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ÚFAL MFF UK, Malostranské náměstí 25, 118 00, Prague 1, Czech Republic
E-mail: pbml@ufal.mff.cuni.cz

ISSN 0032-6585

© 2015 PBML. All rights reserved.





The Prague Bulletin of Mathematical Linguistics
NUMBER 103 APRIL 2015

CONTENTS

Articles

Domain Adaptation for Machine Translation with Instance Selection
Ergun Biçici

5

Resources for Indonesian Sentiment Analysis
Franky, Ondřej Bojar, Kateřina Veselovská

21

QuEst for High Quality Machine Translation
Ergun Biçici, Lucia Specia

43

Scalable Reordering Models for SMT based on Multiclass SVM
Abdullah Alrajeh, Mahesan Niranjan

65

Evaluating Machine Translation Quality
Using Short Segments Annotations
Matouš Macháček, Ondřej Bojar

85

Ultrametric Distance in Syntax
Mark D. Roberts

111

Exact Expected Average Precision of the Random Baseline
for System Evaluation
Yves Bestgen

131

A Python-based Interface
for Wide Coverage Lexicalized Tree-adjoining Grammars
Ziqi Wang, Haotian Zhang, Anoop Sarkar

139

© 2015 PBML. All rights reserved.



PBML 103 APRIL 2015

Instructions for Authors 161

4



The Prague Bulletin of Mathematical Linguistics
NUMBER 103 APRIL 2015 5–20

Domain Adaptation for Machine Translation
with Instance Selection

Ergun Biçici
ADAPT CNGL Centre for Global Intelligent Content

School of Computing
Dublin City University

Abstract
Domain adaptation for machine translation (MT) can be achieved by selecting training in-

stances close to the test set from a larger set of instances. We consider 7 different domain adap-
tation strategies and answer 7 research questions, which give us a recipe for domain adaptation
in MT. We perform English to German statistical MT (SMT) experiments in a setting where test
and training sentences can come from different corpora and one of our goals is to learn the
parameters of the sampling process. Domain adaptation with training instance selection can
obtain 22% increase in target 2-gram recall and can gain up to 3.55 BLEU points compared with
random selection. Domain adaptation with feature decay algorithm (FDA) not only achieves
the highest target 2-gram recall and BLEU performance but also perfectly learns the test sam-
ple distribution parameter with correlation 0.99. Moses SMT systems built with FDA selected
10K training sentences is able to obtain F1 results as good as the baselines that use up to 2M
sentences. Moses SMT systems built with FDA selected 50K training sentences is able to obtain
1 F1 point better results than the baselines.

1. Introduction

Machine translation (MT) performance is affected by tokens unseen in the train-
ing set, which may be due to specific use of vocabulary or grammatical structures
observed in the test domain of interest. In this paper, we develop a recipe for do-
main adaptation for MT by comparing different strategies for the selection of training
instances close to the test set from larger sets of in-domain (ID) and out-of-domain
(OOD) training data. Each corpus has some characteristic distribution of vocabulary

© 2015 PBML. Distributed under CC BY-NC-ND. Corresponding author: ergun.bicici@computing.dcu.ie
Cite as: Ergun Biçici. Domain Adaptation for Machine Translation with Instance Selection. The Prague Bulletin
of Mathematical Linguistics No. 103, 2015, pp. 5–20. doi: 10.1515/pralin-2015-0001.

http://creativecommons.org/licenses/by-nc-nd/3.0/


PBML 103 APRIL 2015

and grammar use specific to its domain, reflected in the training instances selected for
a given test corpus or for each test sentence per se. Our goal is to find the best mixture
of the selected training instances in a setting where the training and test corpora can
come from several different parallel corpora. We can view the test sentences as the
result of a mixed selection from different domain corpora since n-grams of a sentence
may come from different domains. Each test sentence defines a domain of interest
that training sentences can be selected for. Therefore, the boundary between ID and
OOD classes is blurred at the sentence level and in-domain or out-of-domainness is
decided by a similarity function measuring the closeness of test sentences to training
sentences from each domain. Each test sentence has a degree of closeness to the train-
ing domains and sampling accordingly can be a good idea. A sampling parameter for
a test set specifies how much of it is selected from which domain.

Domain adaptation can be achieved by model weighting, which works with sep-
arate training and language models to obtain mixture translation models by linear
combination of translation and language model probabilities with weights based on
LM probabilities over training corpora split according to their genre (Foster and Kuhn,
2007). Adaptation can also be achieved by weighing the counts in the maximum like-
lihood estimation of phrase translation probabilities (Sennrich, 2012). Our approach
is related to the instance weighting model (Foster et al., 2010). However, the instance
selection models we use (Section 2) are based on scores over features consisting of n-
grams in contrast to using phrases and relying on the extraction of phrase tables used
during training of SMT models.

Biçici and Yuret (2011a) develop feature decay algorithm (FDA) and dice instance
selection models, which can improve the SMT performance when compared with the
performance of the SMT system using all of the training data. The results obtained
demonstrate that SMT systems can improve their performance by transductive train-
ing set selection. Biçici and Yuret (2011a) focused on training instance selection for a
single domain. By contrast, we demonstrate the effectiveness of instance selection for
domain adaptation in a setting where test and training sets are selected from multiple
separate domains generic enough to be extended to more than two domains. Previous
results show that for translation at the sentence level, using only about 5000 training
instances can be enough to achieve a performance close to the SMT system trained on
millions of sentences (Biçici and Yuret, 2011a; Biçici, 2011).

Statistical MT (SMT) models can make use of various domain-specific training cor-
pora to improve their performance. Adapting to a domain where parallel training
resources are scarce can pose a problem for SMT performance. We provide a solu-
tion to domain adaptation with training instance selection where we retrieve relevant
instances for the test set from a larger set of training instances. Our approach is trans-
ductive since we try to find training instances close to the test set and build an SMT
model using the selected training set. We focus on how to pick training instances
when the test set is a mixture of sentences from two different domains sampled ac-
cording to a specific sampling parameter. Our goal is to closely mimic the sampling
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process of the test set by creating a training set from a mixture of the two domains.
We compare different MT training data selection strategies, the results of which re-
veal how to adapt to a new test set domain. We assume that we have two domains
from which we can select training data from: domain A (DA) and domain B (DB).
Test corpus sentences are sampled from either DA or DB. A sampling parameter α,
0 ≤ α ≤ 1, is randomly assigned to each test set where (100 × α)% of the data is
selected from DA and the rest is selected from DB. We explore the following training
data adaptation strategies:

R Randomly sampling from DA ∪DB.
Rα Randomly sampling from DA or DB according to α.
S0.5 Selecting equally from each domain.
Sα Selecting according to α.
SO Selecting from the known, oracle, test sentence domain.
S∪ Selecting from DA ∪DB.
S∪⇄ Selecting from DA ∪DB using common cover link (CCL) (Section 2.4).

Rα and Sα assume that α is known beforehand, making Rα a competitive base-
line. SO assumes perfect knowledge of the domain. We can also use a classifier to
predict each test source sentence’s domain and select from that domain. We use this
perfect classification information in the oracle setting. We select either by FDA or dice
(Section 2) for each test sentence, which also allows us to compare their performance
under different domain adaptation strategies. Each training set is the union of the
training sentences selected for each test sentence. One of our goals is to understand
whether the sampling parameter α, reflected in the training data selections and learn
α since we can use α to adapt to a target domain.

Mandal et al. (2008) use the language model (LM) perplexity and inter-SMT-system
disagreement to select training data. Moore and Lewis (2010) select training data for
LMs using the difference of the cross-entropy of ID and OOD training data: HID(s)−
HOOD(s). OOD LM training data is randomly sampled to make its size close to the
ID LM training data and the vocabulary used is set to the ID vocabulary items that are
observed at least twice. Axelrod et al. (2011) use bilingual cross-entropy difference:

ϕaml(s, t) = HS

ID(s) −HS

OOD(s) +HT

ID(t) −HT

OOD(t), (1)

where S stands for the source language, T stands for the target language, and (s, t) is
a training sentence pair being scored. Lower ϕaml(s, t) scores correspond to better
training instances. Mansour et al. (2011) use IBM Model 1 (Brown et al., 1993) and
LM perplexity to filter training data and the LM corpus. We also select according to
Equation (1): Saml.

We answer 7 main research questions addressing how much impact does sam-
pling parameter α have on the domain adaptation performance, whether knowing
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the domain from where each test sentence is selected from helps the performance,
how much instance selection improves the performance, whether we can learn α by
instance selection, and what can be the best recipe for domain adaptation in machine
translation:

Q1 How much does knowing α improve the random sampling performance?
(R vs. Rα)

Q2 Would the performance improve if we select from the exact domain where
each test instance is sampled from? (SO vs. S0.5 or Sα)

Q3 How much do we gain by training instance selection? (R vs. S0.5 and Rα

vs. Sα)
Q4 How much does knowing α improve the selection performance? (S0.5 vs.

Sα)
Q5 What happens if only use instance selection methods? (S∪ and S∪⇄ )
Q6 Does the selection α resemble the test set α? (Correlation of α vs. αS∪

and
αS∪⇄

)
Q7 How should we adaptively select SMT training data for a given test domain?

We use state-of-the-art instance selection models to learn a recipe for domain adap-
tation. We validate our the domain adaptation approach for not only a single SMT ex-
periment but for 1400 different SMT systems and answer 7 important research ques-
tions while comparing 7 domain adaptation strategies. Our results demonstrate that
using training instance selection over all of the instances available can increase target
2-gram recall, the percentage of test target 2-grams found in the training set, by 22%
and BLEU (Papineni et al., 2002) by 3.55 points. Our results may generalize to other
domain adaptation tasks in natural language processing as well such as parsing.

2. Instance Selection Algorithms

We use two training instance selection models for domain adaptation: feature de-
cay algorithms and instance selection for alignment (dice), where both try to increase
the recall of test target features in the training set. We use a scaling parameter for
selecting shorter instances having similar source and target lengths. High coverage
of target features in the training sets is important for achieving high BLEU perfor-
mance (Biçici, 2011).

2.1. Feature Decay Algorithm (FDA)

Feature decay algorithms (Biçici and Yuret, 2011a, 2015) increase the diversity of
the training set by decaying the weights of n-gram features that have already been
included and try to maximize the coverage of source side features of the test set. FDA
decays the initial feature weights as instances containing them are included in the se-
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lected training data where the order by which sentences are selected is determined by
a sentence score which is calculated by weighted sum of feature weights. Algorithm 1
presents the FDA algorithm.

Algorithm 1: The Feature Decay Al-
gorithm

Input: Parallel training sentences U ,
test set features F , and
desired number of training
instances N.

Data: A priority queue Q, sentence
scores score, feature values
fval.

Output: Subset of the parallel
sentences to be used as the
training data L ⊆ U .

1 foreach f ∈ F do
2 fval(f)← init(f,U)
3 foreach S ∈ U do
4 score(S)← 1

z

∑
f∈features(S)

fval(f)

5 enqueue(Q, S, score(S))
6 while |L| < N do
7 S← dequeue(Q)

8 score(S)← 1
z

∑
f∈features(S)

fval(f)

9 if score(S) ≥ topval(Q) then
10 L← L ∪ {S}

11 foreach f ∈ features(S) do
12 fval(f)← decay(f,U ,L)
13 else
14 enqueue(Q, S, score(S))

We summarize the initialization, decay-
ing, and scoring used in the FDA version.

Initialization:
init(f) = log(|U |/CU (f))

Decay:
decay(f) = init(f)(1+ CL(f))

−1

Sentence score:

score(S) =
1

z

∑
f∈F(S)

fvalue(f)

The input to the algorithm is parallel
training sentences, U , the number of de-
sired training instances, and the source-
language features of the test set. The fea-
ture decay function, decay, is the most
important part of the algorithm where
feature weights are multiplied by 1/(1+
CL(f)), where CL(f) returns the count of
f inL, the subset of the corpus to be used
as the training data. fvalue(.) is a func-
tion returning the weight of the argu-
ment feature. F(S) returns the features
of sentence S. The initialization function,
init, calculates the log of inverse doc-
ument frequency (idf), where |U | is the
sum of the number of features appear-
ing in the training corpus and CU (f) is
the number of times feature f appear in
U .

In the FDA version used in our experiments, we use a length scaling factor that
prefers balanced shorter sentences defined as: z = |S|max( r|S|

|T |
,

|T |

r|S|
), where r is the

ratio of the target-sentence length to the source-sentence length observed in the train-
ing set. FDA can be used in both transductive learning scenarios where test set is
used to select the training data or in active learning scenarios where training set itself
is used to obtain a sorting of the training data and select.
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2.2. Using FDA5

FDA can be used to model new instance selection methods for natural language
processing, information retrieval, machine translation, domain adaptation, or other
related tasks where diverse and relevant selection of data is needed or phenomena
with decaying feature weights are observed. FDA5 is a 5 parameter version of FDA
providing a class of algorithms with feature decay and capability of modeling the
behavior of other instance selection models as well (Biçici and Yuret, 2015). FDA5 is
developed for efficient parameterization, optimization, and implementation of FDA.
FDA5 allows a shift from developing general purpose SMT systems towards task
adaptive SMT solutions.

FDA5 and instructions on how to use FDA5 are available at github.com/bicici/
FDA and the FDA5 optimizer is available at github.com/bicici/FDAOptimization.
The main parameters to the FDA5 algorithm are presented below:

-n (3): maximum n-gram order for features
-t (0): number of training words output, -t0 for no limit
-i (1.0): initial feature score idf exponent
-l (1.0): initial feature score ngram length exponent
-d (0.5): final feature score decay factor
-c (0.0): final feature score decay exponent
-s (1.0): sentence score length exponent

initial feature score: fscore0 = idf^i * ngram^l
final feature score : fscore1 = fscore0 * d^cnt * cnt^(-c)
sentence score : sscore = sum_fscore1 * slen^(-s)

2.3. Instance Selection for Alignment

Dice’s coefficient (Dice, 1945) is used as a heuristic word alignment technique giv-
ing an association score for each pair of word positions (Och and Ney, 2003). Co-
occurrence of words in the parallel training sentences is used to retrieve sentences
containing co-occurring items. Dice’s coefficient score is defined as: dice(x, y) =
2C(x,y)
C(x)C(y) , where C(x, y) is the number of times x and y co-occur and C(x) is the num-
ber of times x appears in the selected training set. dice takes a test source sentence,
S′, and calculates the goodness of a training sentence pair, (S, T), by the sum of the
alignment scores as in Equation (2):

ϕdice(S
′, S, T) =

1

z

∑
x∈X(S′)

|T |∑
j=1

∑
y∈Y(x)

dice(y, Tj), (2)

10

github.com/bicici/FDA
github.com/bicici/FDA
github.com/bicici/FDAOptimization


E. Biçici Domain Adaptation for Machine Translation with Instance Selection (5–20)

Figure 1. CCL output with arrows representing links, <S> representing the start of the
sentence.

where X(S′) stores the features of S′, Y(x) lists the tokens in feature x, and

z = |S|max(r|S|
|T |

,
|T |

r|S|
)(|T | log |S|+ |S| log |T |)

is the scaling factor, which aims balanced shorter sentences that are not very difficult
to align. ϕdice(S

′, S, T) favours the abundance of multiple cooccurring tokens. dice
selects relevant training sentences for a given test sentence with a goal of improving
word alignment performance (Biçici and Yuret, 2011a). SMT systems heavily rely on
the word alignment of the parallel training sentences to derive a phrase table.

2.4. Features for Instance Selection

We use n-gram features when selecting training instances with up to 3-grams.
We also perform unsupervised parsing using the Common Cover Link (CCL) algo-
rithm (Seginer, 2007) and extract links from the base words to the head words. CCL
allows equivalent classes with reciprocal links between words. CCL structures allow
us to obtain structures representing the grammar used in the training and test sen-
tences. Figure 1 depicts the parsing output obtained by CCL for an example sentence.
Reciprocal links increase the recall and help us find relevant sentences from the train-
ing set more easily.

3. Experiments

We run experiments comparing alternative training data adaptation strategies de-
scribed, which help us answer the research questions we target in Section 1. We per-
form translation domain adaptation experiments using the phrase-based Moses SMT
system (Koehn et al., 2007). We use two parallel corpus domains: domain A (DA) and
domain B (DB), where the training and test instances can come from. DA uses Eu-
roparl 7 and DB uses the News Commentary corpus. Both of these corpora are avail-
able from the WMT’12 translation challenge website (Callison-Burch et al., 2012). 1 We

1Parallel corpora are available from http://www.statmt.org/wmt12/translation-task.html
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use English-German parallel corpora for our experiments and translate from English
to German. DA contains 1, 920, 209 sentences andDB contains 158, 840 sentences with
average target number of words being 23.2 and 22.0, respectively.

We obtain training data by transductively selecting 10, 000 training instances to
translate test sets of 100 sentences sampled according to the domain adaptation strate-
gies. The randomly selected α values used converge to 0.5 on average. Each test set
defines a new domain that we try to adapt accordingly. For each domain adapta-
tion strategy, we perform 100 training data selection experiments. In order to obtain
10, 000 training instances for a given test set of 100 sentences, we select 100 training
instances for each test sentence. This corresponds to 50 times reduction in the number
of training instances selected for each sentence but doubling the training data used
for translating each compared to previous work (Biçici, 2011). We focus on how to
pick the training instances from separate domains when the test set is a mixture of
different domain corpora. We build SMT models using Moses for each training data
experiment and perform tuning over randomly selected 500 instances separately for
each experiment. The LM corpus is Common Crawl from WMT’13 (Bojar et al., 2013)
and it is cleaned such that sentences from DA and DB are excluded and fixed for all
experiments. We train a 4-gram language model using SRILM (Stolcke, 2002). Out
of the 1400 SMT experiments, 500 each are run with dice or FDA, 300 are run for ran-
dom selection, and 100 are run using 50, 000 training instances selected from DA∪DB

using FDA, corresponding to S∪50K
.

We obtain results that span a wide range of distributional similarities between the
training and the test set. In total, we perform 1400 training data selection and SMT
experiments using 18 million training, 700 thousand development, and 10, 000 test
sentences. We can think of a budgeted SMT training scenario where we have a budget
of $10, 000 and pay $1 per training sentence pair used but we do not pay for searching
and picking the ones we want. We are solving the following problem: given a limited
budget of $10, 000, a test set of 100 sentences, and two domains to choose training in-
stances from, how should we construct the training set for SMT? The training corpora
we use is the embodiment of larger domain corpora (e.g. web crawled corpora) from
which training sentences can be selected.

3.1. Training Data Comparison

Table 1 compares the training data selected with each adaptation strategy accord-
ing to the average source and target recall or coverage (scov and tcov), the number of
words per sentence they contain, and the number of target 2-grams found. scovn and
tcovn refer to n-gram scov and tcov, and scov⇄ refer to scov over CCLs. Instance se-
lection results in shorter sentences than the randomly sampled training data but more
relevant due to higher recall, the percentage of test set features found in the training
set. The columns represent the number of words per sentence (wps), the number of
unique 2-grams found on the target side of the training sets, and source and target

12
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Target Stats scov tcov tcov/n-gram ×105

Exp wps 2-grams scov1 scov2 scov⇄ tcov1 tcov2 1-gram 2-gram
R 25.8 120666 .9021 .5918 .5288 .8340 .5007 3.5077 .4149
Rα 25.4 129838 .9246 .6127 .5448 .8577 .5148 3.2065 .3980
Saml 13.7 53314 .8046 .3653 .2918 .6747 .2769 4.4230 .5989

di
ce

S.5 14.8 83857 .9929 .9125 .8053 .9069 .5849 4.7626 .6978
Sα 15.2 84946 .9923 .9044 .7966 .9074 .5874 4.8480 .7057
SO 9.3 47563 .9789 .8388 .7209 .8498 .4965 7.1526 1.0525
S∪ 13.8 76385 .9943 .9248 .8162 .9064 .5884 5.2403 .7726
S∪⇄ 14.7 78044 .9684 .8534 .8155 .8863 .5652 5.1204 .7266

FD
A

S0.5 17.4 92070 .9935 .9190 .8252 .9101 .5980 4.5641 .6500
Sα 18.3 94564 .9927 .9081 .8082 .9110 .6026 4.6085 .6491
SO 13.9 72231 .9898 .8858 .7694 .8913 .5665 5.4169 .7937
S∪ 17.7 87480 .9947 .9286 .8307 .9127 .6133 4.9965 .7037
S∪⇄ 16.0 81570 .9696 .8630 .8715 .8913 .5797 5.0665 .7133
S∪50K

21.8 366529 .9947 .9288 .8493 .9599 .7419 1.8684 .2032
Dα=1 25.6 5645724 .9329 .8087 .7979 .9164 .7547 .7910 .0134
Dα=0 23.9 1191613 .9058 .6915 .6790 .8412 .6233 .6557 .0523

Table 1. Training data comparison for each experiment. Numbers represent averages
over 100 experiments except the last two rows. Target 2-grams count the number of

unique 2-grams found.

