhu et al., 2014).

2.1. Linking Source and Target Phrases

For source and target phrases, we do the most straightforward thing. We connect s
and t whenever there exists a pivot phrase p such that s-p is listed in the source-pivot
and p-t is listed in the pivot-target phrase table. This approach however potentially
springs serious problems.

Firstly, we do not check any context or meaning of the phrases, so an ambiguous
pivot phrase p can connect source and target phrases with totally unrelated meaning.
This issue is more likely for short and frequent phrases.

Secondly, errors and omissions caused by noisy word alignments, which are un-
avoidable, are encountered twice. This leads to much higher level of noise in the final
source-target table.

Thirdly, the noise boosts the number of common or short phrase pairs and omits a
great proportion of large or rare phrase pairs. As the method relies on identical pivot
phrases to link source phrases and target phrases, the longer the phrase is, the smaller
the probability that there will be a pair.

And finally, we create the Cartesian product of the phrases, so the resulting phrase
table is much larger than the size of the source phrase tables.

1Strictly speaking, word alignment within phrases doesn’t have to be provided, but the word alignment
output of the final decoder run is useful in many applications. We also use the word alignment for pivoting
lexical translation probabilities.

77

PBML 104 OCTOBER 2015

..s1. s2. s3. s4.

p1

.

p2

.

t1

.

t2

.

t3

.

→
.

s1

.

s2

.

s3

.

s4

..

t1

.

t2

.

t3

Figure 2: Constructing source-target alignment

2.2. Word Alignment for Linked Phrases

Given a triplet of source, pivot and target phrases (s, p, t) and the source-pivot
(asp) and pivot-target (apt) word alignments, we need to construct the source-target
alignment a. We do this simply by tracing the alignments from each source word
s ∈ s over any pivot word p ∈ p to each target word t ∈ t as illustrated in Figure 2.
Formally:

(s, t) ∈ a ⇔ ∃p : (s, p) ∈ asp & (p, t) ∈ apt (1)

2.3. Pivoting Probabilities

Cohn and Lapata (2007) and Utiyama and Isahara (2007) considered triangulation
as a generative probabilistic process which estimates new features based on features
of the source-pivot and pivot-target phrase tables. This included an independence
assumption of the conditional probabilities between s, t and p:

p(s|t) =
∑
p

p(s|p, t) p(p|t)

≈
∑
p

p(s|p) p(p|t)
(2)

Equation 2 finds the conditional over the pair (s,t) by going through all pivot
phrases which are paired with both s and t. If we assume that each phrase p rep-
resents a different sense, this can be viewed as including all phrase senses in the pivot
language that s and t share.

The conditional probability can be simplified further by taking the maximum value
instead of summing over all pivot phrases. This can potentially avoid the noise created

78

Tam Hoang, Ondřej Bojar TmTriangulate (75–86)

by alignment errors and corresponds to considering only the most prominent sense
in the pivot language in our analogy. However, this may oversimplify the conditional
probability and lead to information loss.

We apply the formula in Equation 2 to all four components of phrase pair scores:
forward and direct phrase and lexically-weighted translation probabilities. Empiri-
cally, the resulting scores work reasonably well, but they are obviously not well de-
fined probabilities.

2.4. Pivoting Co-Occurrence Counts

Zhu et al. (2014) introduced another approach to estimate the new features from
the raw co-occurrence counts in the two source phrase tables.

Given the source-pivot co-occurrence count c(s, p) and the pivot-target count c(p, t),
we need to select a function f(·, ·) that leads to a good estimate of the source-target
count:

c(s, t) =
∑
p

f(c(s, p), c(p, t)) (3)

There are four simple choices for f(·, ·) in Equation 3: the minimum, maximum,
arithmetic mean and geometric mean. Zhu et al. (2014) considers the minimum as
the best option.