1-gram and 2-gram recall. dice selects relatively shorter and less diverse training sen-
tences than FDA and obtains slightly lower recall. Both selection models improve the
recall significantly. Each coverage level shows the relationship between the test do-
main and the training domain. We obtain baseline training data, Dα=1 and Dα=0, by
selecting all of the training instances from DA (α = 1) or DB (α = 0), excluding the
test sentences.

dice achieves similar source and target recall levels to FDA using fewer target 1-
grams and 2-grams. dice achieves higher scores than FDA for tcov / n-gram, which
calculates the target recall per the n-grams found in the training set and shows the
amount of recall we achieve per n-gram used in the training set. Source recall is
the result of the sentence selection process as we select by looking at the source side
but target recall is unknown. The strategy S∪ lets the instance selection model find
the relevant instances, which achieves the best results. We observe that additional
prior knowledge about the test distribution helps (Sα); even distributing the selec-
tions equally (S0.5) improves the performance in comparison with SO (Q2, see the
next paragraph). We use ϕaml(s, t) with strategy SO where for each test sentence,
only the domain knowledge is used. We randomly select the OOD LM as having sim-

13
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ilar size as the ID LM corpus. The vocabulary consists of the tokens appearing at least
twice in DB. We train an open-vocabulary LM and treat tokens not appearing in the
vocabulary file as <UNK>. We use ϕaml in the oracle setting as a baseline where for
each test sentence, we know the domain it is coming from and accordingly we calcu-
late ϕaml for all sentences in DA ∪DB and sort them using Equation (1). Top tcov2
is achieved with strategy S∪ using FDA. Instance selection across different domains
achieve remarkable results by obtaining larger scov and tcov levels than either the
individual domains. The ordering obtained among the strategies is given in Equa-
tion (3), which forms a recipe for domain adaptation in MT:

S∪ > Sα > S0.5 > S∪⇄ > SO > Rα > R. (3)

The ordering in the recipe is obtained according to statistical significance tests with
paired t-testing (Wasserman, 2004) using the tcov2 obtained over 100 experiments
with different strategies. A > represents statistically significantly better performance
and ≥ represents better but not statistically significant improvement.

S0.5 gives close results to Sα since we selected α randomly and on average it con-
verges to 0.5. We are surprised to see that SO does not give the best results and obtains
the least diverse training data, which reduces its recall. SO is restricts the domain
of the training sentences selected for each test sentence to the known oracle domain
whereas Sα has more freedom when selecting by benefiting from relevant instances
from the other domain as well. Table 1 shows that SO is not the best strategy. If each
sentence defines a domain of interest, its features may best be utilized by a mixture
selection model for domain adaptation as we observe with the S∪ strategy. S∪⇄ ob-
tains better results than SO but obtains lower recall than S∪, which is likely to be due
to a lot of CCLs being absent from the training set. Our recipe contains the essence
of domain adaptation in a single line and abstracts the results obtained with different
domain adaptation strategies. FDA with S∪50K

improves tcov1 by 5 percentage points
and tcov2 by 13.

Asα converges to 0.5 over all 100 experiments, we have identified 4 cases restricting
the α selection range and looked at the closeness of the training data to the test data
in Table 2 in terms of the test target 2-grams recall. α ≤ 0.1 corresponds to selecting
at least 90% of test set instances from DB and α > 0.9 selects at least 90% of them
from DA. The tcov2 differences between α ≤ 0.5 and α > 0.5 and between α ≤ 0.1

and α > 0.9 are larger in setting ∪. Setting S∪ performs best when α > 0.9, which is
expected since it contains mostly sentences from DA. Table 2 shows that S∪ achieves
the best tcov2 across all α ranges for FDA and most of them for dice.

3.2. Translation Results

Table 3 (left) shows the translation performance using a Moses SMT system trained
with each training set to translate the test sets and the baseline system results with

14
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Exp α ≤ 0.5 α > 0.5 α ≤ 0.1 α > 0.9

R .4684 .5330 .4386 .5550
Rα .4940 .5357 .4777 .5579
ϕaml .3422 .2116 .3908 .1890

di
ce

S0.5 .5690 .6007 .5560 .6098
Sα .5692 .6056 .5618 .6237
SO .4736 .5193 .4575 .5410
S∪ .5666 .6101 .5507 .6263
S∪⇄ .5421 .5883 .5234 .6048

FD
A

S0.5 .5815 .6144 .5690 .6237
Sα .5812 .6240 .5757 .6472
SO .5431 .5898 .5304 .6078
S∪ .5914 .6352 .5742 .6518
S∪⇄ .5565 .6029 .5394 .6173
S∪50K

.7202 .7637 .7009 .7761

Table 2. Average tcov2 comparison of the training data for different α ranges.

Dα=1 and Dα=0
2. tcov2 results get reflected to the BLEU performance we obtain.

FDA achieves better results than dice and both achieve significantly better BLEU per-
formance than random sampling baselines. The BLEU gain becomes 3.55 points ver-
sus R and 3 points versus Rα. We present the BLEU and F1 (Biçici, 2011) performance
obtained for different α ranges in Table 3 (right). FDA using the S∪ strategy achieves
the top performance. Instance selection across different domains in setting S∪50K

achieve remarkable results by obtaining larger F1 score than both of the domain spe-
cific systems. The ordering obtained among the strategies is given in Equation (4):

S∪ > Sα ≥ S0.5 ≥ S∪⇄ ≥ SO > Rα > R. (4)

The ordering is obtained according to statistical significance tests with paired t-testing
using the corpus level BLEU and F1 (Biçici and Yuret, 2011b; Biçici, 2011) scores. S∪⇄ ,
Sα, and S0.5 strategies achieve close performance with each other using FDA. The
S∪ > Sα ≥ SO result in both recipes is very important, which shows that the bound-
aries defining a domain are not clear cut and we are better off using a strong instance
selection model over all the available training data. We plot the BLEU performance for
increasingα in Figure 2 for FDA. We observe that asα→ 1, BLEU increases due toDA

being an easier translation domain. The gap between domain adaptation with FDA
and random selection results is lowest around α = 0.4. We are also able to obtain as
good as the baseline results in terms of F1 scores using strategy S∪ and FDA. F1 score

2Baseline results are not an average but the translation performance over all of the 10K test sentences.
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BLEU F1
Dα=1 .1866 .2458
Dα=0 .1785 .2443

dice FDA dice FDA
R .1248 .1991
Rα .1305 .2066
ϕaml .0851 .1587
S0.5 .1530 .1589 .2385 .2428
Sα .1542 .1572 .2391 .2410
SO .1438 .1549 .2289 .2401
S∪ .1570 .1603 .2409 .2442
S∪⇄ .1520 .1537 .2329 .2342
S∪50K

- .1770 - .2559

Exp α ≤ 0.5 α > 0.5 α ≤ 0.1 α > 0.9

R .1157 .1339 .1031 .1361
Rα .1248 .1363 .1193 .1409
ϕaml .1035 .0885 .1071 .0850

di
ce

S0.5 .1463 .1597 .1427 .1654
Sα .1449 .1634 .1370 .1703
SO .1348 .1528 .1257 .1561
S∪ .1488 .1652 .1385 .1724
S∪⇄ .1423 .1617 .1336 .1680

FD
A

S0.5 .1511 .1667 .1386 .1702
Sα .1483 .1660 .1384 .1727
SO .1466 .1632 .1334 .1673
S∪ .1520 .1686 .1397 .1772
S∪⇄ .1430 .1644 .1329 .1697
S∪50K

.1690 .1850 .1610 .1915

Table 3. Average BLEU and F1 comparison for each experiment setting and baselines
(left) and average BLEU comparison for each experiment setting for different α ranges

(right).

can be easily interpreted and it correlates well with human judgments (Callison-Burch
et al., 2011).

3.3. Instance Selection α

We compare the test sample distribution parameter α with the α present in the
selected training sets in training data adaptation strategies S∪ and S∪⇄ , which select
from DA ∪ DB. We denote the corresponding learned αs as αS∪

and αS∪⇄
. Test

set α affects the distribution of the features in the selected training sets such that the
selection α may mimic the test set α. We use α to measure a given instance selection
model’s effectiveness in learning the inherent α of a new test domain. Table 4 presents
the mean (µ) and variance (σ) of theα values obtained. µ forα is very close to 0.5 since
it is randomly selected for each of the 100 experiments. µ for the learnedαs are around
0.85 with σ around 0.055. Thus, S∪ and S∪⇄ tend to select about 85% of the training
data from DA. This may be expected since the size of DA is about 12 times the size of
DB and there may be more relevant instances in DA. But as we show in the results,
the instance selection models overcome this bias and manage to select with close to
perfect correlation with the actual α.

Table 4 also presents the correlation results we obtain when we compare the actual
αs for all of the 100 experiments with the selected αs. The results show that we can
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µ σ

α 0.5059 0.278
dice FDA dice FDA

αS∪
0.8106 0.8326 0.062 0.066

αS∪⇄
0.8595 0.8731 0.049 0.049

r dice FDA
r(α,αS∪

) 0.9864 0.9857
r(α,αS∪⇄

) 0.9788 0.9783

Table 4. Mean (µ) and variance (σ) of the sampling parameter α values obtained (left)
and their correlation (r) (right).

Figure 2. BLEU and F1 for increasing sampling parameter α for FDA.

achieve close to perfect correlation with the actual αs. Thus, even though the train-
ing data adaptation strategies S∪ and S∪⇄ select more from DA and achieve larger µ
for the selected αs, they perfectly correlate with the sampling parameter α. In other
words, FDA and dice are able to mimic the sampling parameter successfully and still
continue to retrieve relevant training instances at the same time.

4. Contributions

Our results answer the questions we have asked in Section 1, which we summarize
below:

A1 Knowing α increases tcov2 by 3% and BLEU by 0.26 points when sampling ran-
domly.

A2 Knowing the domain of each test sentence does not improve the performance with
FDA or dice.
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A3 Instance selection can increase tcov2 by 22% and BLEU by 3.55 points when com-
pared with random sampling. Instance selection with known α increases tcov2 by
20.4% and BLEU by 3.24 points.

A4 Knowing α improves BLEU by 0.3 points for dice and 0.1 points for FDA but does
not significantly increase tcov2.

A5 Instance selection without known α over all available training data using n-gram
features achieves the best results with 22% increase in tcov2 and BLEU gains of up
to 3.55 points.

A6 Selection αs perfectly mimic the test set α with r ∼ 0.99, which shows the effec-
tiveness of the instance selection models.

A7 We arrive at a recipe to adapt SMT training data to a given new test domain based
on the tcov2 and BLEU performance: S∪ > Sα ≥ S0.5 ≥ S∪⇄ ≥ SO > Rα > R. Our
results demonstrate that following the recipe can result in gains of up to 3.55 BLEU
points and 22% increase in tcov2.

Our results demonstrate that the boundaries defining a domain are not clear cut
and domain selection at the corpus level or the sentence level is not as effective as
sentence-level training instance selection using all of the available corpora. Each sen-
tence defines a domain of interest and we show that its features are best utilized by a
mixture selection model with strategy S∪ using FDA. FDA selected 10K training sen-
tences using strategy S∪ is able to obtain F1 results as good as the baseline systems
using 2M sentences. FDA selected 50K training sentences is able to obtain BLEU re-
sults as good as the baseline and obtains 1 F1 point better results. We also show that
our instance selection techniques are able to perfectly learn the sampling parameter
of the test set. Matching orderings in the recipes obtained according to coverage and
translation performance supports that high coverage is important for achieving high
BLEU performance.

We obtain remarkable results showing that instance selection across different do-
mains achieve better scov and tcov than either the individual domains and better
F1 score than both of the domain specific systems in setting S∪50K

using FDA. Our
results show that sharing data across different domains is providing an advantage
over competing domain specific corpora. Instance selection for domain adaptation is
diminishing the competitive advantage of domain specific corpora and encouraging
data sharing. We provide our SMT experiments’ datasets via a link at github.com/
bicici/MTPPDAT.
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Abstract
In this work, we present subjectivity lexicons of positive and negative expressions for In-

donesian language created by automatically translating English lexicons. Other variations are
created by intersecting or unioning them. We compare the lexicons in the task of predicting sen-
tence polarity on a set of 446 manually annotated sentences and we also contrast the generic lex-
icons with a small lexicon extracted directly from the annotated sentences (in a cross-validation
setting). We seek for further improvements by assigning weights to lexicon entries and by wrap-
ping the prediction into a machine learning task with a small number of additional features.
We observe that lexicons are able to reach high recall but suffer from low precision when pre-
dicting whether a sentence is evaluative (positive or negative) or not (neutral). Weighting the
lexicons can improve either the recall or the precision but with a comparable decrease in the
other measure.

1. Introduction

Sentiment analysis has gained much attention lately mostly due to its practical ap-
plications in commercial settings. The task is being widely solved not only for English,
but also for many other languages, including languages with scarce evaluative data.
However, we are not aware of any systematic attempts to build sentiment analysis
resources for Indonesian so far, despite the increasing use of Internet by speakers of
Indonesian language.

In this paper, we present our work on two types of resources for Indonesian sen-
timent analysis. The first one is a small collection of sentences coming from user re-
views in several domains, manually annotated for sentiment. The second one is a
collection of subjectivity (sentiment) lexicons built mainly by translating available En-
glish lexicons using several methods of translation. We use these resources together

© 2015 PBML. Distributed under CC BY-NC-ND. Corresponding author: bojar@ufal.mff.cuni.cz
Cite as: Franky, Ondřej Bojar, Kateřina Veselovská. Resources for Indonesian Sentiment Analysis. The Prague
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and evaluate the performance of a simple lexicon-based sentiment analysis method
on the annotated data.

2. Previous Work

For non-English languages, the creation of subjectivity lexicons usually takes the
advantage of the availability of WordNet for the given language. This can be found in
Bakliwal et al. (2012) and Pérez-Rosas et al. (2012). The work by Bakliwal et al. (2012) is
for Hindi. They start with small seeds of 45 adjectives and 75 adverbs, pre-annotated
with positive, negative, or objective polarity information. The seeds are expanded
using Breadth First expansion by looking at the antonymy relation for opposite po-
larity and synonymy for the same polarity. Pérez-Rosas et al. (2012) in their work
on Spanish subjectivity lexicon take the advantage of aligned synsets between Word-
Nets of different languages to do the mapping. They get two different lexicons. A full
strength lexicon is created by taking words with strong negative or positive polarity
from MPQA1 lexicon and map them to the synsets in SentiWordNet, by taking the
synset with the highest negative or positive value for each word. The found synsets
are mapped to Spanish WordNet. The second lexicon, a medium strength lexicon, is
created by mapping the synsets in SentiWordNet with polarity scores greater than 0.5
to Spanish WordNet.

A subjectivity lexicon for Dutch adjectives is created by Smedt and Daelemans
(2012) using a mixture of manual annotation and automatic expansion. The first step
is to extract adjectives with high frequencies from a collection of book reviews. Seven
human annotators annotate the adjectives that are previously disambiguated using
CORNETTO (an extension of Dutch WordNet). Each adjective is expanded by their
best nearest neighbours (handpicked by two annotators) from the list of new adjec-
tives taken from the corpus and using cosine similarity as the measure of similarity.
Each adjective is represented as a vector of top 2,500 nouns from the same corpus. An-
other expansion is performed by adding words from the same synset in CORNETTO,
and by using the relations provided, e.g., antonymy, synonymy.

A method of creating a subjectivity lexicon for a language with scarce resources
(Romanian) is introduced by Banea et al. (2008). They propose a method to create sub-
jectivity lexicon using an online dictionary and a collection of documents. The work
uses a set of subjective words called seed words to bootstrap the lexicon creation. The
process runs by querying the online dictionary using these seed words. A list of ex-
tracted words returned by dictionary for each seed word is then filtered by calculating
their similarity with the seed word using Latent Semantic Analysis (LSA). The LSA
module is trained on Romanian corpus of half-million words. The surviving words
are added to the lexicon and the process is repeated until the maximum number of
iterations is reached.

1http://mpqa.cs.pitt.edu/
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Some other approaches in subjectivity lexicon creation for non-English languages
that do not utilize dictionary or thesaurus (e.g., WordNet) can be found in Maks and
Vossen (2012) and Kaji and Kitsuregawa (2007). Their works can be considered as
corpus-based approaches to lexicon creation. Maks and Vossen (2012) use an under-
lying assumption that different types of corpus posit different characteristics of sub-
jectivity or objectivity information. They use three different corpora of Wikipedia ar-
ticles, news, and comments inside the news to build Dutch subjectivity lexicon. They
take words in the news and comments that are not over-used in Wikipedia articles
as subjective words. The measures of over-usage of words between the corpus are
calculated using log-likelihood ratio and a DIFF calculation (Gabrielatos and Marchi,
2011).

Kaji and Kitsuregawa (2007) exploit the dependencies and language structures in
Japanese to extract evaluative sentences from a collection of one billion HTML docu-
ments. They use a list of cue words to detect the presence of evaluative clauses (pos-
itive or negative) in the dependency structure of the sentence. They also use layout
structures such as itemization/table in HTML documents and cue words such as ‘pros
and cons’ and ‘plus and minus’ to extract positive and negative evaluative sentences.
From the evaluative sentences, they extract candidate phrases consisting of adjectives
and adjective phrases, e.g. noun+adjective, together with their counts in positive and
negative sentences. The candidates are then filtered using chi-square and PMI polar-
ity score, and pre-defined thresholds.

3. Annotated Sentences

In this section, we describe our annotated data. The annotated sentences were
taken from user reviews on KitaReview website2. We randomly selected 24 reviews
and segmented them into separate sentences. The sentences were manually checked
and cleaned, removing incomplete or otherwise broken ones. The final set consists of
446 sentences.

The annotation of the sentences was performed by two native speakers of Indone-
sian. The annotation process equipped the sentences with the following information:

• Sentence objectivity/subjectivity. Annotating the sentence as objective (o), i.e.
factual, expressing no opinion, or subjective (s), i.e. expressing opinion.

• Sentence polarity. The overall polarity of the sentence, i.e. an estimate whether
the sentence makes a positive (pos), negative (neg), or neutral (non) impression
on the reader.

• Evaluative Expressions. The words in the sentences that are considered to bear
positive or negative polarity are explicitly marked: “#expression@” for posi-
tive expressions, and “#expression$” for negative ones, e.g., “meskipun relatif

2http://www.kitareview.com

23

http://www.kitareview.com


PBML 103 APRIL 2015

sedikit lebih #mahal$ (expensive) ... cukup #sepadan@ (worth) dengan segala
kualitas masakan”.

• Two targets flag. While in our limited annotation, we do not explicitly mark
the target(s) of the valuation(s) expressed in the annotated sentences, it is not
uncommon that a sentence attributes some valuation to more than one object.
Sometimes the valuations can be even contradictory. In order to at least estimate
how often this complication occurs, we explicitly mark sentences with two or
more targets with the flag “_TWOTARG”.

Table 1 shows basic statistics of the annotation. We see that around 60% of the sen-
tences are marked as neutral. The number of negative sentences is much lower than
that of the positive ones. It can also be observed that our annotators explicitly marked
more positive expressions compared to the negative ones.

Table 1. Summary of Annotated Sentences

Annotator 1 Annotator 2
Neutral Sentences 267 281
Positive Sentences 157 150
Negative Sentences 22 15
Sentences with Two Targets 30 17
# Pos Expressions (unique) 151 114
# Neg Expressions (unique) 40 33

The annotated set of sentences is stored in a plain text file, each sentence on a
separate line. Tab-delimited columns contain all the information, as summarized in
Table 2.

3.1. Agreement on Overall Polarity of a Sentence

We calculated the inter-rater agreement for overall polarity (sentiment) of the two
annotations using the Kappa (κ) statistic. The agreement on the level of annotating
the 446 sentences as neutral vs. evaluative (i.e. positive or negative but regardless
which of these two classes) is 0.697.

If we restrict the set of sentences to the 140 ones where both annotators marked
the sentence as evaluative, the agreement on the actual polarity (positive or negative)
is higher: κ of 0.921.

4. Subjectivity Lexicons

To the best of our knowledge, there are no subjectivity lexicons (lists of positive or
negative expressions) for Indonesian.
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Table 2. Columns of Our Annotated Dataset

Column Name Description
SENTENCEID ID of the sentence
DOCID Review document ID of the sentence
LINK URL of the review on the original website
CATEGORY Domain of the review
TITLE Title of the review
REVIEWER The author of the review
SENTENCE The full text of the annotated sentence, in-

cluding markup for evaluative expressions
and the optional “TWOTARG” flag.

OBJSUBJ Indication whether the sentence is objective
(factual) or subjective (expressing an opinion)

POSNEGNON The overall sentence polarity (sentiment):
positive/negative/neutral

We created several such lexicons from English ones by (automatic) translation. The
translated lexicons were then merged by intersecting or unioning them based on their
source lexicon or the method of translation. The selection of the method of lexicon cre-
ation by translating was based on some limitations of the language resources available
in Indonesian. In total, we produced 12 subjectivity lexicons from translation alone
and 16 lexicons from merging operations.

4.1. Producing the Basic Lexicons

We used four different English subjectivity lexicons as our source lexicons as listed
below:

• Bing Liu’s Opinion Lexicon3

It is a subjectivity lexicon created and maintained by Bing Liu (Hu and Liu,
2004). It is a list of around 6,800 entries (positive and negative combined).

• Harvard General Inquirer
General Inquirer lexicon4 is a list containing words and various syntactic and
semantic features or categories. The positive and negative categories can be
used to extract positive and negative words from the list.

3http://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html
4http://www.wjh.harvard.edu/~inquirer/spreadsheet_guide.htm
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• MPQA (Multi-Perspective Question Answering) Subjectivity Lexicon
MPQA5 or OpinionFinder6 lexicon is a subjectivity lexicon built using manual
and automatic identification of evaluative words (Wilson et al., 2005). The lexi-
con contains words and information about their polarities, subjectivity strengths,
and also their part-of-speech tags. We took the words with ‘priorpolarity’ tag
of ‘positive’, ‘negative’, or ‘both’. In the case of ‘both’, we put the word in both
positive and negative lists.

• SentiWordNet7

SentiWordNet (Baccianella et al., 2010) is a lexicon created on the basis of Word-
Net synsets (Miller, 1995) by assigning polarity weight (positive/negative) to
the synsets. The general approach to produce the lexicons is by using a random
walk model to propagate the positive and negative weight using the relation-
ship information found in the gloss of the synsets. We took synsets that have
polarity weight (positive/negative) greater than or equal to 0.5 (>= 0.5).

Table 3 below provides the exact numbers of positive and negative expressions
in each of the English lexicons. We found duplicated entries in our English General
Inquirer lexicon. The numbers without duplication are 1,637 for positive lexicon and
2,005 for negative lexicon. This duplication does not affect the resulting Indonesian
lexicons, since we run de-duplication process before producing the final lexicons, see
below.

We used three methods of translation to convert the extracted English lists of words
into Indonesian:

• Google Translate8

We simply copied and pasted all the entries from a list into the web interface of
Google Translate. We translated one list at a time, e.g., positive list from Senti-
WordNet, with each entry separated by a newline. The translation was carried
out during November 2012.

• Moses9

We used Moses and our parallel corpus of 40,369 sentences (with no additional
annotation) to build a small statistical machine translation system, with 38,369
sentences for training and 2,000 sentences for tuning, and using default param-
eters. The training data come from several domains: news, official reports, and
devotional articles.

5http://mpqa.cs.pitt.edu/
6http://mpqa.cs.pitt.edu/opinionfinder/
7http://sentiwordnet.isti.cnr.it
8http://translate.google.com
9http://www.statmt.org/moses
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• Kamus Online Bilingual Dictionary
We used the online bilingual dictionary Kamus.net10 to translate expressions
from the English lexicons and took only the first translation as the result.

Source Covered by a Translation System
Expressions Google Moses Kamus

Lexicon Pos Neg Pos Neg Pos Neg Pos Neg
Bing Liu 2,006 4,783 91% 87% 15% 6% 63% 61%
General Inquirer 1,915 2,291 99% 99% 31% 16% 82% 81%
MPQA 2,321 4,168 94% 91% 18% 8% 67% 61%
SentiWordNet 5,730 8,821 80% 73% 18% 14% 50% 41%
Intersection 470 791
Union 7,809 12,445

Table 3. Number of expressions extracted from English subjectivity lexicons and the
extent to which they are translatable by each examined translation system.

Table 3 summarizes the coverage of each of translation systems. A term is consid-
ered non-translated if the system fails to produce any translation as well as when it
copies the input verbatim to the output.

Google Translate appears to have the best coverage while our Moses (esp. due to
the relatively small training data) covers the fewest items.

After the automated translation, we removed untranslated and duplicated entries.
One annotator then manually checked all entries and removed translations that did
not convey evaluative sense and also translations that consisted of more than one
word but did not form a single multi-word expression. Table 4 shows the number of
expressions for each lexicon produced.

Google translation produces the largest lexicons compared to the other transla-
tion methods. However, after manual filtering, the results retained are comparatively
smaller. One of the reasons is that most of the entries are translated into phrases that
are not multi-word expressions but rather e.g. clauses or clause portions.

Moses produces a small number of results since the training data were not be large
enough and come from a different domain. Most of the entries from the English lexi-
cons cannot be translated.

From the point of view of the source lexicon, one significant observation is that that
SentiWordNet loses many of its entries in the filtering process. It is due to the entries
from SentiWordNet that consist of a lot of specific names such as diseases, scientific
names or terms, etc., that we consider as non-evaluative.

10http://www.kamus.net
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Entries Obtained Entries after
from Translation Manual Filtering

Lexicon Translation Pos Neg Pos Neg
Bing Liu

Google

1,147 2,589 740 1,500
General Inq 1,203 1,443 690 911
MPQA 1,429 2,426 796 1,359
SentiWordNet 3,404 4,857 873 1,205
Bing Liu

Moses

249 255 180 165
General Inq 379 245 237 130
MPQA 372 277 236 158
SentiWordNet 847 886 236 160
Bing Liu

Kamus

641 1,290 478 910
General Inq 884 1,009 536 692
MPQA 887 1,271 560 871
SentiWordNet 1,606 1,856 582 1,221

Table 4. Number of (de-duplicated) Indonesian expressions for each source lexicon
and translation method before and after manual removal of wrong expressions

4.2. Merging Basic Lexicons

With the (many) baseline lexicons translated to Indonesian, we merged them by
a)intersection and b) union. The basic idea of the intersection operation is to get the ex-
pressions that are agreed by different types of lexicons. The resulting lexicon should
thus be smaller but with more validated expressions. On the other hand, the union
operation is meant to greedily take all possible evaluative expressions. The intersec-
tion and union operations were performed on the lexicons from the same method of
translation, lexicons with the same source of English lexicon, and also to all lexicons
produced from translation. Table 5 shows the number of expressions for the lexicons
from merging operations.

Looking at the intersection of lexicons from the same source, we can see that there
is a significant drop in the number of negative expressions for SentiWordNet. We
think that this is caused by the different translations provided by Google Translate
and the online dictionary. The union operation, as expected, shows an increase in the
number of expressions. The total number of unique entries after unioning all lexicons

11We exclude Moses-translated lexicons from the intersection with the source fixed and of the overall
intersection because they contain too few entries.
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Table 5. Positive and Negative Expressions after Intersection and Union

Intersection11 Union
Merging Lexicons of the Same… Pos Neg Pos Neg

Translation Method
Google 364 551 1256 1921
Moses 92 78 366 246
Online Dict 306 448 788 1565

Source

Bing Liu 330 660 932 1781
General Inq 330 444 963 1185
MPQA 376 619 1040 1638
SentiWordNet 388 543 1112 1918

Merging All Lexicons Together 178 270 1557 2665

is significantly smaller than the union of their corresponding English lexicons, but
still relevant considering the smaller number of expressions each lexicon has.12

4.3. Annotation-Based Lexicon

Since our annotation described in Section 3 include explicit markup of evaluative
expressions in the sentences, we can extract a small lexicon directly from this data. In
contrast to the general lexicons obtained above, this one is very much tailored to the
examined domain.

5. Evaluation

We do not compare the lexicons directly to each other, but rather employ them in
the practical task of predicting sentence polarity. We use a subset of our annotated
sentences where the two annotators agree on the polarity as the test set. The test set
consist of 380 sentences, 125 of which are labelled as positive, 13 as negative, and the
remaining 242 as neutral.

5.1. Prediction Method

Given a lexicon a prediction method is needed to estimate the polarity of a given
sentence. Our prediction method is very simple and identical for all the tested lexi-
cons.

The polarity (sentiment) of a given sentence s that contains a set of positive expres-
sions P and negative expressions N (with default weight 1.0) is predicted as:

12For comparison, the total number of expression of unioning all English lexicons is 7,809 for positive
expression and 12,445 for negative one
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polarity(s) =



positive
∑
p∈P

weightpos(p) >
∑

n∈N

weightneg(n)

negative
∑
p∈P

weightpos(p) <
∑

n∈N

weightneg(n)

neutral
∑
p∈P

weightpos(p) =
∑

n∈N

weightneg(n)

(1)

When searching the sentences for positive and negative expressions (originating
in the lexicon in question), we use the following constraints:

• Unique Polarity. An expression in a sentence can only be tagged with one type
of polarity, either as positive or as negative expression.

• Prioritize positive expressions. If the lexicon lists the same expression both as
positive and negative, ignore the negative one.

• Prioritize longer expressions. Since there was a possibility that a shorter ex-
pression is a part of a longer one, we collected the counts by first matching the
longer expressions.

• Negation. We adapted technique presented in (Das and Chen, 2001) to han-
dle the negation (inversion) of sentiment caused by a negation word. We used
the words ‘tidak’, ‘tak’, ‘tanpa’, ‘belum’, and ‘kurang’ as negation words. The
words that occur between the negation word and the first punctuation after the
negation word were tagged with ‘NOT_’, e.g. ‘kurang bagus gambarnya ?’ (the
picture is not good enough ?) to ‘kurang NOT_bagus NOT_gambarnya ?’.

5.2. Performance Measures

We compare the performance of the lexicons using precision and recall of evalua-
tive sentences:

P-EVL =
cpos,pos + cneg,neg + cpos,neg + cneg,pos

cpos,pos + cneg,neg + cpos,neg + cneg,pos + cneu,pos + cneu,neg

(2)

R-EVL =
cpos,pos + cneg,neg + cpos,neg + cneg,pos

cpos,pos + cpos,neg + cpos,neu + cneg,pos + cneg,neg + cneg,neu

(3)

where:

ca,b : count of sentences with polarity a predicted as b
pos : positive
neg : negative
neu : neutral
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Note that due to the small number of negative sentences in our test set, we examine
the preformance only at the ‘evaluative’ level, i.e. we check how well the method dis-
tinguishes evaluative (positive or negative) sentences from neutral ones, disregarding
the actual polarity.

5.3. Cross-Validation for Annotation-Based Lexicon

For a fair comparison, the lexicon extracted from our corpus of annotated sentences
is evaluated in a 3-fold cross-validation.

The test data was randomly split into 3 sets (folds) of sentences. From each fold, we
took the tagged positive and negative expressions, resulting in three lists of subjective
expressions (lexicons). The prediction was then performed on each fold using the
union of the lexicons taken from the other two folds. We report the average scores
over the three folds.

5.4. Baseline and Oracle

In order to provide some context to our scores, we include the Baseline of pre-
dicting all sentences as evaluative. Marking all sentences as neutral gives P-EVL and
R-EVL zero.

The Oracle performance is achieved if we extract the annotation-based lexicon
from the complete test set and use it to predict the evaluativeness of the very same
sentences.

5.5. Results

Figure 1 plots the precision and recall of all the lexicons.
The Baseline of marking everything as evaluative obviously has the recall of 100%

and the precision is only 36%. The Oracle, as expected, had the highest precision
(79%) and recall (90%) compared to the other type of lexicons.

The Annotation-Based lexicon, as cross-validated, maintains a very good preci-
sion (76%) but suffers a loss in recall, reaching only 54%.

The other observation that could be found was about the difference in perfor-
mances of lexicons that were coming from different translation methods. Lexicons
coming from Google translation had slightly higher precisions and recalls while Moses-
translated lexicons performed worse esp. in recall.

As expected, intersecting lexicons leads to higher precisions at the expense of re-
call and unioning has the opposite effect. Google Translate again stands out here,
bringing the highest recall when unioning across lexicon sources (u-G) and the high-
est precision when intersecting (i-G).
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Figure 1. Precision and recall of identifying evaluative sentences using various
lexicons. The Baseline is to mark all sentences as evaluative.
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6. Weighting

The evaluations in Section 5 were done using lexicons that had expressions of
weight 1.0. In realistic situation, the weight might vary, depending on how strong
an expression projected the underlying positive or negative polarity.

We tried to assign this polarity strength to each expression. We used two different
methods to achieve this objective. The two methods relied on the number of occur-
rences of the expression in a collection of 14,998 sentences coming from the same
source of reviews but with no manual annotation.

The experiments in this section use the intersection of all Google-translated lexi-
cons as the basis since this lexicon has a good balance of precision and recall.

• Frequency Weighting. The Frequency Weighting method assigned a weight
that was the frequency or number of occurrences of the expression in the collec-
tion of the unannotated sentences. The basic premise was that the more often
an expression is used in the review sentences, the higher its expressive value,
assuming that the expression was used to express sentiment.

weightpos(p) = freqall(p) (4)
weightneg(n) = freqall(n) (5)

• Iterative Weighting In Iterative Weighting, an expression was given a weight of
its relative frequency in the review sentences. For example, the weight a pos-
itive expression is equal to its frequency in positive sentences divided by its
frequency in all of the sentences.

weightpos(p) = freqpos(p)/freqall(p) (6)
weightneg(n) = freqneg(n)/freqall(n) (7)

Since the sentences used are unannotated sentences, we used the simple pre-
diction method described in the previous section to first annotate the sentences.
The default weight for each expression is set to 1.0. At the end of this annota-
tion, weight of each expression is recalculated using the formula described. The
prediction is repeated using these new weights, and so on until convergence.

6.1. Evaluating the Weighting Results

We showed the results of using the weighted lexicons to do prediction on test sen-
tences in Figure 2. The accuracy and precision of lexicons with frequency and iterative
weighting was lower compared to lexicon with default weight of 1.0. The significant
difference was in the value of the recall. Putting weights on the expressions seemed
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Figure 2. Impact of Frequency and Interative Weighting on evaluativeness prediction
using intersection of Google-translated lexicons.

to be able to give a significant increase in the recall, with frequency weighting having
higher recall than the iterative one.

The observed results confirm our expectations. Since we are evaluating only the
evaluativeness of sentences and not their actual polarity, weighting has little effect on
precision: sentences that contained expressions listed as positive in the lexicon will
still contain them even if we reduce or increase their weight. The effect on recall can
be attributed to sentences that contained an equal number of positive and negative
expressions. Without weighting, the effect cancels out and the sentence is predicted
as neutral. By introducing weights, we are very likely to break the balance and the
sentence is predicted as evaluative one way or the other. The prediction thus marks
more sentences and the growing recall confirms that these are correct sentences to
mark – even humans labelled them as evaluative. If we were marking the wrong
sentences, the recall would not increase and instead the precision would drop.

In Figure 3, we aim at increasing precision of the prediction. To this end, we re-
move expressions of low weight from the lexicon. Fewer sentences are thus going
to be predicted as evaluative. Figure 3 plots the performance at the various thresh-
olds. Only expressions with frequency higher than the threshold are included in the
lexicon.

As we hoped for, excluding expressions of lower weight helps precision. However,
the recall drops much faster than the precision grows.

7. Machine Learning Prediction

The simple prediction method described in Sections 5 and 6 does not consider any
broader context as available in the input sentence. In general, we found several types
of information that should be useful for the prediction:
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Figure 3. Thresholding using frequency weights.

• Overall Sentence Form
A sentence with positive or negative expressions might not always be an evalua-
tive sentence because the sentence structure or other features can prevent from
such interpretation. We found several things that might cause the evaluative
expressions to have no effect on the overall sentiment.
The first case is when the sentence is in a hypothetical form, as in the example of
‘sebuah keputusan yang salah akan membuat jiwa seluruh batalyon melayang
percuma’ (one wrong decision will cause the death of all batallions). In this
sentence the word ‘salah’ (wrong) is identified as negative expression. However,
this is only a hypothetical situation where the speaker expresses the opinion of
what will happen, but not to evaluate the decision itself.
Another structure that might affect the sentiment of the sentence is when it con-
trasts the positive and negative expressions as in the examples below:
‘menyuguhkan fitur yang berbeda, walau dengan model yang sama’ (it comes

with different features, though with the same design/model)
‘walau dengan model yang sama, menyuguhkan fitur yang berbeda’ (though

it has the same design/model, it comes with different features)
In this context, the word ‘berbeda’ (different) is positive and ‘sama’ (same) is
negative. Changing the parts of the sentence that are separated by a comma (one
with ‘though’ and one without ‘though’) and depending on where the positive
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and negative expressions are, the sentiment of the sentences can be different.
The first sentence seems to be neutral and the second one seems to be more
positive.
Questions are also mostly neutral, e.g., ‘butuh ponsel yang murah tapi meriah?’
(need a cheap and fancy phone?). The occurrence of evaluative expressions ‘mu-
rah’ (cheap) and ‘meriah’ (fancy) have no effect on the final sentiment of the
sentence.

• Morphology and Multi-Word Expressions
Some other information that can be useful is related to the word itself. The first
such piece of information is the part-of-speech of the word. Some evaluative
expressions might have a different meaning depending on what part-of-speech
they take in a sentence. For example, the word ‘menarik’ can have meanings of
‘pull’ (verb), which can be considered as having no sentiment, and ‘interesting’
(adjective) which has positive sentiment.
The other thing is that the evaluative expressions are sometimes used in a non-
base form, e.g., ‘indahnya’ (how beautiful), which has the base form of ‘indah’
(beautiful). A simple word matching without lemmatization or stemming might
not be able to capture the evaluative expression.
Words that are part of larger phrases are also tricky and might cause an inap-
propriate detection of evaluative expressions, e.g., ‘kurang lebih’ (more or less),
which contains the word ‘kurang’ (not enough) and ‘lebih’ (more/better). Pre-
dictions with simple word matching that we used in previous experiments are
not able to capture this phrasal information.

• Target
Information about the target of the discussion or target of the evaluation in an
evaluative sentence is also important. Some sentences contain evaluative ex-
pressions that are not related to the main target of the discussion, e.g., ‘selain
bisa untuk berbelanja, website.com ... dengan foto-foto bayi anda yang lucu’ (in
addition to shopping, website.com ... with photos of your cute babies), where
the target of the discussion is ‘website.com’ but contains a positive expression
‘cute’ for another target, the object ‘baby’.

In this sections, we describe our experiment with machine learning techniques to
include at least some of these ideas into the prediction method.

7.1. Features

Based on the previous observations, we defined a small set of 12 binary features
which consisted of 10 non-lexicon related features (NonLexFeats) and 2 lexicon re-
lated features (LexFeats). The lexicon related features rely on one of the basic lexicons
as used in the previous sections and they simply indicate whether at least one expres-
sion from the positive or the negative part of the lexicon was seen in the sentence.

The features are listed in Table 6.
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Name Type Set to True if
Hypothetical NonLex Any of the words ‘jika’ (if), ‘akan’ (will), ‘kalau’ (if) ap-

pears in the sentence
Question NonLex ‘?’ (question mark) appears in the sentence
Contrast 1 NonLex Any of ‘walaupun’, ‘meskipun’, ‘walau’, ‘meski’

(though/although) is the first word of the sentence
Contrast 2 NonLex Any of ‘walaupun’, ‘meskipun’, ‘walau’, ‘meski’

(though/although) appears anywhere except the
first/last word

Negative List NonLex Any of the phrases ‘cukup sampai disitu’ (only until that
point), ‘kurang lebih’ (more or less), ‘salah satu’ (one of
the) appears in the sentence

Negation List NonLex Any of the words ‘tidak’ (not), ‘tak’ (not), ‘tanpa’ (with-
out), ‘belum’ (not yet), ‘kurang’ (less), ‘bukan’ (is not)
appears in the sentence

Adjective Word NonLex Any adjective (surface) words appears in the sentence
Adjective Lemma NonLex Any adjective lemmas appears in the sentence
Question Word NonLex Any question (surface) words, e.g. ‘apakah’ (what),

‘bagaimanakah’ (how), appears in the sentence
Question Lemma NonLex Any question lemmas, e.g. ‘apa’ (what), ‘bagaimana’

(how), appears in the sentence
PosLex Lex At least one of the positive expressions from the lexicon

appears in the sentence
NegLex Lex At least one of the negative expressions from the lexicon

appears in the sentence

Table 6. Features for sentiment prediction

7.2. Evaluation Setup

For the experiment, we used scikit-learn 13, a machine learning library for Python.
We chose SVM as the machine learning method and used the default function svm.SVC()
provided by the library. The kernel used by this function is an RBF kernel, and we
just used the function with its default parameters.

The evaluation was performed using 3-fold cross validation with the same division
as in Section 5. The results shown here are the average value across the three runs.