Once the co-occurrence count for the phrase pair (s, t) in the synthetic source-
target table is estimated, the direct and reverse phrase translation probabilities ϕ and
their lexically-weighted variants pw can be calculated using the standard procedure
(Koehn et al., 2003). The reverse probabilities are calculated using the following for-
mulas, the direct ones are estimated similarly:

ϕ(s|t) =
c(s, t)∑
s(s, t)

pw(s|t, a) =

n∏
i=1

1

|j|(i, j) ∈ a|

∑
(i,j)∈a

w(si|tj)

(4)

In Equation 4, the lexical translation probability w between source word s and
target word t must be computed beforehand as follows:

w(s|t) =
c(s, t)∑
s ′ c(s ′, t)

(5)

Since we no longer have access to the word co-occurrence counts or lexical proba-
bilities (the files .f2e and .e2f in Moses training), we estimate them from the pivoted

79

PBML 104 OCTOBER 2015

phrase table, i.e. the set of phrase pairs (s, t) that include the respective words s and
t aligned:

c(s, t) =
∑

{(s,t)|s∈s&t∈t&(s,t)∈a}

c(s, t) (6)

Pivoting co-occurrence counts is intuitively appealing because it leads to proper
(maximum likelihood) probability estimates. On the other hand, it needs a good es-
timate for the co-occurrence counts in the first place. The approach works well if the
parallel corpora are clean, of a similar size and distribution of words. Naturally, this
is the case of multi-parallel corpora rather than two independent parallel corpora.

3. TmTriangulate

Our open-source tool for all the described variants of phrase table triangulation
is designed to work with the Moses standard text format of phrase tables, making it
compatible with other tools from the Moses toolkit, esp. tools for phrase table com-
bination: tmcombine or combine-ptables.

As phrase table triangulation is a data-intensive operation, processing two huge
files, it is not possible to keep the list of phrase pairs in memory. In fact, even the list
of all phrase pairs associated with only one source phrase sometimes led to memory
overload.

We therefore split triangulation into two steps: triangulate and merge. The first step,
triangulate, is a mergesort-like process, handling phrase tables by travelling along the
sorted pivot side of both input phrase tables. Once the same pivot phrase is spotted
in both files, the source-target pair is established and emitted to a temporary output
file with its (temporary) score values.

The second step sorts records of the temporary file and then merges values of all
occurrences of the same source-target pair into one entry. Multi-threading is used in
the second step for a better performance.

3.1. TmTriangulate Parameters

TmTriangulate command-line options are simple:
action select whether is it probabilities (features_based) or co-occurrence counts

(“counts_based”) that should be pivoted.
weight combination (-w) specifies handling for phrase pairs linked by more than

one pivot phrase. The two accepted options summation and maximization correspond
to summing over the pivot phrases or getting solely the maximum value for each score.
If the value is not defined, summation option is chosen as default.

co-occurrence counts computation (-co) specifies the function f used to combine
counts from the two input tables, see Section 2.4. Allowed values are: min, max, a-mean
and g-mean.

80

Tam Hoang, Ondřej Bojar TmTriangulate (75–86)

Tokens
Parallel Corpus Sentences Czech English Vietnamese
Czech-Vietnamese 1.09M 6.71M – 7.65M
Czech-English 14.83M 205.17M 235.67M –
English-Vietnamese 1.35M – 12.78M 12.49M

Table 1: Sizes of parallel corpora used in our experiments.

mode (-m) clarifies the direction of component phrase tables, i.e. source→pivot or
pivot→source. Accepted values are pspt, sppt, pstp and sptp, where the first pair of
characters describes the source-pivot table and the second pair describes the pivot-
target table.

source (-s) and target (-t) specify source-pivot and pivot-target phrase table files
or directories with a given structure.

output phrase table (-o) and output lexical (-l) specify the output files. If the
output file is not defined, tmtriangulate writes the source-target phrase table to the
standard output.