7.3. Comparing the Features

We compared the performances of using LexFeats only (lexicons only), using Non-
LexFeats features only, and using all of the features (AllFeats). Figure 4 compares the
average performances of these three setups. The averaging of LexFeats and AllFeats

13http://scikit-learn.org

37

http://scikit-learn.org


PBML 103 APRIL 2015

...

..

45

.

50

.

55

.

60

.

65

.

70

.

75

.

80

.

85

.P-EVL .

R-EVL

.
46.36

.

71.39

. 51.59.

82.89

.
49.89

.

82.54

.

. ..LexFeats . ..AllFeats . ..NonLexFeats

Figure 4. Average performances using various feature categories

were done across all different types of lexicons and of the three folds of test data used.
The average of NonLexFeats were done only on the three folds of test data, since they
were not using any lexicons in the prediction.

The results indicate that using additional features other than the lexicons improves
both precision and recall, although with a rather small margin. Using only the two
features of LexFeats seems to produce better results than just the NonLexFeats.

7.4. Comparison with the Simple Prediction Method

We would like to see how the machine learning prediction performance compares
to the performance of the simple prediction. In order to objectively compare these
two different predictions, we use the very same 3 folds for both methods and plot
averaged precisions and recalls, see Figure 5.

The obvious difference that we observed was the performances of the recalls were
increasing in machine learning prediction. All lexicons seemed to have high recalls,
compared to the simple prediction method that had more scattered recall values. The
precisions, however, showed no improvements and stayed below 60%.

8. Conclusion

We introduced two resources for Indonesian sentiment analysis: 446 annotated
sentences and a collection of subjectivity lexicons constructed by manually filtering
the results of automatic translation of subjectivity lexicons available for English.

The annotation of the review sentences shows the nature of the data: it mostly
consists of neutral sentences. The evaluative sentences are primarily positive, so there
is just a handful of negative sentences in our dataset. The inter-rater agreement (κ)
for deciding whether a sentence is evaluative or not is 0.697. However, the agreement
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Figure 5. Precision-recall graph using our machine-learning setup (upper chart) and
using the simple prediction (lower chart) in identical 3-fold cross validation.

on the actual polarity for the 140 evaluative sentences (where both annotators marked
the sentence as evaluative) is surprisingly high, reaching κ of 0.921.

We produced 12 basic lexicons built by automatic translation and 16 lexicons by
intersecting and unioning. The average number of expressions is 1,285 for the basic
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lexicons, 747 for lexicons from intersection operations and 2,617 for lexicons from
union operations.

The combination of different sources of lexicons, translation methods, and merg-
ing operations gives rise to lexicons with different numbers of entries that share some
evaluative expressions but also possess their own unique expressions.

Evaluations performed on the resulting lexicons using simple prediction method
show that the lexicon from intersection of Google translation of all source lexicons
results in the highest precision. In terms of recall, the union of Google translations
gets the highest score. The other interesting result is that a very small baseline lexicon
extracted directly from (a heldout portion of) the training data achieves much higher
precision than all other lexicons.

The weighting experiments that we have conducted show that the weights might
help in increasing recall, although the trade-off of losing the precision exists.

We also tried to replace the basic prediction method with machine learning. This
allows to incorporate other helpful information, not related to the lexicons. This helps
to increase the recall for all types of the lexicons but there is no improvement in pre-
cision.
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Abstract
In this paper we describe the use of QE, a framework that aims to obtain predictions on

the quality of translations, to improve the performance of machine translation (MT) systems
without changing their internal functioning. We apply QE to experiments with:

i. multiple system translation ranking, where translations produced by different MT sys-
tems are ranked according to their estimated quality, leading to gains of up to 2.72 BLEU,
3.66 BLEUs, and 2.17 F1 points;

ii. n-best list re-ranking, where n-best list translations produced by an MT system are re-
ranked based on predicted quality scores to get the best translation ranked top, which
lead to improvements on sentence NIST score by 0.41 points;

iii. n-best list combination, where segments from an n-best list are combined using a lattice-
based re-scoring approach that minimize word error, obtaining gains of 0.28BLEU points;
and

iv. the ITERPE strategy, which attempts to identify translation errors regardless of predic-
tion errors (ITERPE) and build sentence-specific SMT systems (SSSS) on the ITERPE
sorted instances identified as having more potential for improvement, achieving gains
of up to 1.43 BLEU, 0.54 F1, 2.9 NIST, 0.64 sentence BLEU, and 4.7 sentence NIST points
in English to German over the top 100 ITERPE sorted instances.

1. Introduction
QE is a quality estimation framework that offers a wide range of feature ex-

tractors that can be used to describe source and translations texts in order to build
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and apply models to predict the quality of translations. It was developed within QT-
LaunchPad (Preparation and Launch of a Large-Scale Action for Quality Translation
Technology),1 a project aimed at high quality machine translation through, among
other things, the use of novel metrics to systematically measure and estimate transla-
tion quality.

We use QE to predict and improve the quality of MT systems without changing
their internal functioning and evaluate with automatic evaluation methods. In what
follows we describe the experimental settings (Section 2) and results of several ex-
periments focusing on four approaches: (i) multiple system translation ranking (Sec-
tion 3), (ii) n-best list re-ranking and (iii) n-best list combination (Section 4), and (iv)
ITERPE to identify translations with potential for improvement and build sentence-
specific SMT systems (Section 5). SMT performance improvements according to all
these approaches are summarized in Table 16.

2. Experimental settings

2.1. Datasets

The multiple MT system translation ranking experiments in Section 3 use the fol-
lowing datasets where multiple machine translations are available for each source
sentence:
DEAMT09 English to Spanish translations by four SMT systems, denoted by s1-s4,

scored for post-editing effort (PEE) 2 in 1-4 (highest-lowest) in absolute terms (Spe-
cia et al., 2009). 3, 095 sentences are used for training and 906 for testing.

DQET13-HTER English to Spanish translations scored for HTER with 2, 254 sen-
tences for training and 500 for testing (Task 1.1 dataset used in quality estimation
task (QET13) at WMT13 (Bojar et al., 2013)).

DQET13-rank(de-en) German to English set of up to five alternative translations pro-
duced by different MT systems human ranked relative to each other according
to their quality. 7, 098 source sentences and 32, 922 translations are used for
training and 365 source sentences and 1, 810 translations for testing (Task 1.2
dataset in QET13).

DQET13-rank(en-es) English to Spanish DQET13-rank dataset with 4, 592 source sen-
tences and 22, 447 translations for training and 264 source sentences and 1, 315

translations for testing.

The re-ranking and combination experiments in Section 4 use the following datasets:
DQET13-nbest English to Spanish n-best lists provided in Task 1.1 of QET13.

1http://www.qt21.eu
2as perceived by the post-editors
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DFDA13-nbest English to Spanish and Spanish to English distinct 1000-best lists from
Moses (Koehn et al., 2007) SMT systems developed for the WMT13 translation
task using FDA5 (Biçici, 2013a; Biçici and Yuret, 2015), which is developed for
efficient parameterization, optimization, and implementation of state-of-the-art
instance selection model feature decay algorithms (FDA) (Biçici, 2011; Biçici and
Yuret, 2015). FDA try to increase the diversity of the training set by decaying the
weights of n-gram features from the test set.

The ITERPE and SSSS experiments in Section 5 use the following datasets:
DFDA14-train English to German and German to English translations of separate

3, 000 sentences randomly selected from the development sentences available
at WMT14 that are unused when training the Parallel FDA5 Moses SMT sys-
tems (Biçici et al., 2014) with translations obtained using the Parallel FDA5 Moses
SMT systems.

DFDA14-test English to German with 2, 737 sentences and German to English with
3, 003 sentences WMT14 translation task test set with baseline translations ob-
tained with the Parallel FDA5 Moses SMT systems developed for the WMT14
translation task (Biçici et al., 2014).

ParFDA5 WMT14 dataset available at https://github.com/bicici/ParFDA5WMT
provides training data for building Parallel FDA5 Moses SMT systems used. Other
datasets used for the experiments, as well as the QE open source QE toolkit, are
available for download at http://www.quest.dcs.shef.ac.uk/.

2.2. Evaluation metrics

We evaluate the learning performance with root mean squared error (RMSE), mean
absolute error (MAE), relative absolute error (RAE), MAE relative (MAER), mean
RAE relative (MRAER). RAE measures the absolute error relative to the absolute er-
ror of the mean target value, where yi represents the actual target value for instance
i, ȳ the mean of all these instances, and ŷi a prediction for yi:

MAE =

n∑
i=1

|ŷi − yi|

n
RAE =

n∑
i=1

|ŷi − yi|

n∑
i=1

|ȳ− yi|

(1)

We define MAER and MRAER for easier replication and comparability with rela-
tive errors for each instance:

MAER(ŷ,y) =

n∑
i=1

|ŷi − yi|

⌊|yi|⌋ϵ
n

MRAER(ŷ, y) =

n∑
i=1

|ŷi − yi|

⌊|ȳ− yi|⌋ϵ
n

(2)
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MAER is the mean absolute error relative to the magnitude of the target and MRAER
is the mean relative absolute error relative to the absolute error of a predictor always
predicting the target mean assuming that target mean is known. MAER and MRAER
are capped from below3 with ϵ = MAE(ŷ,y)/2, which is the measurement error and
it is estimated as half of the mean absolute error or deviation of the predictions from
target mean. ϵ represents half of the score step with which a decision about a change
in measurement’s value can be made. ϵ is similar to half of the standard deviation,
σ, of the data but over absolute differences. For discrete target scores, ϵ =

step size
2

.
A method for learning decision thresholds for mimicking the human decision pro-
cess when determining whether two translations are equivalent is described in (Biçici,
2013b).

Additionally, acc (accuracy) represents the percentage of source sentences for which
the first-ranked translation by the ranker model agree with humans. For correlation
with human judgments, we use Kendall’s τ (Bojar et al., 2013). Translation perfor-
mance is evaluated using BLEU (Papineni et al., 2002), F1 (Biçici and Yuret, 2011; Biçici,
2011), 1-WER (WER for word error rate), and averaged sentence-level scores BLEUs 4

and NISTs (sentence NIST (Doddington, 2002)). F1 has been shown to correlate with
human judgments better than TER (Biçici and Yuret, 2011; Callison-Burch et al., 2011).
Predicting F1 also allowed us to achieve top results in DQET13-rank (Biçici, 2013b).

2.3. Algorithms

We use Support Vector Regression (SVR) (Smola and Schölkopf, 2004) as the learn-
ing algorithm and also use Partial Least Squares (PLS) or feature selection (FS). Fea-
ture selection is based on recursive feature elimination (RFE) (Guyon et al., 2002;
Biçici, 2013b). We use scikit-learn5 implementation. Some of the results may be
rounded with round(.) function from python6 and some with numpy.round() function
from numpy7, which may cause differences at the least significant digit8.

2.4. QE Quality Estimation Features

QE offers a number of MT system- and language-independent features, of which
we explore two sets:

3We use ⌊ . ⌋ϵ to cap the argument from below to ϵ.
4If an n-gram match is not found, the match count is set to 1/2|T ′| where |T ′| is the length of the transla-

tion.
5http://scikit-learn.org/
6https://www.python.org/
7http://www.scipy.org/
8For instance, round(0.8445, 3) = 0.845 and numpy.round(0.8445, 3) = 0.84399999999999997.
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IR Source Translation Source and Translation
Retrieval 15 15 0

Readability LIX 1 1 0
Word 1 1 1

Table 1. Counts of features in IR set.

• BL: 17 baseline features. These include sentence and average token lengths,
number of punctuation symbols, LM probability, average number of transla-
tions per source word, and percentage of low or high frequency words.9

• IR: 35 information retrieval and readability features. Information retrieval fea-
tures measure the closeness of the test source sentences and their translations to
the parallel training data available indexed with Lucene (The Apache Software
Foundation, 2014) to predict the difficulty of translating each sentence or find-
ing their translations (Biçici et al., 2013; Biçici, 2013b). For the top five retrieved
instances, retrieval scores, BLEU, and F1 scores over the source sentence or its
translation are computed quantifying the closeness of the instances we can find
or their similarity to the source sentence or their translation. Readability fea-
tures attempt to capture the difficulty of translating a sentence by computing
the LIX readability score (Björnsson, 1968; Wikipedia, 2013) for source and tar-
get sentences, the average number of characters in source and target words, and
their ratios. Table 1 shows the number of features in IR categorized according
to information source.

The combined feature set, BL+IR, contains 52 features.
For experiments in Section 4, we only consider IR on the translations, since the

source sentence is the same for all translation candidates. These results in 18 features,
derived for each translation, using retrieval scores, BLEU, and F1 scores over the top
five instances retrieved and three LIX readability features. In that case, the combined
feature set, BL+IR, contains 35 features. In those experiments, we also use Moses SMT
model-based features, which are obtained from the n-best lists generated, adding 15
more features (6 for lexical reordering, 1 for distortion, 1 for language model, 1 for
word penalty, 1 for phrase penalty, 4 for the translation model, and 1 for the overall
translation score). This feature set is referred to as SMT. IR+SMT contains 33 features,
while BL+IR+SMT contains 50 features.

3. Multiple System Translation Ranking
In multiple MT system translation ranking, we rank translations produced by dif-

ferent MT systems according to their estimated quality. System combination by mul-
tiple MT system translation ranking can lead to results that are better than the best

9http://www.quest.dcs.shef.ac.uk/quest_files/features_blackbox_baseline_17.
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DEAMT09 DQET13-HTER
BL IR BL+IR BL IR BL+IR

target F1 F1
RMSE 0.1356 0.0868 0.0847 0.1754 0.1777 0.1743
MAE 0.1012 0.0535 0.0521 0.1173 0.122 0.1193
RAE 0.8514 0.4499 0.4383 0.9217 0.9589 0.9377

MAER 0.5077 0.3073 0.3068 0.6771 0.7356 0.7211
MRAER 0.8066 0.4778 0.4612 0.7737 0.8045 0.8055
target PEE HTER
RMSE 0.718 0.775 0.6772 0.1771 0.1888 0.1778
MAE 0.5727 0.6291 0.5356 0.1426 0.154 0.1431
RAE 0.7045 0.7738 0.6588 0.9512 1.0268 0.9544

MAER 0.3209 0.3538 0.2912 1.0149 1.0865 0.9967
MRAER 0.7103 0.7732 0.6758 0.9144 0.9816 0.9467

Table 2. Prediction results on the DEAMT09 and DQET13-HTER datasets using a single
general SVR.

MT system performance (Biçici and Yuret, 2011; Biçici, 2011). Some of the results in
this Section are also presented in (Specia et al., 2013). For DEAMT09, we predict F1
scores and PEE and for DQET13-HTER, F1 and HTER. Table 2 presents the prediction
results on DEAMT09 for translations from all four systems s1-s4 and on DQET13-
HTER using a single general SVR model, i.e., a model combining translations from all
MT systems. RAE decreases with the addition of the IR; F1 is easier to predict than
PEE when IR is included.

Table 3 presents the prediction results on the DEAMT09 datasets using separate
SVR models for each translation system. In Section 3.2, we observe that building sep-
arate SVR models for each translation system achieves better performance than build-
ing a single model over all of the training set available. Table 3 shows that translation
system s4 is the easiest to predict. This is the MT system with the lowest transla-
tion performance (Table 4). IR achieve better performance when predicting F1, but
slightly worse performance when predicting PEE scores. Individual models perform
better than using a general model during prediction and as we see in Section 3.1, also
when ranking alternative translations for the same source sentence.
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s1 s2 s3 s4
target BL IR BL+IR BL IR BL+IR BL IR BL+IR BL IR BL+IR

F1

RMSE .1478 .0963 .0930 .1383 .0901 .0871 .1336 .0912 .0883 .0905 .0593 .0585
MAE .1147 .0607 .0584 .1061 .0562 .0540 .1012 .0564 .0545 .0671 .0371 .0370
RAE .9161 .4850 .4663 .8875 .4704 .4516 .9055 .5040 .4870 .9217 .5099 .5081

MAER .5330 .3272 .3201 .5136 .3132 .3082 .5222 .3287 .3229 .4887 .2989 .3028
MRAER .8962 .5074 .4864 .8387 .4774 .4595 .8698 .5244 .5066 .9420 .5367 .5344

PEE
RMSE .6177 .6173 .5817 .6764 .675 .6499 .6679 .6538 .6243 .6792 .6026 .5822
MAE .4490 .4712 .4428 .5423 .5456 .5215 .5280 .5238 .4976 .3448 .3216 .3162
RAE .8669 .9099 .855 .7960 .8009 .7655 .7828 .7765 .7377 .6903 .6439 .6331

MAER .1979 .2094 .1901 .2741 .2706 .2579 .2645 .2601 .2449 .1556 .1605 .1621
MRAER .5267 .5882 .5735 .7653 .7837 .7581 .7855 .7800 .7553 .4085 .4109 .4106

Table 3. Prediction performance of individual SVR models on the DEAMT09 dataset.

3.1. 1-best Translations
In this section the goal is to rank al-
ternative translations based on their
predicted quality to select the best
MT system for each translation. For
comparison, Table 4 shows the indi-
vidual performance of each MT sys-
tem and oracle MT system selection
results based on true sentence-level
scores (PEE, BLEU, and F1). Oracle
selection using PEE (human) scores
obtains worse scores than s1, the top
system, which indicates that PEE
does not correlate well with BLEU
or F1.

System BLEUs BLEU F1
s1 0.3521 0.3795 0.3723
s2 0.3156 0.3450 0.3361
s3 0.2905 0.3145 0.3137
s4 0.1600 0.1910 0.2148
oracle PEE 0.3362 0.3678 0.3574
oracle BLEU 0.3941 0.4132 0.4014
oracle F1 0.3932 0.4130 0.4020

Table 4. Performance of systems in DEAMT09.

The predicted scores for each alternative translation of a given source sentence are
used to rank these alternatives. For the DQET13-HTER dataset we treat relative 5-
way rankings as absolute scores in [1, 5] (best-worst). The absolute scores, [1 − 4] for
DEAMT09 and [1−5] for DQET13-HTER, are referred to as PEE scores. We also predict
each translation’s F1 score where y is calculated using the reference translations.

Table 5 presents the 1-best translation results for the DEAMT09 dataset obtained by
ranking translations from each system based on the predictions produced by a single
general SVR model or individual SVR models (Specia et al., 2010), i.e., a model built
for each SMT system. In case of ties, we randomly pick among the equally scoring
system outputs. As a baseline, we compute acc-best (accuracy of best-system), which
is the percentage of source sentences for which the best system on average (s1) actually
provides the best translation. We achieve gains up to 2.72 BLEU, 3.66 BLEUs, and
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General Individual
Target Evaluation BL IR BL+IR BL IR BL+IR

F1 BLEU 0.3621 0.4037 0.4067 0.3792 0.4052 0.4052
PEE BLEU 0.3500 0.4003 0.4001 0.3792 0.3819 0.3819
F1 F1 0.3499 0.3930 0.3940 0.3661 0.3933 0.3935

PEE F1 0.3432 0.3886 0.3882 0.3650 0.3715 0.3715
F1 BLEUs 0.3316 0.3839 0.3849 0.3512 0.3848 0.3851

PEE BLEUs 0.3209 0.3793 0.3777 0.3503 0.3585 0.3585
F1 acc 0.6998 0.7296 0.7351 0.8300 0.7583 0.7660

PEE acc 0.6623 0.7318 0.7384 0.8311 0.8344 0.8466
F1 acc-best 0.4724 0.5000 0.4989 0.9724 0.5828 0.5894

PEE acc-best 0.3256 0.5243 0.5011 0.9437 0.9415 0.9437

Table 5. 1-best translation results on DEAMT09 using general or individual SVR models
predicting either F1 or PEE. Top results are in bold.

2.17 F1 points compared to the top MT system. QE is also able to achieve higher
accuracy than the previously reported 0.77 (Specia et al., 2010).

3.2. Correlation with Human Judgments

Here we rank the translations accord-
ing to the predicted scores and evaluate
their correlation with the human rank-
ings. Table 6 presents the results for the
DEAMT09 dataset using a single general
prediction model and individual models
for each MT system. The results show
that PEE predictions generally correlate
better with human judgments than F1
predictions.

τ Target BL IR BL+IR

General F1 0.6732 0.6064 0.6382
PEE 0.6787 0.6124 0.7034

Individual F1 0.7719 0.6743 0.6853
PEE 0.7719 0.7922 0.8070

Table 6. Kendall’s τ between the
predicted ranks and human judgments

for DEAMT09.

4. n-Best List Re-ranking and Combination

In this section we describe the use of QE to obtain predictions on the quality
of translations in n-best lists in order to re-rank these lists to have the best predicted
translation ranked first, or combine translations in these lists to generate a new, bet-
ter translation. Translation quality improvements using re-ranking or combination
allow SMT system independent gains. Re-ranking is done at the sentence-level by us-
ing quality predictions to rank translations from n-best lists and select the top ones.
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Features Setting BLEU F1 BLEUs NISTs 1-WER
1-best 0.1710 0.1725 0.1334 1.6445 0.1825

Re
-r

an
ki

ng

50-best oracle 0.2033 0.2087 0.1686 1.8168 0.2340
BL FS 0.1627 0.1684 0.1222 *1.6486 0.1069
IR FS 0.1705 0.1712 0.1323 1.6414 0.1739

BL+IR 0.1668 0.1696 0.1275 *1.6449 0.1576
100-best oracle 0.2105 0.2160 0.1769 1.8479 0.2485

BL FS 0.1639 0.1687 0.1233 1.6383 0.0919
IR FS 0.1691 0.1692 0.1309 1.6368 0.1714

BL+IR PLS 0.1696 0.1697 0.1293 1.6409 0.1564

W
or

d
C

om
bi

na
tio

n 250-best list oracle 0.2196 0.2253 0.1873 1.8816 0.2609
BL 0.1705 0.1721 0.1323 *1.6455 *0.1850
IR FS 0.1703 0.1718 *0.1337 1.6403 *0.1931

BL+IR 0.1707 0.1721 *0.1354 1.6433 *0.1945
1000-best oracle 0.2360 0.2412 0.2052 1.9472 0.2783

BL PLS 0.1707 0.1719 *0.1353 1.6328 *0.1949
IR PLS *0.1716 0.1723 *0.1355 1.6363 *0.1965

BL+IR PLS *0.1715 0.1718 *0.1362 1.6384 *0.1992

Table 7. DQET13-nbest results. * achieve improvements; top results are in bold.

Combination is done at the word-level by using lattice re-scoring to obtain combined
translations from translation hypotheses that minimize overall word error.

Re-ranking results show that we can improve over 1-best results, with 100-best lists
leading to the best results. Word-level combination results show that the performance
increase as we increase n and the best results are obtained with 1000-best lists where
1000 is the largest n we experimented with. We predict F1 scores and retain the top
results among different settings achieving improvements according to F1 or overall.

Word-level combination is obtained by converting each n-best list into a word lat-
tice and finding the word-level combination of translation hypotheses that minimizes
WER. A word lattice is a partially ordered graph with word hypotheses at the nodes
(Mangu et al., 2000). An n-best lattice rescoring (Mangu et al., 2000) functionality is
provided by the SRILM (Stolcke, 2002) toolkit. Each hypothesis in a given n-best list
is weighted with the predicted scores, converted into a word lattice format, aligned,
and the best hypothesis minimizing the WER is selected as the consensus hypothesis.
As we see in the results, the word-level combination approach is able to improve the
performance more than sentence-level re-ranking due to reasons including (Mangu
et al., 2000): (i) lattice representation is able to consider alternative translations, (ii)
pruning of the lattices minimizes word errors and leads to better modeling of word
posterior probabilities, (iii) WER minimization may be a good target to optimize for
translation performance.
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Features Setting BLEU F1 BLEUs NISTs 1-WER
English-Spanish 1-best 0.2690 0.2673 0.2228 2.3278 0.3920

100-best oracle 0.3560 0.3667 0.3351 2.6493 0.4940

Re
-r

an
ki

ng

BL FS 0.2535 0.2456 0.1947 2.2702 0.3187
IR PLS 0.2516 0.2457 0.2010 2.2339 0.3817

SMT PLS 0.2569 0.2498 0.2008 2.2804 0.3451
BL+IR 0.2567 0.2465 0.2011 2.2614 0.3610

IR+SMT PLS 0.2576 0.2495 0.2024 2.2796 0.3574
BL+IR+SMT 0.2564 0.2482 0.2012 2.2741 0.3585

W
or

d
C

om
b. BL FS 0.2676 0.2653 0.2208 2.3212 *0.3925

IR FS 0.2682 0.2661 0.2216 2.3207 *0.3936
SMT 0.2672 0.2648 0.2196 2.3197 *0.3928

BL+IR PLS 0.2676 0.2651 0.2204 2.3198 0.3927
IR+SMT PLS 0.2677 0.2647 0.2196 2.3179 0.3915

BL+IR+SMT 0.2677 0.2652 0.2198 2.3195 0.3926
Spanish-English 1-best 0.2816 0.2816 0.2335 2.3696 0.4064

100-best oracle 0.3763 0.3902 0.3554 2.6858 0.5154

Re
-r

an
ki

ng

BL PLS 0.2656 0.2614 0.2112 2.3441 0.3663
IR FS 0.2646 0.2553 0.2025 2.2888 0.3819

SMT FS 0.2602 0.2578 0.2052 2.3094 0.3559
BL+IR FS 0.2660 0.2573 0.2051 2.2932 0.3849

IR+SMT PLS 0.2616 0.2552 0.2031 2.2940 0.3692
BL+IR+SMT FS 0.2662 0.2572 0.2045 2.2922 0.3827

W
or

d
C

om
b. BL PLS *0.2818 0.2803 0.2315 2.3686 *0.4124

IR *0.2818 0.2801 0.2314 2.3642 *0.4127
SMT PLS *0.2817 0.2795 0.2301 2.3628 *0.4116

BL+IR FS 0.2815 0.2792 0.2298 2.3673 *0.4128
IR+SMT FS 0.2815 0.2793 0.2304 2.3652 *0.4131

BL+IR+SMT PLS 0.2816 0.2797 0.2304 2.3636 *0.4127

Table 8. DFDA13-nbest results with 100-best lists. Top results are in bold.

Table 7 presents 1-best translation baseline, oracle translation according to F1, and
the 1-best translation results after sentence-level re-ranking according to the predicted
F1 scores using 50-best or 100-best lists, and after word-level combination using 250-
best or 1000-best lists on the DQET13-nbest dataset. QE is able to improve the
performance on all metrics, with IR or BL+IR feature sets obtain the best results. F1 is
also improved with word-level combination using a 100-best list (Specia et al., 2014).
We obtain up to 0.28 points increase in BLEUs with the word-level combination using
a 1000-best list. With sentence-level re-ranking, we are able to improve only the NISTs
scores using a 50-best list.

With sentence-level re-ranking, we observe that performance decrease as we in-
crease n from 50 to 1000. Results for different n-best lists with increasing n are pre-
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sented in (Specia et al., 2014). With word-level combination, performance increase as
we increase n on DQET-nbest and on DFDA13-nbest, we observe increasing perfor-
mance on some metrics with increasing n where the best results are obtained with
100-best lists.

Table 8 presents the corresponding results on the DFDA13-nbest English-Spanish
and Spanish-English datasets using 100-best lists. Sentence-level re-ranking does not
yield improvements. With word-level combination, we are able to achieve improve-
ments according to BLEU and 1-WER. The performance gains are larger on DFDA13-
nbest and the addition of SMT features improve the performance slightly. The IR
feature set and other feature sets containing IR lead to the best results. Previous re-
sults such as (Blatz et al., 2004) could not improve the BLEU scores with n-best list
re-scoring, but obtained some improvements in NISTs scores.

With word-level combination, performance increase as we increase n for NISTs
in general and for 1-WER when translating from English to Spanish. We observed
a slight decrease in 1-WER when translating from Spanish to English. NIST favors
more diverse outputs by weighting less frequent n-grams more, which can explain
the increase in NISTs scores with increasing n.

5. ITERPE and SSSS for Machine Translation Improvements

In these experiments we use quality estimation to identify source sentences whose
translations have potential for improvement such that building sentence-specific SMT
systems (SSSS) may improve their translations and the overall SMT performance. Our
goal is to find instances that have suboptimal translations and for which a better trans-
lation is possible by building SSSS. In domain adaptation, we show that Moses SMT
systems built with FDA-selected 10, 000 training sentences are able to obtain F1 results
as good as the baselines that use up to 2 million sentences and better performance
with Moses SMT systems built with FDA-selected 50, 000 training sentences (Biçici,
2015). In fact, SSSS built using as few as 5, 000 training instances for each source
sentence can achieve close performance to a baseline SMT system using 2 million
sentences (Biçici, 2011). In Table 14, we show that we can achieve better NIST per-
formance using SSSS built with FDA5-selected 5, 000 training instances. The ITERPE
model allows us to identify which sentences have more potential for improvement by
re-translation and we demonstrate performance improvements with SSSS. An ITERPE
sorting of the translation instances can be used to group them into different quality
bands for different purposes, for instance, for re-translation or for post-editing.

5.1. ITERPE: Identifying Translation Errors Regardless of Prediction Errors

We use the IR feature set to build two QE systems: QuEstS and QuEst(S,T ′),
where the former uses only the source sentence S and the latter uses both S and its
translation T ′ when predicting the quality score. QuEst(S,T ′) is a more informed pre-
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Dataset BLEU F1 ŷ ŷS ŷ− ŷS |ŷ− ŷS| F̄1S − F1 F̄1T − F1

en-de DFDA14-train 0.2223 0.2360 0.2283 0.2436 -0.0153 0.1069 0.1734 0.1554
DFDA14-test 0.1761 0.2093 0.2147 0.1800 0.0347 0.0738 0.1194 0.1545

de-en DFDA14-train 0.2570 0.2580 0.2578 0.2649 -0.0071 0.0096 0.1094 0.1478
DFDA14-test 0.2410 0.2580 0.2529 0.2663 -0.0259 0.1535 0.0400 0.1248

Table 9. Training and testing average statistics and ITERPE results. y is F1.

dictor. Biçici et al. (2013) obtained better results than QE using only the source
sentences with the machine translation performance prediction system.

We consider two types of errors: prediction error or translation error. Prediction
errors are errors due to the prediction model, while translation errors are errors due
to mistranslations by the MT engine. We want to fix translation errors regardless of
potential prediction errors. Having a precise estimator (low MAE) is important for
identifying the score differences. Also, if the prediction reaches the top possible tar-
get score, topScore, where y ≤ topScore then we do not expect to be able to further
improve the translation. Let ŷS = QuEstS(S) and ŷ = QuEst(S,T ′)(S, T

′) represent the
prediction from QE using only the source S and using both S and T ′ and ty be a
positive threshold on the prediction. When predicting which instances to re-translate,
we compare two strategies, which sort instances according to d:
MEAN: d = ¯̂ŷ̄ŷ̄y − ŷ̂ŷy. Selects instances whose expected performance is lower than

the expected mean performance, which attempts to improve lower performing
instances.

ITERPE: d = ŷ̂ŷy − ŷ̂ŷyS. Selects instances according to differences in predictions from
different predictors, which attempts to identify the translation errors regardless
of prediction errors (ITERPE).

The ITERPE strategy relies on the performance prediction of the quality of a sen-
tence translation task by two separate predictors, one using only the source sentence
and one using both the source sentence and the translation. ITERPE invention (Biçici,
2014) works as follows:

• If ŷS > ŷ and ŷS < topScore, then by looking at S, we expect a better translation
performance. So, T ′ is not optimal.

• If ŷS = ŷ, then either the quality score is the same for both or T ′ is not giving us
new information. If (ŷ − ŷS) ≤ ty and ŷS < topScore, then we assume that T ′

is not optimal.
• If (ŷ− ŷS) > ty, then T ′ may be close to the possible translation we can obtain.

5.2. ITERPE Learning Results

ty can be optimized to improve the overall F1 performance on the training set.
Table 9 shows the average English to German (en-de) and German to English (de-en)
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ŷ − ŷS ≤ n y MAE MAES MAER MAERS MRAER MRAERS ⌈yS⌉ − y ⌈yT ⌉ − y

en
-d

e

-0.1642 86 0.0893 0.0356 0.1517 0.3688 2.0522 0.3306 1.0422 0.2467 0.2533
-0.0153 1920 0.1726 0.0639 0.1123 0.3624 0.8543 0.4582 0.8612 0.199 0.1935
0.0 123 0.2206 0.0841 0.0866 0.4393 0.4636 0.5577 0.5816 0.1578 0.1531
0.1335 434 0.2751 0.0636 0.0731 0.2623 0.263 0.3745 0.4361 0.1246 0.1077
0.2823 130 0.4382 0.0613 0.1973 0.1598 0.4306 0.2433 0.7727 0.1122 0.0067
0.4311 102 0.6125 0.0579 0.3607 0.0912 0.5781 0.1372 0.9219 0.1188 -0.0274
0.5799 71 0.8007 0.0826 0.5447 0.0971 0.6757 0.1357 0.9633 -0.0054 -0.0948
1.0 21 0.9272 0.0683 0.6713 0.0743 0.7223 0.1006 0.9721 -0.1211 -0.0841

de
-e

n

-0.1422 228 0.1057 0.034 0.1563 0.3457 1.8446 0.3097 1.0179 0.2026 0.2645
-0.0071 1781 0.2076 0.0719 0.1125 0.3373 0.6719 0.4556 0.7979 0.1404 0.1843
0.0 54 0.2357 0.0527 0.0544 0.2525 0.2627 0.4006 0.4155 0.1099 0.1608
0.128 565 0.2871 0.0484 0.0588 0.199 0.2079 0.3018 0.3713 0.0621 0.1085
0.2631 183 0.4328 0.0514 0.1736 0.1345 0.3869 0.2118 0.7291 0.008 0.0002
0.3983 99 0.6079 0.06 0.341 0.0981 0.5514 0.1574 0.9173 -0.0177 -0.0778
0.5334 56 0.7869 0.0889 0.5148 0.1163 0.6417 0.1593 0.9521 -0.1157 -0.123
1.0 20 0.9064 0.094 0.636 0.103 0.6996 0.1442 0.9805 -0.1924 -0.1686

Table 10. DFDA14-train instances binned according to their deviation from d̄ using
ITERPE. y is F1.

training set and test set statistics. In this case, the target, y, is the F1 score. MAE is for
ŷ and MAES is for ŷS. ⌈yS⌉ and ⌈yT ⌉ are the source and target performance bounds
on y calculated based on synthetic translations (Biçici et al., 2013). Score differences
to bounds show a measure of how close are the translations to the bounds.

We cumulatively and separately bin instances according to their deviation from
the mean of d, d̄, in σd steps and evaluate the prediction performance of different
strategies. Table 11 shows the cumulatively binning performance on the training set
where predictions are obtained by cross-validation and Table 10 show the training
results within separate bins. n is the number of instances in the score range. Table 11
also shows that ITERPE is able to identify hard to translate instances using only the
prediction information.

Table 12 and Table 13 show the cumulatively binning of the performance of the
test set instances according to their deviation from d̄ for both the en-de and de-en
DFDA14-test sets. We observe that lower d corresponds to instances with lower F1
scores (compared to ȳ) and higher potential for improvements according to ⌈yS⌉ − y

and ⌈yT ⌉ − y. Until about d ≤ d̄ + 2σd, MAES is lower, which indicates that for
these instances, we can trust ŷS more than ŷ and therefore, since ŷS > ŷ when d < 0,
these instances correspond to the instances that have some potential for improvement.
Including the confidence of predictions in the decision process may also improve the
performance.
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d ≤ n ȳ MAE MAES MAER MAERS MRAER MRAERS ⌈yS⌉ − y ⌈yT ⌉ − y

en
-d

e

-0.1642 86 0.0893 0.0356 0.1517 0.3688 2.0522 0.3306 1.0422 0.2467 0.2533
-0.0153 2006 0.1691 0.0627 0.1139 0.3626 0.9056 0.4527 0.869 0.2011 0.1961
0.0 2129 0.172 0.0639 0.1124 0.3671 0.8801 0.4588 0.8524 0.1986 0.1936
0.1335 2563 0.1895 0.0639 0.1057 0.3493 0.7756 0.4445 0.7819 0.186 0.179
0.2823 2693 0.2015 0.0638 0.1101 0.3402 0.759 0.4348 0.7815 0.1825 0.1707
0.4311 2795 0.2165 0.0635 0.1193 0.3311 0.7524 0.4239 0.7866 0.1802 0.1635
0.5799 2866 0.231 0.064 0.1298 0.3253 0.7505 0.4168 0.791 0.1756 0.1571
1.0 2887 0.236 0.064 0.1338 0.3235 0.7502 0.4145 0.7923 0.1734 0.1553

de
-e

n

-0.1422 228 0.1057 0.034 0.1563 0.3457 1.8446 0.3097 1.0179 0.2026 0.2645
-0.0071 2009 0.196 0.0676 0.1175 0.3383 0.805 0.4391 0.8229 0.1475 0.1934
0.0 2063 0.1971 0.0672 0.1158 0.336 0.7908 0.438 0.8122 0.1465 0.1925
0.128 2628 0.2164 0.0632 0.1036 0.3066 0.6655 0.4087 0.7174 0.1283 0.1745
0.2631 2811 0.2305 0.0624 0.1081 0.2954 0.6473 0.3959 0.7182 0.1205 0.1631
0.3983 2910 0.2433 0.0623 0.116 0.2887 0.6441 0.3878 0.725 0.1158 0.1549
0.5334 2966 0.2536 0.0628 0.1236 0.2854 0.644 0.3835 0.7292 0.1114 0.1497
1.0 2986 0.258 0.063 0.127 0.2842 0.6444 0.3819 0.7309 0.1094 0.1475

Table 11. DFDA14-train instances cumulatively binned based on deviation from d̄
using ITERPE. y is F1.

ŷ − ŷS ≤ n y MAE MAES MAER MAERS MRAER MRAERS ⌈yS⌉ − y ⌈yT ⌉ − y

M
EA

N

-0.1035 91 0.192 0.1106 0.1202 0.475 0.9383 1.0233 0.9838 0.1738 0.2155
0.0 1792 0.2013 0.0854 0.1025 0.5055 0.7783 0.8717 1.1362 0.1256 0.1522
0.0 1792 0.2013 0.0854 0.1025 0.5055 0.7783 0.8717 1.1362 0.1256 0.1522
0.1035 2449 0.2086 0.094 0.1064 0.5802 0.7722 0.9338 1.1267 0.1172 0.1503
0.2069 2609 0.2095 0.0992 0.1065 0.6291 0.7691 1.0152 1.1211 0.1175 0.1513
0.3104 2673 0.2094 0.1038 0.107 0.6732 0.7723 1.0691 1.1197 0.1185 0.1524
0.4139 2703 0.2093 0.107 0.1071 0.7021 0.7738 1.1087 1.1184 0.119 0.1535
1.0 2737 0.2093 0.1125 0.1075 0.747 0.7764 1.173 1.119 0.1195 0.1548

IT
ER

PE

-0.129 54 0.2217 0.1215 0.1294 0.4418 0.8893 1.0072 1.1438 0.1209 0.1647
-0.0202 1874 0.2036 0.0856 0.1041 0.4963 0.7788 0.8894 1.1932 0.1168 0.1467
0.0 2053 0.2046 0.0878 0.105 0.5225 0.7846 0.8941 1.1761 0.1166 0.1477
0.0885 2438 0.2083 0.0942 0.1065 0.5791 0.7737 0.9385 1.1394 0.1161 0.1497
0.1972 2606 0.2093 0.0992 0.1065 0.6257 0.767 1.0161 1.1285 0.117 0.1513
0.306 2671 0.2092 0.1036 0.1067 0.6682 0.7696 1.0733 1.1276 0.1181 0.1523
0.4147 2704 0.2093 0.1071 0.1072 0.6998 0.7715 1.1057 1.1252 0.1186 0.1534
1.0 2737 0.2093 0.1125 0.1075 0.7414 0.7728 1.1735 1.1258 0.1192 0.1546

Table 12. DFDA14-test instances cumulatively binned based on deviation from d̄ for
en-de comparing different strategies. y is F1.
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ŷ − ŷS ≤ n y MAE MAES MAER MAERS MRAER MRAERS ⌈yS⌉ − y ⌈yT ⌉ − y

M
EA

N

-0.1065 87 0.2668 0.1552 0.1299 0.4913 0.663 1.1651 0.8625 0.0633 0.1363
-0.0 2090 0.2553 0.1023 0.1033 0.4303 0.5538 0.9059 0.9115 0.0344 0.1146
0.0 2090 0.2553 0.1023 0.1033 0.4303 0.5538 0.9059 0.9115 0.0344 0.1146
0.1065 2720 0.2559 0.1053 0.1041 0.4863 0.56 0.9321 0.9067 0.0383 0.1205
0.2131 2860 0.2559 0.1094 0.1044 0.5201 0.5605 0.9921 0.9077 0.0396 0.1222
0.3196 2922 0.2567 0.1122 0.1046 0.5379 0.5585 1.0357 0.906 0.0397 0.1226
0.4262 2963 0.257 0.1155 0.105 0.561 0.5605 1.0695 0.9062 0.0402 0.1238
1.0 3003 0.258 0.1205 0.1059 0.5896 0.561 1.1067 0.9045 0.04 0.1247

IT
ER

PE

-0.126 114 0.2829 0.1408 0.1154 0.4528 0.6344 1.2341 1.0201 -0.0163 0.0774
-0.014 2019 0.2565 0.1023 0.1035 0.4232 0.5549 0.9101 0.9206 0.0314 0.1121
0.0 2204 0.2564 0.1029 0.1042 0.4343 0.5569 0.9049 0.9165 0.0324 0.1137
0.098 2708 0.2558 0.1052 0.1042 0.4851 0.5615 0.9325 0.9092 0.0384 0.1202
0.2101 2863 0.2561 0.1094 0.1045 0.5183 0.5603 0.9956 0.9085 0.0395 0.1221
0.3221 2930 0.2567 0.1129 0.1047 0.5437 0.5605 1.041 0.906 0.0399 0.1228
0.4341 2966 0.2569 0.116 0.1049 0.5645 0.561 1.0785 0.9058 0.0404 0.1239
1.0 3003 0.258 0.1205 0.1059 0.59 0.5616 1.1097 0.9044 0.0401 0.1247

Table 13. DFDA14-test instances cumulatively binned based on deviation from d̄ for
de-en comparing different strategies. y is F1.
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Figure 1. ITERPE sorted MAE histogram and d vs. MAE plot for en-de (top) and de-en
(bottom) on the DFDA14-test test set. The increase in MAE is visible.
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Figure 2. ITERPE sorted MAER vs. MAERS plot for de-en test set.
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Figure 3. ITERPE sorted MRAER vs. MRAERS plot for en-de test set.