For example, the following command constructs a Czech-Vietnamese phrase ta-
ble by pivoting probabilities from the English-Czech (en2cs.ttable.gz) and English-
Vietnamese (en2vi.ttable.gz) files:

./tmtriangulate.py features_based -m pspt \
-s en2cs.ttable.gz -t en2vi.ttable.gz

A detailed description of all parameters is provided along with the source code.

4. Experiments with Czech and Vietnamese

To illustrate the utility of tmtriangulate, we carry out an experiment with transla-
tion between Czech (cs) and Vietnamese (vi). English (en) is chosen as the sole pivot
language.

4.1. Experiment Overview

The training data consist of three corpora: for cs-en, we use CzEng 1.0 (Bojar et al.,
2012) and for cs-vi and en-vi, we combine various sources including OPUS, TED talks
and fragmented corpora published by previous works. Table 1 summarizes the sizes
of our parallel data. Hence, the resources are unrelated and they are drastically dif-
ferent in size.

For completeness, our language model data are described in Table 2, we build
standard 6-gram LMs with modified Kneser-Ney smoothing using KenLM (Heafield
et al., 2013).

81

PBML 104 OCTOBER 2015

Monolingual Corpus Sentences Tokens
Czech 14.83M 205.17M
Vietnamese 1.81M 48.98M

Table 2: Sizes of monolingual corpora used for language models.

institućı a
organizaćı

42

Czech

source language

institutions
and

organisations

135

29

English

pivot language

part of
institutions

and
organisations

4of
institutions

and
organisations

10

institutions
and regimes

3

and
4.7M

3

institućı a
organizaćı

Czech

target language
other phrasesother phrases other phrases

thousands
of phrases

. . .

Figure 3: An example of triangulation with CzEng 1.0 corpus

Overall, the experiment is conducted with two directions: cs→vi and vi→cs. We
use tmtriangulate to combine phrase tables of cs→en and en→vi into the cs→vi and
vi→cs tables. We use several settings for the triangulation to highlight the differences
between them. Finally, we combine the best pivoted model with the standard phrase-
based model extracted from an OPUS and TED direct parallel corpus between Czech
and Vietnamese.

All systems are evaluated on a golden test set, obtained by manually translating
the WMT13 test set2 into Vietnamese, so there is no overlap between the training,
tuning and evaluation data.

4.2. Noise Gained through Pivoting

We start with a quick manual inspection of the pivoted phrase tables. Differences
in the domains and sizes of the source corpora are generally considered as the reasons
behind the poor performance of triangulated models. Our analysis shows that align-
ment errors generate an immense amount of noise, degrading phrase table quality.
For illustration purposes, we use the same phrase table twice, pivoting “from Czech
to Czech” via English. This is actually one of the standard approached to data-driven
paraphrasing (Bannard and Callison-Burch, 2005) and obviously there cannot be any

2http://www.statmt.org/wmt13/translation-task.html

82

http://www.statmt.org/wmt13/translation-task.html

Tam Hoang, Ondřej Bojar TmTriangulate (75–86)

Approach Option vi→cs BLEU cs→vi BLEU
Pivoting probabilities summation 7.44 10.28
Pivoting probabilities maximization 7.21 9.64

Pivoting co-occurrence counts minimum 7.24 9.86
Pivoting co-occurrence counts maximum 6.38 7.64
Pivoting co-occurrence counts arithmetic-mean 6.25 6.95
Pivoting co-occurrence counts geometric-mean 7.05 9.24

Direct system - 7.62 10.59

Table 3: BLEU scores for phrase table triangulation for translation between Czech and
Vietnamese via English.

discrepancies due to corpus size or domain. Yet, the pivoted phrase table contains
many entries that distort the meaning. See Figure 3 for an example. The Czech phrase
“institucí a organizací” by no doubt should be paired with a target phrase which has
the sense: “institutions and organizations”. Indeed, the correct phrase pair has 29 co-
occurrences, out of 135 appearances of “institutions and organizations” alone. The
problem is that the single-word phrase “and” is listed as one of the possible transla-
tions and licenses a very large number of very distant phrases. It is just the 3 spurious
co-occurrences with “and” that bring in the many bad phrases.

Our preliminary observations suggest that, after adding the pivot-target phrase
table and estimating pivoted co-occurrence counts, the differences between good pairs
and bad pairs get blurred. Estimating the new scores from source tables’ probabilites
seems to keep the gap between good pairs and bad pairs wider. A more thorough
analysis is nevertheless desirable.

4.3. Results of Pivoted Models Alone

Table 3 shows our first experimental results based on pivoted phrase tables.
The high level of noise leads to very large pivoted phrase tables with many bad

phrases. The pivoted systems thus achieve relatively bad scores despite the large size
of their phrase tables, many times larger than the size of the component phrase tables.
Of the six triangulation options, the best one achieves results similar to the direct
system, which is based on parallel cs-vi data.

The overall differences between the various triangulation approaches are not very
big, especially concerning the high level of noise. We neverthless see that for this set
of languages and corpora, pivoting probabilities leads to better results than pivoting
co-occurrence counts.

83

PBML 104 OCTOBER 2015

Method Table Size vi→cs BLEU cs→vi BLEU
Direct System 8.8M 7.62 10.59
Best Pivoted System 61.5M 7.44 10.28
Linear Interpolation (tmcombine) 69.3M 8.33 11.98
Alternative Decoding Paths 8.8M/61.5M 8.34 11.85

Table 4: Combining direct and pivoted phrase tables.

4.4. Combination with the Baseline Phrase Table

While the triangulation results did not improve over the baseline in the previ-
ous section, triangulation has reportedly brought gains in combination with the direct
phrase table. Since the direct and the pivoted phrase tables have the same format, it
is very easy to merge them.

We examine two options to combine the direct phrase table with the best pivoted
phrase table: alternative decoding paths and phrase table interpolation. Alternative
decoding paths in Moses use both tables at once and the standard MERT is used to
optimize the (twice as big) set of weights, estimating the relative importance of the
tables. Phrase table interpolation is implemented in tmcombine (among others) and
merges the two tables with uniform weights before Moses is launched.

Table 4 confirms the reported results: the combined systems are significantly better
than each of their components. We do not see much difference between alternative
decoding paths and phrase table interpolation.

5. Conclusion

We discussed several options of pivoting, using a third language in machine trans-
lation. We focussed on phrase table triangulation and implemented a tool for several
variants of the method. The tool, tmtriangulate, is freely available here:

https://github.com/tamhd/MultiMT
In our first experiment, phrase tables constructed by triangulation lead to results

comparable but not better with the direct baseline translation. An improvement was
achieved when we merged the direct and pivoted phrase tables with tools readily
available in the Moses toolkit. It is however important to realize that different sets of
languages, domains and corpora may show different behaviour patterns.

Acknowledgments

This project has received funding from the European Union’s Horizon 2020 re-
search and innovation programme under grant agreements no 645452 (QT21) and

84

https://github.com/tamhd/MultiMT

Tam Hoang, Ondřej Bojar TmTriangulate (75–86)

no 644402 (HimL). The project was also supported by the grant SVV 260 104, and
it is using language resources hosted by the LINDAT/CLARIN project LM2010013 of
the Ministry of Education, Youth and Sports.

Bibliography

Bannard, Colin and Chris Callison-Burch. Paraphrasing with bilingual parallel corpora. In
Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics, ACL ’05,
pages 597–604, Stroudsburg, PA, USA, 2005. Association for Computational Linguistics. doi:
10.3115/1219840.1219914. URL http://dx.doi.org/10.3115/1219840.1219914.

Bisazza, Arianna, Nick Ruiz, and Marcello Federico. Fill-up versus interpolation methods for
phrase-based SMT adaptation. In 2011 International Workshop on Spoken Language Translation,
IWSLT 2011, San Francisco, CA, USA, December 8-9, 2011, pages 136–143, 2011. URL http:
//www.isca-speech.org/archive/iwslt_11/sltb_136.html.