We observe that the difference with the upper bounds increase with decreasing d,
which indicates that we are able to identify instances that have the highest potential
for increase in their performance. ITERPE is able to consistently identify instances
with higher potential difference to the bounds. Figure 1 plots ITERPE sorted MAE
histogram and d vs. MAE plot for en-de and de-en on the DFDA14-test test set.

Figure 2 compares the MAER and MAERS distributions on de-en DFDA14-test
test set instances sorted according to ITERPE and Figure 3 compares the MRAER and
MRAERS distributions on en-de DFDA14-test test set.
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5.3. SSSS with ITERPE Sorted Instances

We build SSSS over the en-de and de-en DFDA14-test set instances using up to
25, 000 training instances selected specifically for each source sentence using FDA5 (Biçici
and Yuret, 2015). The results are presented in Table 14, which show that using train-
ing set of 1, 000 instances for building SSSS does not lead to better results on all of
DFDA14-test. However, SSSS with 1, 000 training instances each can obtain as close
results as 1 F1 point in en-de and shows that this level of parallelism is possible with
SMT. en-de translation performance also improves with SSSS where each use 5, 000

training instances.
We also run sentence-specific SMT experiments over the top instances that have

more potential for improvement according to their ITERPE sorting. Table 14 also
presents the results for the top 100 or 200 instances compared to baseline transla-
tion performance on those instances. Improvements of up to 1.43 BLEU, 0.54 F1, 2.9
NIST, 0.64 BLEUs, and 4.7 NISTs points are obtained over the top 100 ITERPE sorted
instances for en-de. Compared to baseline results, ITERPE sorting is able to obtain
up to 1.43 BLEU points improvement over the top 100 instances by being able to iden-
tify the top instances that have more potential for improvement by re-translation with
SSSS.

Figure 4 plots ITERPE sorted accumulative average performance improvement
compared with the baseline over the top 500 instances in en-de and de-en on the
DFDA14-test test set. Maximum accumulative gain with SSSS on the DFDA14-test
test set over the top 100 ITERPE sorted instances is visible in Figure 4 and can reach
4.4 BLEUs points and 3.7 F1 points for en-de, and 9.1 BLEUs points and 7.2 F1 points
for de-en. Maximum instance gains with SSSS on the DFDA14-test test set over the
top 100 ITERPE sorted instances are presented in Table 15.

6. Conclusions

We described several ways to use quality predictions produced by the QE frame-
work in order to improve SMT performance without changing the MT systems’ inter-
nal functioning. In all cases, promising results were found, leading us to believe that
quality predictions produced by the state of the art approaches can help in the process
of achieving the high quality translation goal. Table 16 summarizes our main findings
when we use quality predictions towards improving machine translation quality.
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Figure 4. ITERPE sorted accumulative average F1, BLEUs, or NISTs performance
improvement compared with the baseline over the top 500 instances in en-de (left)

and de-en (right) on the DFDA14-test test set.
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Baseline ITERPE + SSSS
n # train BLEU F1 NIST BLEUs NISTs BLEU F1 NIST BLEUs NISTs

en
-d

e

100

1000

0.1614 0.2048 4.6227 0.1406 1.9119

0.1609 0.1893 4.6152 0.1271 1.7847
5000 0.1757 0.2102 4.9111 0.147 1.9587
10000 0.1633 0.1974 4.8022 0.1309 1.9314
25000 0.1647 0.1942 4.7821 0.1323 1.9192

200

1000

0.1569 0.1952 4.9408 0.1284 1.9558

0.1444 0.18 4.9064 0.1102 1.8408
5000 0.1577 0.1937 5.1326 0.1278 1.9715
10000 0.1542 0.1872 5.0878 0.1191 1.9587
25000 0.1574 0.1909 5.1462 0.1226 1.9982

2737 1000 0.1761 0.2093 5.9602 0.1435 2.0366 0.1632 0.199 5.9596 0.1295 1.9277
2737 5000 0.1725 0.2035 6.072 0.1378 1.9821
1500 10000 0.1726 0.2017 5.8253 0.1373 2.1071 0.1678 0.1958 5.9166 0.1314 2.0702
750 25000 0.1741 0.1998 5.6429 0.1364 2.0981 0.1747 0.198 5.7945 0.1341 2.109

de
-e

n

100
1000

0.2831 0.2842 5.8797 0.2446 2.5136
0.2402 0.2509 5.3697 0.1935 2.2959

5000 0.2672 0.2749 5.7442 0.2246 2.4365
10000 0.2602 0.2611 5.7401 0.2103 2.4243

200
1000

0.2849 0.2918 6.337 0.2476 2.5262
0.2421 0.263 5.7436 0.2022 2.3065

5000 0.2625 0.2759 6.1281 0.2234 2.4169
10000 0.2599 0.2703 6.1347 0.2168 2.4199

3003 1000 0.241 0.258 7.2325 0.198 2.3194 0.2007 0.233 6.4235 0.1663 2.0358
1250 5000 0.2516 0.2623 7.0413 0.2095 2.4641 0.2269 0.2465 6.7374 0.1897 2.3049
700 10000 0.267 0.2752 6.8915 0.2269 2.5233 0.2438 0.2592 6.6454 0.2072 2.3977

Table 14. ITERPE + SSSS results on DFDA14-test over the top n ITERPE sorted
instances. We build SSSS for each instance.

ITERPE + SSSS
# train BLEUs F1 NISTs

en
-d

e 1000 24.6 18.8 78.4
5000 27.7 21.4 105.8
10000 21.1 18.9 126.4
25000 49.3 44.9 120.3

de
-e

n 1000 31.4 26.9 99.8
5000 54.2 51.1 124.2
10000 32.0 27.1 113.3

Table 15. Maximum instance improvement points with ITERPE + SSSS on DFDA14-test
test set over the top 100 ITERPE sorted instances.
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Improvement Points BLEU F1 NIST BLEUs NISTs
multiple system translation ranking 2.72 2.17 3.66

n-best list re-ranking 0.41

n-best list combination 0.06 0.28 0.31

ITERPE (en-de, n = 100) 1.43 0.54 2.9 0.64 4.7

Table 16. Summary of improvement points over the baseline obtained using QuEst for
high quality machine translation.

The ITERPE model can obtain robust sortings of the translations allowing us to an-
swer questions about which translations do not have much potential for improvement
and which may need to be re-translated or maybe post-edited. We build sentence spe-
cific SMT systems on the ITERPE sorted instances identified as having more potential
for improvement and obtain improvements in BLEU, F1, NIST, BLEUs, and NISTs.
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Abstract
In state-of-the-art phrase-based statistical machine translation systems, modelling phrase

reorderings is an important need to enhance naturalness of the translated outputs, particularly
when the grammatical structures of the language pairs differ significantly. Posing phrase move-
ments as a classification problem, we exploit recent developments in solving large-scale mul-
ticlass support vector machines. Using dual coordinate descent methods for learning, we pro-
vide a mechanism to shrink the amount of training data required for each iteration. Hence, we
produce significant computational saving while preserving the accuracy of the models. Our ap-
proach is a couple of times faster than maximum entropy approach and more memory-efficient
(50% reduction). Experiments were carried out on an Arabic-English corpus with more than a
quarter of a billion words. We achieve BLEU score improvements on top of a strong baseline
system with sparse reordering features.

1. Introduction

The mathematical basis of statistical machine translation (SMT) has its origins in
the formulation due to Brown et al. (1988), who later introduced five statistical models
widely known as the IBM models (Brown et al., 1993). While these early models were
word-based, assuming the translation to take place on a word by word basis, in reality,
groups of words (phrases) are recognised as better units of translation (Koehn, 2010).

Working at the phrase level helps resolve many ambiguities that occur at the word
level. Since the IBM models allow one to many mappings of words, phrase can be
automatically defined by training IBM word alignment models in both direction of
source and target languages, and combining the two alignments (Och and Ney, 2004).
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While such attempts at phrase level translation has shown improvement in transla-
tion performance, a further issue that has to be addressed is that of long range phrase
reorderings (Galley and Manning, 2008). Such reorderings arise from differences in
grammatical structures between language pairs and addressing this is important in
achieving increased naturalness of the translated output (Koehn, 2010). This issue
is particularly pronounced when language pairs separated by large evolutionary dis-
tances, or from different linguistic families, are considered such as Arabic and English.

Early work on handling phrase reorderings implemented a relaxation into the de-
coder which, instead of forcing phrases to be in synchrony, allowed a penalty func-
tion that penalised large movements proportionately (Koehn, 2004a). An alternative
approach, adopted by several systems nowadays is lexicalised reordering modelling
(Tillmann, 2004; Kumar and Byrne, 2005; Koehn et al., 2005), whereby the frequencies
of relative positions of the phrase pairs are extracted from the training corpus and
used as additional inputs to the decoder (see section 4).

Building on this, some researchers have borrowed powerful ideas from the ma-
chine learning literature, to pose the phrase movement problem as a prediction prob-
lem using contextual input features whose importance is modelled as weights of a
linear classifier trained by entropic criteria. This maximum entropy-based approach
(so called MaxEnt) is a popular choice (Zens and Ney, 2006; Xiong et al., 2006; Nguyen
et al., 2009; Xiang et al., 2011).

However, if the underlying classification problem is not linearly separable, the
MaxEnt classifier will not perform well and more advanced nonlinear methods will be
needed. Kernel methods (such as support vector machines in the context of pattern
recognition) are state-of-the-art approaches to capture nonlinear effects in datasets
(Cristianini and Shawe-Taylor, 2000). They map the data into high dimensional spaces
implicitly defined by properties of the chosen kernel, and achieve linear separability
in the transformed space.

In many natural language processing problems, including the phrase reordering
problem we address here, context information extracted from data are represented
explicitly in very high dimensional spaces and linear separability in these spaces can
be expected. Motivated by this, Ni et al. (2011) proposed the use of a structured per-
ceptron approach to tackle long range phrase reorderings. While that system results
in encouraging results on a Chinese-English translation task, dimensionality and the
resulting computational complexity were noted as issues that needed to be tackled.

More recently, there have been extensive developments in the machine learning
literature on scaling up support vector machines to problems with large data sizes.
The underlying quadratic programming problem is being solved by stochastic gradi-
ent search type algorithms. Many researchers proposed fast learning techniques for
linear SVM using a dual coordinate descent approach (Hsieh et al., 2008; Glasmachers
and Dogan, 2013; Alrajeh et al., 2015). The method of Hsieh et al. (2008), for example,
has linear complexity and reaches an ϵ-accurate solution in O(log(1/ϵ)) iterations.
Later, Chang et al. (2010) took the approach a step further and applied linear SVM to
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the explicit form of low-degree polynomial kernel. Although, in many cases, kernel
mapping is exponential to the input space or infinite as in the Gaussian kernel, the
approach is shown to be useful for certain datasets such as NLP task on dependency
parsing (Chang et al., 2010).

In this paper, we explore computationally fast and memory-efficient uses of mul-
ticlass SVM classifier as a model of long range phrase reorderings. Our results show
significant improvement in the BLEU score over a lexicalised reordering model. Train-
ing multiclass SVM is shown to be faster than MaxEnt with 50% reduction in memory
usage due to a shrinking heuristic we propose.

The remainder of this paper is organised as follows. Section 2 discusses previ-
ous work in the field and how it relates to our reordering model. Section 3 gives
an overview of the baseline translation system. Section 4 and 5 briefly describe the
lexicalised and maximum entropy-based reordering models. Section 6 introduces the
proposed SVM-based reordering model. Starting from a brief introduction to the SVM
formulation, we explain a fast learning technique for linear mulitclass SVM and how
it is extended to nonlinear using kernel mapping. Section 7 evaluates multiclass SVM
on benchmark datasets. Section 8 undertakes a comparison between our work and
previously proposed models and reports the results evaluated as classification and
translation problems. The experiments are based on a large-scale Arabic-English cor-
pus. Finally, we end the paper with a summary of our conclusions and perspectives.

2. Related Work

Adding a lexicalised reordering model has been shown to consistently improve the
translation quality for several language pairs (Koehn et al., 2005). The model tries to
predict the orientation of a phrase pair with respect to the previous adjacent target
words. Ideally, the reordering model would predict the right position in the target
sentence given a source phrase, which is difficult to achieve. Therefore, positions are
grouped into limited orientations or classes. The orientation probability for a phrase
pair is simply based on the relative occurrences in the training corpus.

The lexicalised reordering model has been extended to tackle long-distance re-
orderings (Galley and Manning, 2008). This takes into account the hierarchical struc-
ture of the sentence when considering such an orientation. This approach is shown to
improve translation performance for several translation tasks. An additional appeal
of the method is the low computing cost.

In addition to the fact that the lexicalised reordering model is always biased to-
ward the most frequent orientation for such a phrase pair, it may suffer from a data
sparseness problem since many phrase pairs occur only once (Nguyen et al., 2009).
Moreover, the context of a phrase might affect its orientation, which is not considered
as well.

Adopting the idea of predicting orientation based on content, it has been proposed
to represent each phrase pair by linguistic features as reordering evidence, and then
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train a classifier for prediction. The maximum entropy classifier is a popular choice
among many researchers.

Zens and Ney (2006) introduced the maximum entropy classifier for phrase re-
ordering. Three different translation tasks were carried out: Arabic-English, Chinese-
English and Japanese-English. Only two orientations were considered, left or right
(i.e. monotone or swap). Although the proposed model outperforms the relative
frequency model in terms of classification performance, they did not draw compar-
ison between them in terms of translation performance. The translation results re-
ported were between their model and the distance-based reordering model. We be-
lieve that such a comparison with a lexicalised reordering model is important because
the model is faster to estimate (i.e. relative frequency) and also faster to use during
translation since there is no overhead computation (i.e. retrieving probabilities from
a table).

Xiong et al. (2006) also proposed a maximum entropy model to predicate reorder-
ing of neighbour blocks (i.e. phrase pairs) and considered straight or inverted orienta-
tions (i.e. monotone or swap). Their experiments were carried out on Chinese-English
translation tasks. The reported results were only in terms of translation performance.
Similar to Zens and Ney (2006), the authors compared their model with the distance-
based reordering model although they did make reference to the lexicalised reorder-
ing model.

Nguyen et al. (2009) applied the maximum entropy model to learn orientations
identified by the hierarchical reordering model proposed by Galley and Manning
(2008). The previous work of Zens and Ney (2006) and Xiong et al. (2006) identi-
fied such an orientation without considering the hierarchical structure of previous
phrases. The authors used a relatively small English-Vietnamese corpus (0.6 million
words) collected from daily newspapers. The approach achieves translation improve-
ments over the lexical hierarchical reordering model in a test set taken from the same
corpus (i.e. not a benchmark).

Xiang et al. (2011) introduced a smoothed prior probability to maximum entropy
model and used multiple features based on syntactic parsing. The smoothed prior is a
combination of – through interpolation weight – a global distortion probability p(ok)
and a local distortion probability p(ok|f̄n, ēn) (i.e. lexicalised reordering model). The
model predicts the jump distance (up to five words) from the previously translated
source word to the current source word. This method does not capture the hierarchi-
cal structure of the sentence as explained by Galley and Manning (2008). The experi-
ments were undertaken on a large-scale Chinese-English translation task (one million
sentence pairs). The proposed model shows improvement over a distance-based re-
ordering model. Like the findings of Zens and Ney (2006) and Xiong et al. (2006),
there is no comparison with a lexicalised reordering model.

Ni et al. (2011) considered a variety of machine learning techniques including the
maximum entropy model. They introduced a perceptron-based learning approach
to modelling long-distance phrase movements. Similar to Xiang et al. (2011), their
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model predicts the jump distance (up to five words) from the previously translated
source word to the current one. Differing from the previous works, training data were
divided into small independent sets where all samples share the same source phrase.
This method breaks down the learning complexity by having as many sub-models as
source phrases. Although the number of parameters for each sub-model are small,
the total number of parameters are larger than having just one model to incorporate
all the data. Several learning techniques are compared and evaluated on a Chinese-
English corpus (Hong Kong laws corpus). The perceptron-based learning approach
outperforms both the lexicalised reordering model and the maximum entropy model.
The reported results were based on a test set taken from the same corpus.

Alrajeh and Niranjan (2014b) explored generative learning approach to phrase re-
ordering in Arabic to English namely Bayesian naive Bayes. We achieved an improve-
ment over a lexicalised reordering model. Training time of the model is as fast as the
lexicalised one. Its storage requirement is many times smaller, which makes it more
efficient particularly for large-scale tasks. Previously proposed discriminative models
might achieve higher score than the reported results. However, the model is scalable
since parameter estimation requires only one pass over the data with limited memory
(i.e. no iterative learning). This is a critical advantage over discriminative models.

Recently, Cherry (2013) proposed using sparse features to optimise BLEU with the
decoder instead of training a classifier independently. The reported results shows that
sparse decoder features are superior to maximum entropy classifier.

We distinguish our work from the previous ones in the following. We propose
fast and memory-efficient reordering models using multiclass SVM. In this study,
we undertake a comparison between our work and both lexicalised and maximum
entropy-based reordering models.

3. Baseline System

In statistical machine translation, the most likely translation ebest of an input sen-
tence f can be found by maximising the probability p(e|f), as follows:

ebest = arg max
e

p(e|f). (1)

A log-linear combination of different models (features) is used for direct modelling
of the posterior probability p(e|f) (Papineni et al., 1998; Och and Ney, 2002):

ebest = arg max
e

n∑
i=1

λihi(f,e), (2)

where the feature hi(f,e) is a score function over sentence pairs. The translation
model and the language model are the main features in any system although addi-
tional features h(.) can be integrated easily (such as word penalty).
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In phrase-based systems, the translation model can capture the local meaning for
each source phrase. However, to capture the whole meaning of a sentence, its trans-
lated phrases need to be in the correct order. The language model, which ensures flu-
ent translation, plays an important role in reordering; however, the model is not suf-
ficient (Al-Onaizan and Papineni, 2006). It prefers sentences that are grammatically
correct without considering their actual meaning (i.e. the dependence of the target
sentence on the source sentence). Besides that, it has a bias towards short transla-
tions1 (Koehn, 2010). Therefore, developing a specific reordering model will improve
the accuracy particularly when translating between two grammatically different lan-
guages.

4. Lexicalised Reordering Model

Phrase reordering modelling involves formulating phrase movements as a classi-
fication problem where each phrase position considered as a class (Tillmann, 2004).
Some researchers classified phrase movements into three categories (monotone, swap,
and discontinuous) but the classes can be extended to any arbitrary number (Koehn
and Monz, 2005). In general, the distribution of phrase orientation is:

p(ok|f̄i, ēi) =
1

Z
h(f̄i, ēi, ok). (3)

This lexicalised reordering model is estimated by relative frequency where each
phrase pair (f̄i, ēi) with orientation ok is counted and then normalised to yield the
probability as follows:

p(ok|f̄i, ēi) =
count(f̄i, ēi, ok)∑
o count(f̄i, ēi, o)

. (4)

The orientation class of a current phrase pair is defined with respect to the pre-
vious target word or phrase (i.e. word-based classes or phrase-based classes). In the
case of three categories (monotone, swap, and discontinuous): monotone is the previ-
ous source phrase (or word) that is previously adjacent to the current source phrase,
swap is the previous source phrase (or word) that is next-adjacent to the current source
phrase, and discontinuous is not monotone or swap. Galley and Manning (2008) ex-
tended the model to recognise sentence hierarchical structure.