Bojar, Ondřej, Zdeněk Žabokrtský, Ondřej Dušek, Petra Galuščáková, Martin Majliš, David
Mareček, Jiří Maršík, Michal Novák, Martin Popel, and Aleš Tamchyna. The Joy of Paral-
lelism with CzEng 1.0. In Proceedings of LREC2012, Istanbul, Turkey, 2012. ELRA, European
Language Resources Association.

Cohn, Trevor and Mirella Lapata. Machine Translation by Triangulation: Making Effective
Use of Multi-Parallel Corpora. In ACL 2007, Proceedings of the 45th Annual Meeting of the
Association for Computational Linguistics, June 23-30, 2007, Prague, Czech Republic, 2007. URL
http://aclweb.org/anthology-new/P/P07/P07-1092.pdf.

Heafield, Kenneth, Ivan Pouzyrevsky, Jonathan H. Clark, and Philipp Koehn. Scalable Mod-
ified Kneser-Ney Language Model Estimation. In Proceedings of the 51st Annual Meeting of
the Association for Computational Linguistics, Sofia, Bulgaria, 8 2013. URL http://kheafield.
com/professional/edinburgh/estimate_paper.pdf.

Koehn, Philipp, Franz Josef Och, and Daniel Marcu. Statistical Phrase-Based Translation. In
HLT-NAACL, 2003. URL http://acl.ldc.upenn.edu/N/N03/N03-1017.pdf.

Koehn, Philipp, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello Federico, Nicola
Bertoldi, Brooke Cowan, Wade Shen, Christine Moran, Richard Zens, Chris Dyer, Ondřej
Bojar, Alexandra Constantin, and Evan Herbst. Moses: Open Source Toolkit for Statistical
Machine Translation. In ACL 2007, Proceedings of the 45th Annual Meeting of the Association
for Computational Linguistics, June 23-30, 2007, Prague, Czech Republic, 2007. URL http://
aclweb.org/anthology-new/P/P07/P07-2045.pdf.

Nakov, Preslav. Improving English-Spanish Statistical Machine Translation: Experiments in
Domain Adaptation, Sentence Paraphrasing, Tokenization, and Recasing. In Proceedings of
the Third Workshop on Statistical Machine Translation, StatMT ’08, pages 147–150, Stroudsburg,
PA, USA, 2008. Association for Computational Linguistics.

Razmara, Majid and Anoop Sarkar. Ensemble Triangulation for Statistical Machine Translation.
In Sixth International Joint Conference on Natural Language Processing, IJCNLP 2013, Nagoya,
Japan, October 14-18, 2013, pages 252–260, 2013. URL http://aclweb.org/anthology/I/
I13/I13-1029.pdf.

85

http://dx.doi.org/10.3115/1219840.1219914
http://www.isca-speech.org/archive/iwslt_11/sltb_136.html
http://www.isca-speech.org/archive/iwslt_11/sltb_136.html
http://aclweb.org/anthology-new/P/P07/P07-1092.pdf
http://kheafield.com/professional/edinburgh/estimate_paper.pdf
http://kheafield.com/professional/edinburgh/estimate_paper.pdf
http://acl.ldc.upenn.edu/N/N03/N03-1017.pdf
http://aclweb.org/anthology-new/P/P07/P07-2045.pdf
http://aclweb.org/anthology-new/P/P07/P07-2045.pdf
http://aclweb.org/anthology/I/I13/I13-1029.pdf
http://aclweb.org/anthology/I/I13/I13-1029.pdf

PBML 104 OCTOBER 2015

Sennrich, Rico. Perplexity Minimization for Translation Model Domain Adaptation in Statisti-
cal Machine Translation. In EACL 2012, 13th Conference of the European Chapter of the Asso-
ciation for Computational Linguistics, Avignon, France, April 23-27, 2012, pages 539–549, 2012.
URL http://aclweb.org/anthology-new/E/E12/E12-1055.pdf.

Utiyama, Masao and Hitoshi Isahara. A Comparison of Pivot Methods for Phrase-Based Sta-
tistical Machine Translation. In Human Language Technology Conference of the North American
Chapter of the Association of Computational Linguistics, Proceedings, April 22-27, 2007, Rochester,
New York, USA, pages 484–491, 2007. URL http://www.aclweb.org/anthology/N07-1061.

Wu, Hua and Haifeng Wang. Pivot Language Approach for Phrase-Based Statistical Ma-
chine Translation. In ACL 2007, Proceedings of the 45th Annual Meeting of the Association
for Computational Linguistics, June 23-30, 2007, Prague, Czech Republic, 2007. URL http:
//aclweb.org/anthology-new/P/P07/P07-1108.pdf.

Zhu, Xiaoning, Zhongjun He, Hua Wu, Conghui Zhu, Haifeng Wang, and Tiejun Zhao. Im-
proving Pivot-Based Statistical Machine Translation by Pivoting the Co-occurrence Count
of Phrase Pairs. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing, EMNLP 2014, October 25-29, 2014, Doha, Qatar, A meeting of SIGDAT, a Special In-
terest Group of the ACL, pages 1665–1675, 2014. URL http://aclweb.org/anthology/D/D14/
D14-1174.pdf.

Address for correspondence:
Ondřej Bojar
bojar@ufal.mff.cuni.cz
Institute of Formal and Applied Linguistics
Faculty of Mathematics and Physics,
Charles University in Prague
Malostranské náměstí 25
118 00 Praha 1, Czech Republic

86

http://aclweb.org/anthology-new/E/E12/E12-1055.pdf
http://www.aclweb.org/anthology/N07-1061
http://aclweb.org/anthology-new/P/P07/P07-1108.pdf
http://aclweb.org/anthology-new/P/P07/P07-1108.pdf
http://aclweb.org/anthology/D/D14/D14-1174.pdf
http://aclweb.org/anthology/D/D14/D14-1174.pdf

The Prague Bulletin of Mathematical Linguistics
NUMBER 104 OCTOBER 2015

INSTRUCTIONS FOR AUTHORS

Manuscripts are welcome provided that they have not yet been published else-
where and that they bring some interesting and new insights contributing to the broad
field of computational linguistics in any of its aspects, or of linguistic theory. The sub-
mitted articles may be:

• long articles with completed, wide-impact research results both theoretical and
practical, and/or new formalisms for linguistic analysis and their implementa-
tion and application on linguistic data sets, or

• short or long articles that are abstracts or extracts of Master’s and PhD thesis,
with the most interesting and/or promising results described. Also

• short or long articles looking forward that base their views on proper and deep
analysis of the current situation in various subjects within the field are invited,
as well as

• short articles about current advanced research of both theoretical and applied
nature, with very specific (and perhaps narrow, but well-defined) target goal in
all areas of language and speech processing, to give the opportunity to junior
researchers to publish as soon as possible;

• short articles that contain contraversing, polemic or otherwise unusual views,
supported by some experimental evidence but not necessarily evaluated in the
usual sense are also welcome.

The recommended length of long article is 12–30 pages and of short paper is 6–15
pages.

The copyright of papers accepted for publication remains with the author. The
editors reserve the right to make editorial revisions but these revisions and changes
have to be approved by the author(s). Book reviews and short book notices are also
appreciated.

The manuscripts are reviewed by 2 independent reviewers, at least one of them
being a member of the international Editorial Board.

Authors receive a printed copy of the relevant issue of the PBML together with the
original pdf files.

The guidelines for the technical shape of the contributions are found on the web
site http:// ufal.mff.cuni.cz/pbml. If there are any technical problems, please con-
tact the editorial staff at pbml@ufal.mff.cuni.cz.