5. Maximum Entropy-based Reordering Model

As mentioned in the introduction, maximum entropy classifier is a popular choice
to model phrase movements. It is also known as multinomial logistic regression or

1In Moses, it is balanced by the word/phrase count features as noted by one of the reviewers.
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softmax regression, which is a probabilistic model for the multiclass problem. The
model is an extension of logistic regression which is a binary classifier. The class
probability is given by:

p(ok|f̄i, ēi) =
exp(w⊤

kϕ(f̄i, ēi))∑
k ′ exp(w⊤

k ′ϕ(f̄i, ēi))
, (5)

where ϕ(f̄i, ēi) is a feature vector (see Table 3) and wk is a weight vector measur-
ing features’ contribution to orientation ok. The model’s parameters are estimated
by maximum likelihood. To do that, we write the function using the 1-of-K coding
scheme in which ti is a zero vector except where tik equals one, which indicates that
an object is belonging to that class (Bishop, 2006). Then the likelihood is expressed as:

p(o|f̄, ē) =

N∏
i=1

K∏
k=1

p(ok|f̄i, ēi)
tik (6)

Now, taking the partial derivative of the log-likelihood we get (Bishop, 2006):

∂ logL

∂wk

=

N∑
i=1

(
tik − p(ok|f̄i, ēi)

)
ϕ(f̄i, ēi). (7)

The solution is not closed-form but we can estimate wk by the stochastic gradi-
ent descent. Similarly, MAP estimate can be used to impose regularisation on the
parameters. In our experiments, we used a more advanced optimisation algorithm
proposed by Andrew and Gao (2007)2. Their algorithm optimises L1-regularised or
L2-regularised log-likelihood based on L-BFGS algorithm. The L1 regularisation is
equivalent to adding Laplacian prior over the model’s parameters.

6. SVM-based Reordering Model

Phrase reordering problem is usually formulated as multiclass problem which can
be solved as several binary problems in the standard SVM (Boser et al., 1992). One-
versus-rest or one-versus-one are well known strategies.

In this work, we propose multiclass SVM to model phrase movements. We use
dual coordinate method and a mechanism for pruning of the training samples, which
allows us to train a reordering model efficiently. Before discussing our approach we
briefly introduce multiclass SVM formulation.

Given a set S = {(x1, y1), . . . , (xN, yN)} where xi ∈ Rn and yi ∈ {1, . . . , K}, Cram-
mer and Singer (2002) proposed a multiclass SVM formulation. Its dual optimisation
problem is:

2We have used the authors’ implementation of L-BFGS algorithm which is available at
http://homes.cs.washington.edu/∼galen/
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minimise
α

D(α) =
1

2

K∑
k=1

N∑
i,j=1

αikαjkx
T
i xj +

N∑
i=1

K∑
k=1

(1− δik)αi,

subject to
K∑

k=1

αik = 0 and αik ≤ Cδik ∀i, k, (8)

δik =

{
0 if yi ̸= yk;
1 if yi = yk.

where the corresponding wk =
∑N

i=1 αikxi. Here C ≥ 0 is a penalty parameter
for margin violation by each data point xi .

For the sake of clarity, we use xi to represent data in our discussion on SVM, and
the learning algorithms. In the context of our NLP problem, and previous discussion
in this paper xi = ϕ(f̄i, ēi). Table 3 shows how a phrase pair can be represented.

Note that SVM is not a probabilistic classifier but in our experiments we used soft-
max function to yield a probabilistic decision (Bishop, 2006).

6.1. Shrinking dual method for solving Multiclass SVM

Keerthi et al. (2008) propose a sequential dual method to solve the problem (8).
The method sequentially picks xi at a time and optimises its dual variable (i.e. αik ∀k)
while fixing all other variables. The sub-problem is given by:

minimise
αi

1

2

K∑
k=1

1

2
Aα2

ik + Bkαik,

subject to αik ≤ Cδik ∀k, (9)

where

A = xTi xi and Bk = Gik −Aαik,

Gik =
∂D(α)

∂αik

= wT
kxi + 1− δik. (10)

Crammer and Singer (2002) provide O(k log k) algorithm to solve the sub-problem
(9). Fan et al. (2008) present a simpler version given in Algorithm 1.

After each update, the corresponding weight vector for each class wk is main-
tained as follows (Fan et al., 2008):

wk = wk + (α
′

ik − αik)xi (11)
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Algorithm 1 Solving the sub-problem of multiclass SVM
Require: A, B and a penalty parameter C ≥ 0

1: Dk ← Bk +ACδik , ∀k
2: Sort D in decreasing order
3: β← D1 −AC , r← 2

4: while r ≤ K and β/(r− 1) < Dr do
5: β← β+Dr , r← r+ 1

6: end while
7: β← β/(r− 1)
8: α

′

ik ← min(Cδik, (β− Bk)/A) , ∀k

The optimal dual variables are achieved when the following condition is satisfied
for all samples (Keerthi et al., 2008):

vi = 0 , ∀i, where vi = max
k

Gik − min
k:αik<Cδik

Gik. (12)

We propose a shrinking heuristic based on this condition which is a key to acceler-
ate our algorithm. The dual variables αik are associated with each sample (i.e. phrase
pair) therefore a training sample can be disregarded once its optimal dual variables
are obtained. More data shrinking can be achieved by tolerating a small difference be-
tween the two values in (12). Algorithm 2 presents the overall procedure (shrinking
step is from line 6 to 8).

Algorithm 2 Shrinking dual method for training large-scale multiclass SVM
Require: training set S = {xi, yi}

N
i=1

1: α = 0 and w = 0

2: repeat
3: Randomly pick i from S

4: Calculate Aik , Bik , Gik ∀k by (10)
5: Calculate vi by (12)
6: if vi ≤ ϵ then
7: Remove i from S

8: else
9: Calculate α ′

ik ∀k by Algorithm 1
10: Update α and w by (11)
11: end if
12: until vi ≤ ϵ ∀i
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6.2. Kernel Mapping via Linear SVM

We have seen in the previous section that linear SVM can be scalable because of
the advantage of accessing the feature space. On the other hand, kernel SVM is able
to learn more complex patterns by working on high dimensional feature space, where
the data might be linearly separable, without explicit mapping using the kernel trick.

An interesting technique to accelerate kernel SVM is to apply linear SVM to the
explicit form. However, in many cases, kernel mapping is exponential to the input
space or infinite as in the Gaussian kernel. Low-degree polynomial mapping is shown
to be useful for certain datasets (Chang et al., 2010). All-subsets kernel is similar to
polynomial kernel but has more flexibility in terms of the monomials’ weightings
(Shawe-Taylor and Cristianini, 2004). The mapping generates all combinations of in-
put features and each monomial’s coefficient equals one unlike polynomial mapping.
Working with all monomials might be computationally expensive. Analysis of vari-
ance (ANOVA) kernel Kd, used in our experiments, restricts the mapping to subsets
of cardinality d with

(
n
d

)
dimensions (Shawe-Taylor and Cristianini, 2004). Table 3, in

the next section, gives an example of AVOVA mapping.

7. Experiments

The Arabic-English parallel corpus used in our experiments is a combination of
MultiUN, ISI and Ummah to set up a large-scale corpus. MultiUN is a large-scale
parallel corpus extracted from the United Nations website3 (Eisele and Chen, 2010).
ISI and Ummah were taken from Linguistic Data Consortium4 (LDC) with catalogue
numbers (LDC2007T08) and (LDC2004T18), respectively. Table 1 shows general statis-
tics of the corpora. Test sets are from NIST MT06 and MT08 where the Arabic sides
are 1797 and 813 sentences, respectively. Each sentence has four English references.

Corpus MultiUN ISI Ummah
Statistics Arabic English Arabic English Arabic English

Sentence Pairs 9.7 M 1.1 M 80 K
Running Words 255.5 M 285.7 M 30.5 M 34.4 M 2.7 M 2.9 M

Words/Line 22 25 27 31 33 36
Vocabulary Size 677 K 410 K 354 K 195 K 63 K 46 K
Vocabulary [%] 0.26 0.14 1.16 0.57 2.33 1.59

Table 1. General statistics of MultiUN, ISI and Ummah (M: million, K: thousand).

3http://www.ods.un.org/ods/
4http://ldc.upenn.edu/
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We compare our approach with previously proposed reordering models in two
phases. In the classification phase, we see the performance of the models as a classifi-
cation problem. In the translation phase, we test the actual impact of these reordering
models in a translation system.

7.1. Classification

We simplify the problem by classifying phrase movements into three categories
(monotone, swap, discontinuous). To train the reordering models, we used GIZA++
to produce word alignments (Och and Ney, 2000). Then, we used the extract tool
that comes with the Moses 5 toolkit (Koehn et al., 2007) in order to extract phrase
pairs along with their orientation classes.

During the extraction process, each extracted phrase pair is represented by lin-
guistic features. There are different feature representations in the literature as we
have seen in Section 2. We explore a variety of feature sets as shown in Table 2. Each
phrase pair is represented by all its words, its boundaries or its alignments. We have
considered one or three words of context (i.e. occur before or after each phrase pair).
Finally, one of ANOVA mappings were selected. Table 3 gives a generic example.

Feature Phrase Pair Context ANOVA Mapping
Set all words boundaries alignments size=1 size=3 d=1 d=2 d≤2
S1 . ✓
S2 . ✓
S3 . ✓
S4 . . ✓
S5 . . ✓
S6 . . ✓
S7 . . ✓
S8 . . ✓
S9 . . ✓
S10 . . ✓
S11 . . ✓
S12 . . ✓
S13 . . ✓
S14 . . ✓
S15 . . ✓

Table 2. A variety of feature sets to represent a phrase pair.

5Moses is an open source toolkit for statistical machine translation (www.statmt.org/moses/).
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Sentence pair:
Foreign sentence f : ..f1 f2

1
..f3 f4 f5

2
..f6

3
.

English sentence e : ..e1
1

..e2 e3
3

..e4 e5
2
.

Extracted phrase pairs (f̄, ē) :
f̄i ||| ēi ||| oi ||| alignments

f1 f2 ||| e1 ||| mono ||| 0-0 1-0
f3 f4 f5 ||| e4 e5 ||| swap ||| 0-1 2-0
f6 ||| e2 e3 ||| other ||| 0-0 0-1

Feature Representation:
a phrase pair is represented as a vector ϕ where each feature is a discrete number
(0=not exist). Below is a representation of ϕ(f̄2, ē2) in different feature sets:

S1 : f3, f4, f5, e4, e5
S2 : f3, f5, e4, e5
S3 : f3&e5, f5&e4
S4 : f3, f5, e4, e5, f−2 , f+6
S5 : f3_f5, f3_e4, f3_e5, f3_f−2 , f3_f+6 , f5_e4, f5_e5, f5_f−2 , f5_f+6 ,

e4_e5, e4_f−2 , e4_f+6 , f−2 _f+6
S6 : f3, f5, e4, e5, f−2 , f+6 , f3_f5, f3_e4, f3_e5, f3_f−2 , f3_f+6 ,

f5_e4, f5_e5, f5_f−2 , f5_f+6 , e4_e5, e4_f−2 , e4_f+6 , f−2 _f+6

Table 3. A generic example of the process of phrase pair extraction and
representation in different feature sets

Firstly, we present the performance of lexicalised reordering model in Table 4.
Then, we compare MaxEnt and multiclass SVM under all feature sets in Table 2. It
is not hard to see that using MaxEnt with an alternate feature set that enumerates all
conjunctions of size d is equal to ANOVA mapping. Tables 5 and 6 report the results.

Orientation Confusion Matrix Accuracy Precision Recall F1 score
Mono Swap Disc. all classes

Monotone 68.9 0.9 1.3 97.0 77.0 85.9
Swap 6.4 2.6 0.8 75.9 26.8 63.5 37.7

Discontinuous 14.2 0.6 4.4 23.0 68.4 34.5

Table 4. The performance of lexicalised reordering model.
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Feature Time Acc. Precision Recall F1 score
Set M S D M S D M S D
S1 1h26m 74.1 96.6 17.3 19.7 75.5 57.7 61.4 84.8 26.6 29.8
S2 1h10m 74.0 97.1 13.9 19.1 75.1 61.2 62.0 84.7 22.7 29.2
S3 1h40m 76.1 93.5 32.1 34.0 79.8 55.5 58.6 86.1 40.7 43.0
S4 1h50m 77.0 95.5 37.3 29.1 78.9 69.6 63.0 86.4 48.5 39.9
S5 5h59m 80.7 94.9 49.2 44.2 83.3 71.9 68.4 88.7 58.4 53.7
S6 6h21m 81.3 94.4 53.3 46.9 84.3 72.5 67.6 89.1 61.4 55.4
S7 3h10m 78.7 93.8 45.2 39.7 82.2 67.1 61.7 87.6 54.0 48.3
S8 4h32m 81.4 93.9 51.6 50.7 85.0 72.7 66.7 89.3 60.4 57.6
S9 4h43m 82.5 93.4 59.5 53.9 86.7 72.1 67.3 89.9 65.2 59.9
S10 2h45m 76.2 94.1 34.0 31.3 79.2 61.9 58.8 86.0 43.9 40.9
S11 15h11m 82.4 95.2 56.4 47.3 84.8 75.0 74.0 89.7 64.4 57.7
S12 16h04m 82.6 94.9 58.1 48.9 84.7 73.3 71.2 89.5 64.8 58.0
S13 3h24m 78.8 92.3 46.3 45.1 83.8 62.2 59.8 87.9 53.1 51.4
S14 13h03m 82.2 93.9 50.0 45.4 83.5 78.6 68.8 88.4 61.1 54.7
S15 15h12m 82.9 93.4 59.8 54.8 88.3 72.8 69.9 90.8 65.7 61.4

Table 5. Maximum entropy-based reordering model’s performance (M is monotone, S
is swap, D is discontinuous). The reported time is in hours (h) and minutes (m).

Feature Time Acc. Precision Recall F1 score
Set M S D M S D M S D
S1 0h30m 70.8 92.7 7.4 22.3 76.5 31.9 36.8 83.8 12.0 27.8
S2 0h28m 71.7 96.2 13.3 10.7 74.9 30.9 44.5 84.2 18.6 17.3
S3 0h40m 75.8 93.3 36.3 31.1 80.0 50.5 58.8 86.1 42.2 40.7
S4 0h33m 75.6 95.9 35.9 21.0 77.7 59.9 62.2 85.8 44.9 31.4
S5 1h45m 82.1 95.8 55.8 44.8 84.1 73.7 73.3 89.6 63.5 55.6
S6 2h07m 82.5 95.1 60.0 47.4 85.2 72.1 72.4 89.9 65.5 57.3
S7 0h47m 79.3 93.7 49.5 41.3 82.8 69.0 62 .7 87.9 57.7 49.8
S8 1h24m 81.0 95.3 50.4 42.9 83.3 69.0 71.0 88.9 58.2 53.5
S9 1h41m 82.1 92.5 61.0 54.1 86.8 69.7 65.6 89.6 65.1 59.3
S10 0h44m 74.0 95.6 24.5 18.7 76.8 49.2 53.4 85.2 32.7 27.7
S11 4h33m 82.7 95.9 56.2 47.4 84.7 75.0 74.2 89.8 64.3 57.9
S12 4h51m 82.6 94.9 57.9 49.7 85.4 73.3 71.8 89.9 64.7 58.7
S13 0h59m 78.0 94.2 46.3 35.0 81.6 58.4 62.2 87.4 49.7 44.8
S14 3h32m 82.0 96.8 49.1 44.0 83.2 77.3 75.8 89.5 60.0 55.6
S15 4h04m 82.8 95.5 55.8 49.8 85.4 73.6 72.8 90.2 63.5 59.1

Table 6. Multiclass SVM-based reordering model’s performance.
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Four observations can be drawn from the results in Table 5 and Table 6. First, the
performance of multiclass SVM is similar to MaxEnt in most feature sets. Second, our
classifier is a couple of times faster than MaxEnt (around 4-fold) due to the shrinking
method. Third, context around phrase pairs is important to achieve high accuracy
and only one word before and after is enough. Finally, alignment features usually
have higher F1 score than boundary features in both MaxEnt and multiclass SVM.

Alrajeh and Niranjan (2014a) propose a dual multinomial logistic regression (Dual
MLR) with a shrinking heuristic to model phrase movements. We compare their
shrinking approach with multiclass SVM in Figure 1.
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Figure 1. Comparison between multiclass SVM and dual multinomial logistic
regression (MLR) in terms of active phrase pairs during training.

In Figure 2, we show training time and memory usage for each classifier (Multiclass
SVM, Dual MLR, MaxEnt) when the number of phrase pairs increases. The results
show that multiclass SVM consumes mush less memory (nearly half) than MaxEnt
due to the shrinking technique discussed in Section 6.1.
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Figure 2. Training time (above) and memory usage (below) for each classifier when
the number of phrase pairs increases.
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7.2. Translation

We used the Moses toolkit (Koehn et al., 2007) with its default settings. The lan-
guage model is a 5-gram built from the English side with interpolation and Kneser-
Ney smoothing (Kneser and Ney, 1995). We tuned the system using PRO technique
(Hopkins and May, 2011). We built seven Arabic-English translation systems. The
first system has no reordering model, only a distortion penalty. The second system
has a hierarchical lexicalised reordering model that is built by specifying the con-
figuration string hier-msd-backward-fe. Sparse reordering features (Cherry, 2013)
are added in the third system. We only used ’sparse-phrase=1’ option with top 200
words. The last four systems have SVM-based or MaxEnt-based reordering models.

As commonly used in statistical machine translation, we evaluated the translation
performance by BLEU score (Papineni et al., 2002) and NIST (Doddington, 2002). We
also computed statistical significance for the proposed models using a paired bootstrap
resampling method (Koehn, 2004b).

Table 7 reports the size of each reordering model. Note that there is a big difference
between the lexicalised model and the discriminative ones.

Reordering Model Lexicalised Multiclass SVM (S6) Multiclass SVM (S7)
Parameters (million) 73.2 17.1 2.4
Disk Storage (GB) 5.9 0.7 0.1

Table 7. Comparison of problem sizes for the different reordering models.

Table 8 presents NIST and BLEU scores for five translation systems in MT06 and
MT08 test sets. Our models achieve improvements on top of a strong baseline system
with sparse reordering features. Note that feature sets (S6) and (S7) have similar scores
although (S6) has higher classification accuracy in Table 6.

MT06 MT08
Phrase-based SMT NIST ∆ BLEU ∆ NIST ∆ BLEU ∆

No Reordering Model 9.1 -0.3 35.5 -1.6 9.9 -0.2 41.2 -1.7
LexicalRM (baseline) 9.4 – 37.1 – 10.1 – 42.9 –
LexicalRM + sparseRM 9.5 +0.1 37.6 +0.5 10.2 +0.2 43.8 +0.9
SVM-RM (S6) + sparseRM 9.6 +0.2 38.1 +1.0 10.4 +0.3 44.4 +1.5
SVM-RM (S7) + sparseRM 9.6 +0.2 38.0 +0.9 10.4 +0.3 44.3 +1.4
MaxEnt-RM (S6) + sparseRM 9.6 +0.2 38.1 +1.0 10.4 +0.3 44.4 +1.5
MaxEnt-RM (S7) + sparseRM 9.6 +0.2 38.1 +1.0 10.4 +0.3 44.4 +1.5

Table 8. NIST and BLEU [%] scores for two evaluation sets (RM: Reordering Model).
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8. Conclusion

Posing phrase movements as a classification problem, we exploit recent devel-
opments in solving large-scale multiclass support vector machines using stochastic
gradient learning algorithm and show significant advantages in Arabic-English sys-
tems. The algorithms we propose are shown to be computationally fast and memory-
efficient. In terms of evaluating translation quality using the BLEU score, we achieve
1.0 point in MT06 and 1.5 in MT08 over a lexicalised reordering model with at least
95% statistical significance. Our SVM-based model is shown to be superior to the
maximum entropy-based model. It is a couple of times faster (nearly 4-fold) and more
memory-efficient (50% reduction).

The expanded space due to ANOVA mapping can be reduced significantly by re-
moving less frequent features. We found that a reordering model based on alignments
features (S7) is more compact than using boundaries features (S6).

Our current work focuses on two issues. The first issue is exploring higher degrees
of ANOVA kernels and others in order to reduce the classification error rate. The
second issue is reducing feature space by using limited but informative features such
as part-of-speech tags.
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Abstract
We propose a manual evaluation method for machine translation (MT), in which annotators

rank only translations of short segments instead of whole sentences. This results in an easier
and more efficient annotation. We have conducted an annotation experiment and evaluated a
set of MT systems using this method. The obtained results are very close to the official WMT14
evaluation results. We also use the collected database of annotations to automatically evaluate
new, unseen systems and to tune parameters of a statistical machine translation system. The
evaluation of unseen systems, however, does not work and we analyze the reasons.

1. Introduction

Manual evaluation is considered as the only source of truth, which automatic met-
rics try to approximate. However, it suffers from many disadvantages. Since it in-
cludes manual labour, it is very costly and slow. Moreover, manual evaluation is not
reproducible with exactly the same results; human annotators have different crite-
ria for comparing candidates and even an individual annotator is not consistent with
himself or herself in time. Human evaluation is therefore most often used in shared
evaluation campaigns and sometimes used by MT developers when a new compo-
nent of a system needs to be evaluated. It is definitely not feasible to directly use
human evaluation in an automatic method for tuning a model’s parameters because
these methods require to evaluate millions of sentences.

It would be very useful to have an evaluation method with the advantages of both
manual and automatic methods. Recently, there actually emerged methods on the
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boundary of manual and automatic evaluation. See Zaidan and Callison-Burch (2009)
and Bojar et al. (2013) for example of such methods. These methods usually require
a large manual annotation effort at the beginning to create a database of annotations
and then they use the collected database in an automatic way during evaluation of
unseen sentences.

The goal of this article is to propose a method, which could be used to manually
evaluate a set of systems and the database collected during this manual evaluation
could be later reused to automatically evaluate new, unseen systems and to tune the
parameters of MT systems. This goal includes, besides proposing the method, also
developing an annotation application, conducting a real evaluation experiment and
experimenting with reusing the collected database.

The article is organized as follows. In Section 2, we propose the manual evalua-
tion method. In Section 3, we describe our annotation experiment with the proposed
method and evaluate annotated systems. We explore the possibility of reusing the
collected database to evaluate new systems in Section 4. And finally, we try to em-
ploy the collected database in tuning of an MT system in Section 5.

2. SegRanks: Manual Evaluation Based on Short Segments

In the WMT official human evaluation (Bojar et al., 2014),1 humans annotate whole
sentences. They are presented with five candidate translations of a given source sen-
tence and their task is to rank these candidates relative to one another (ties are al-
lowed). One of the disadvantages of this method is that the sentences are quite long
and therefore quite hard to remember for the annotators to compare them. Also, when
comparing longer sentences, there are many more aspects, in which one sentence can
be better or worse than another, and therefore it is more difficult for the annotators to
choose the better of the candidates.

To avoid these disadvantages, we propose the following method. Instead of judg-
ing whole sentences, we extract short segments2 from candidates and present them
to annotators to rank them. In order to extract meaningful segments with the same
meaning from all candidates, we do the following procedure: First, we parse the
source sentence and then recursively descend the parsed tree and find nodes that
cover source segments of a given maximum length. This is captured in Algorithm 1.
Finally, we project these extracted source segments to their counterpart segments in
all candidate sentences using an automatic alignment.3 The whole process is illus-
trated in Figure 1. This extraction method is inspired by Zaidan and Callison-Burch

1http://www.statmt.org/wmt15 and previous years
2The term ‘segment’ is sometimes used in the literature to refer a sentence. In this article, we will use

the term ‘segment’ for a phrase of few words.
3We allow gaps in the projected target segments.
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(2009) and by the constituent ranking technique as it was used in WMT07 manual
evaluation (Callison-Burch et al., 2007).

Algorithm 1 Short segment extraction from source-side parse tree
1: function ES(treeNode,minLength,maxLength)
2: extractedSegments← list()
3: leaves← treeNode.leaves()
4: if length(leaves) ≤ maxLength then
5: if lenth(leaves) ≥ minLength then
6: extractedSegments.append(leaves)

7: else
8: for node in treeNode.children() do
9: segments← ES(child,minLength,maxLength)

10: extractedSegments.extend(segments)
return extractedSegments

In the constituent ranking in WMT07, these extracted segments were only high-
lighted and shown to the annotators together with the rest of the sentence. The an-
notators were asked to rank the highlighted segments in the context of the whole
candidate sentences.

We use a different approach here, which is more similar to that used by Zaidan
and Callison-Burch (2009). We show the extracted segments without any context and
ask the annotators to rank them. The only additional information provided to the
annotators is the whole source sentence with the source segment highlighted. The
annotators are told that they can imagine any possible translation of the source sen-
tence where the ranked segment fits best. They are instructed to penalize only those
segments for which they cannot imagine any appropriate rest of the sentence.

While we are aware that this approach has some disadvantages (which we sum-
marize below), there is one significant advantage: it is much more likely that two
systems produce the same translation of a short segment than that they would pro-
duce the same translation of a whole sentence. Because we do not show the sentence
context, we can merge identical segment candidates into one item, so the annotators
have fewer candidate segments to rank. This also allows us to reuse already collected
human annotations later to evaluate a new system that was not in the set of annotated
systems or to tune parameters of a system.

The following list summarizes known disadvantages of this method. However, we
believe that the advantages still outweigh the problems and that our method is worth
exploration.

• A system can translate shorter segments quite well but it can fail to combine
them properly when creating the whole sentence translation. For instance, a
system may fail to preserve the subject-verb agreement. In their paper, Zaidan
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S

NP VP

DT JJ NNS VBP ADVP VP

RB VBN PRT ADVP

RP RB

The prepaid mobiles are then thrown away afterwards

Předplacené mobilní telefony jsou pak vyhozeny později

Parse tree

Source

Candidate

Alignment

Figure 1: An illustration of candidate segments extraction process. For a given MT
system, two segments were extracted from this sentence. The maxLength constant
was set to the value 4 here, to illustrate that not all of the words are always covered
by the extracted segments.

and Callison-Burch (2009) suggest to go up the parse tree and extract also the
longer segments that consist of already extracted shorter segments. However,
if we use this approach the amount of annotation work would multiply sev-
eral times. Furthermore, the longer segments are more difficult to rank and the
chance that systems’ candidates will be identical (so that we can merge them for
annotation) is lower.

• The annotators do not see the whole context of annotated short segments. They
are instructed to imagine any suitable context of the segment. However, they can
fail to imagine a suitable context even if there exists one and wrongly penalize
the segment. To partially remedy this disadvantage, we give all extracted short
segments to the annotators to judge at once as a source of inspiration.

• Extracted short segments do not cover the whole sentence. For example in Fig-
ure 1, the words ‘jsou’ and ‘pak’ are not part of any extracted segment. We
would avoid this problem if we set the variable minLength to zero. This, how-
ever, would generate a high number of short segments to annotate.

• Some segments are much more important in conveying the meaning of a sen-
tence than others, and therefore they should not have equal weights when they
are considered in scoring. When an annotator ranks system A better than sys-
tem B in two of three ranked segments, and system B better than system A in
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the third segment, it does not always mean that he would have ranked system
A better than system B when ranking the whole sentences. The third segment
could be much more important for the quality of translation than the first two.
We are afraid that it is not possible to easily avoid this problem. However, we
also believe that this problem is not so severe and that possible differences in
the importance of individual segments cancel out.

• The word-alignments are computed automatically and are not always correct.
The projected target segments may not exactly correspond to the source seg-
ments and may mislead the annotators.

3. Experiments

3.1. Data and Segment Preparation

We used English to Czech part of the WMT14 (Bojar et al., 2014) test set. We chose
this dataset to be able to compare our results with the official WMT14 human evalu-
ation.

The test set consists of 3 003 sentences (68 866 English tokens). It contains both
source sentences and reference translations. Besides that, we also used candidate
translations of all 10 systems that participated in the English→ Czech WMT14 trans-
lation task.

The source sentences and all candidate translations were tokenized and normal-
ized. The source sentences were parsed using the Stanford parser. We used lexical-
ized englishFactored model (Klein and Manning, 2003b), which is distributed with
the parser. We also tried unlexicalized englishPCFG (Klein and Manning, 2003a) and
compared the segments extracted using the both parsers on a small random sample
of sentences. The englishFactored model yielded subjectively better segments.

We constructed the word alignment between the source sentences and the can-
didate translations using Giza++ (Och and Ney, 2003). Since the alignment algo-
rithm is unsupervised and the amount of all candidate translations is relatively small
(10×3 003), we introduced more data by concatenating all candidate translations with
646 605 sentences taken from the Europarl parallel corpus (Koehn, 2005) and with
197 053 sentences taken from the CzEng parallel corpus (Bojar et al., 2012). We used
grow-diag-final symetrization method (Koehn et al., 2003) to combine alignments
computed in both directions.

We extracted short segments from the parsed source trees using Algorithm 1. The
constant minLength was set to the value 3 to filter out very short segments, most of
which are hard to compare without context. This also helped reduce the number of
extracted segments to be annotated. The constant maxLength was set to the value 6
so the extracted segments were not too long to compare and at the same time it was
more likely that two candidate translations of a segment were equal and thus there
would be fewer items to rank (our aim was to make annotations as easy and fast as

89



PBML 103 APRIL 2015

possible). We have experimented with various settings of these two constants and the
final setting seemed to generate a reasonable number of meaningful segments.

From the 3 003 source sentences, we have extracted 8 485 segments of length 3 to 6
tokens. That is approximately 2.83 segments per sentence on average. The extracted
segments covered 54.9 % of source tokens. By projecting the source segments to the
candidate sentences using the computed alignments, we obtained 10× 8 485 = 84 850

candidate segments. However, after the merging of identical segments, only 50 011
candidate segments were left. This represents 58.9 % of the original candidate seg-
ments, or in other words, after the merging we got 5.89 (instead of original 10) can-
didate segments to be ranked for each source segment on average. These candidate
segments were inserted into the database to be ranked by the annotators.

3.2. Ranking of Segments

We have developed a new annotation application called SegRanks for this annota-
tion experiment. An example screenshot is given in Figure 2. Annotation instructions
were displayed on each annotation screen. This is the English translation of these
instructions:

A number of segments are extracted from the annotated sentence. You are
shown a few candidate translations for each of these segments. Your task
is to distinguish acceptable candidate translations (the meaning of the seg-
ment can be guessed despite a few or more errors) from unacceptable ones
(the meaning is definitely not possible to guess from the candidate seg-
ment). Also please rank the acceptable candidate translations relatively
from the best ones to the worst ones. Please place better candidate trans-
lations higher and the worse ones lower. You can place candidates of the
same quality on the same rank. We ask that you place unacceptable can-
didates to the position “Garbage”.
Please note that source segments and their candidate translations are cho-
sen automatically and do not have to be perfect. Consider them only as
approximate clues. If a candidate segment contains an extra word that
does not correspond to the source segment but otherwise could be in the
translated sentence, you do not have to rank such candidate any worse. If
something is missing in the candidate translation you should consider it
an error.

Our goal was to make the annotation as efficient and user friendly as possible. The
annotators rank all the segments of a sentence on a single screen (so that they have to
read the whole source sentence and reference translation only once). For each anno-
tated segment, they see the source sentence repeated, with the annotated segment
highlighted. The annotators rank the segment candidates by dragging and drop-
ping them to appropriate rank positions. When all the candidates of all the source
segments of the sentence are ranked, the annotators submit their annotations to the
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Figure 2: A screenshot of the annotation interface in Czech. The annotators rank the
candidate segments by dragging and dropping them into the ranks. The annotators
see all annotated segments of a sentence on a single screen.
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server. The web interface has a responsive design, so it is displayed correctly on
smaller screens, and the drag-and-drop works also on touch screens. The annotators
were therefore able to rank segments on a tablet.

During the annotation experiment, 17 annotators ranked segments of 2 765 sen-
tences, which is more than 92 % of the prepared English-Czech test set.

3.3. Annotator Agreements

To measure the reliability and robustness of the proposed annotation method, we
compute intra- and inter-annotator agreements. A reasonable degree of these agree-
ments supports the suitability of this method for machine translation evaluation.

We measured the agreements using Cohen’s kappa coefficient (κ) (Cohen, 1960).
Let P(A) be the proportion of times the annotators agree and P(E) be the proportion
of time that they would agree by chance. Then the Cohen’s κ is computed using the
following formula:

κ =
P(A) − P(E)

1− P(E)

In our case, P(A) and P(E) are computed in the context of pairwise comparisons.
Approximately 5 % of the annotated sentences were annotated twice by two different
annotators (for the inter-annotator agreement). Another 5 % of the sentences were an-
notated twice by the same annotator (for the intra-annotator agreement). From all the
segments of these double annotated sentences, we extracted pairwise comparisons of
candidate segments. Then we computed P(A) as the proportion of pairwise compar-
isons in which annotations match.

We computed the expected agreement by chance as

P(E) = P(A > B)2 + P(A = B)2 + P(A < B)2

where P(A = B) was computed empirically as the relative frequency of cases where
two segments were ranked equaly (across all annotations of all segments of all sen-
tences, regardless the annotator) and the other two were computed as P(A < B) =

P(A > B) = 1−P(A=B)
2

. The value of P(E) in our experiment is 0.394, which means
that the probability of the outcomes A > B, A = B and A < B is not uniform.

The final values of inter-annotator and intra-annotator κ can be found in Table 1.
For comparison, we report the corresponding κ values from WMT14 sentence ranking
task (Bojar et al., 2014), which were computed identically on the same test set. The
exact interpretation of the Kappa coefficient is difficult, but according to Landis and
Koch (1977), values in the range 0–0.2 indicate a slight agreement, 0.2–0.4 fair, 0.4–
0.6 moderate, 0.6–0.8 substantial and 0.8–1.0 almost perfect agreement. Our method
obtains both κ scores better than full sentence ranking in WMT14. However, they are
still quite low given that our annotation was designed to be much simpler than the
ranking full sentences.
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our method Bojar et al. (2014)
intra-annotator κ 0.593 0.448
inter-annotator κ 0.397 0.360

Table 1: κ scores measuring intra-annotator and inter-annotator agreements. We also
report corresponding κ scores from official WMT translation task for comparison.

3.4. Overall Ranking of Annotated Systems

In the first experiment, we would like to show that the proposed method can be
used to produce overall ranking of the annotated systems, which are very similar to
the official human evaluation in WMT.

To compute an overall score for each system, we use the method Ratio of wins
(ignoring ties) from WMT12 (Callison-Burch et al., 2012). We interpret segment ranks
as pairwise comparisons: for each short segment candidate we compute how many
times it was ranked better than another segment and how many times it was ranked
worse. For a given candidate translation C, we can sum up these counts over all short
segments of all the sentences to get total number of pairwise wins win(C) and total
number of pairwise losses loss(C). The overall score is then computed using this
formula:

Ewin(C) =
win(C)

win(C) + loss(C)

Table 2a reports the overall scores based on the short segment annotations. To com-
pare our method with the classical method of annotating whole sentences, we apply
the same method to the annotations collected during WMT14 manual evaluation, see
Table 2b.

The overall rankings of the systems obtained from both types of annotation are
very similar. However, there are two changes when comparing to the sentence-level
results: the system online-B is better and system cu-bojar is worse according to the
segments-level results.

3.5. Analysis

For the explanation of the differences between the overall rankings computed on
sentence-level and segment-level annotation, we have to look into the data. We ex-
tract candidate translations that were ranked high by segment-level annotation but
ranked low by the sentence-level annotation. In the following, we present some of
these sentences with comments. The ranked segments are in bold.
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System Score
cu-depfix 0.5777
onlineB 0.5642
uedin-unconstrained 0.5626
cu-bojar 0.5606
cu-funky 0.5566
uedin-wmt14 0.5498
onlineA 0.5007
CU-TectoMT 0.4485
commercial1 0.3992
commercial2 0.3492

(a) Short segments annotation

System Score
cu-depfix 0.6101
cu-bojar 0.6011
uedin-unconstrained 0.5967
cu-funky 0.5823
onlineB 0.5439
uedin-wmt14 0.5285
onlineA 0.5039
CU-TectoMT 0.4473
commercial1 0.3617
commercial2 0.2780

(b) Official WMT14 annotation

Table 2: Overall rankings of systems according to Ratio of wins (ignoring ties) score
based on (a) our short segment annotations and (b) the official WMT14 full sentence
annotations for comparison.

Source: Airlines began charging for the first and second checked bags in 2008.
Candidate: Letecké linky začaly nabíjení pro první a druhý odbavených zavazadel

v roce 2008.
(Sentence 715, online-B)

The translation of the compared segment is relatively good, the case of the noun
phrase is wrong but the meaning could be understood. The reason why the whole
sentence was ranked poorly is probably the word “nabíjení” (“Charging a battery” in
English), which is obviously a wrong lexical choice of the MT system. Unfortunately,
this word is not covered by the only ranked segment. A similar problem is also in the
following sentence:

Source: I want to fulfil my role of dad and husband.
Candidate: Chci, aby splnil svou roli táty a manžela.

(Sentence 559, cu-bojar)

The translation of the segment is perfect but the subject of the candidate translation
is wrongly expressed as the third person. The whole sentence is therefore correctly
ranked as a poor translation. And again, this is not covered by the evaluated segment.

In the two previous examples, the predicate was wrongly translated but unfortu-
nately, it was not covered in the extracted segments and therefore reflected in segment-
level annotation. This seems to be the main disadvantage of our method: extracted
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segments sometimes do not cover predicates, which are very important for the anno-
tator when judging the overall quality of the sentence.

4. Evaluating New Systems

Machine translation systems often translate a given short source segment identi-
cally. This was one of our main motivations for ranking translations of short seg-
ments. As we showed in the previous section, evaluating the annotated systems us-
ing short segments annotations works reasonably well (despite the shortcomings de-
scribed above). It would be very useful if we could reuse the database of annotations
to evaluate also unseen systems. The more annotated systems we have in the database
the more likely it is that an unseen MT system produces a translation of a short seg-
ment that is already in the database. We will call this situation a hit. If the translated
segment is not yet annotated, we will call it a miss.

Because we don’t have any spare systems that were not annotated, we use a variant
of cross validation, called leave-one-out: in each step, we choose one system and
remove its segments from the database of annotations. Then we treat this system
as an unseen one and try to match the system’s segments with the segments in the
database.

4.1. Exact Matching of Candidate Segments

The most obvious way to evaluate an unseen translation is to compute the Ratio of
wins (ignoring ties) of all the systems (including the unseen one) only on the hit seg-
ments. We extracted pairwise comparisons from all the segment annotations where
the segment of the unseen system was a hit and computed the overall score only on
such extracted comparisons.

The results of this experiment are given in Table 3. We also report hit rate, which
is the ratio of hits to all relevant segments (miss + hits).

The average hit rate is 58.8 %, which is above our expectations. However, we see
that the hit rate varies considerably across the left-out systems. This is caused by the
fact that some systems are very similar; they use the same tools and/or training data.
For example all the systems cu-bojar, cu-depfix, cu-funky and both uedin systems are
based on the Moses SMT toolkit and their hit rates are very high (0.74–0.93).

As apparent from the table, the obtained orderings of the systems are not very
good. The winning system in each of the tables is the one that was left out, which
is obviously wrong. Besides that, systems similar to the left-out one get also a much
better rank. For example, when the left-out system is one of the systems cu-bojar, cu-
depfix and cu-funky, the other two of this group are right below the left-out system.
This could be explained by the following statement: MT systems are more likely to
agree on a good translation of a segment than on a bad translation. Our technique
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system score
uedin-uncnstr. 0.633
cu-depfix 0.580
uedin-wmt14 0.576
onlineB 0.571
cu-bojar 0.564
cu-funky 0.560
onlineA 0.499
CU-TectoMT 0.425
commercial1 0.377
commercial2 0.329
(a) uedin-uncnstr., hits: 0.67

system score
commercial1 0.581
uedin-uncnstr. 0.557
onlineB 0.552
uedin-wmt14 0.540
cu-depfix 0.535
cu-funky 0.525
cu-bojar 0.523
onlineA 0.472
CU-TectoMT 0.422
commercial2 0.346
(b) commercial1, hits: 0.28

system score
commercial2 0.570
onlineB 0.552
uedin-uncnstr. 0.548
cu-depfix 0.535
cu-bojar 0.529
cu-funky 0.524
uedin-wmt14 0.523
onlineA 0.457
CU-TectoMT 0.423
commercial1 0.386
(c) commercial2, hits: 0.28

system score
CU-TectoMT 0.649
cu-depfix 0.600
cu-bojar 0.584
cu-funky 0.575
onlineB 0.528
uedin-uncnstr. 0.522
uedin-wmt14 0.502
onlineA 0.450
commercial1 0.373
commercial2 0.339
(d) CU-TectoMT, hits: 0.45

system score
onlineB 0.689
uedin-uncnstr. 0.584
cu-depfix 0.578
cu-funky 0.567
cu-bojar 0.567
uedin-wmt14 0.564
onlineA 0.511
CU-TectoMT 0.406
commercial1 0.360
commercial2 0.320

(e) onlineB, hits: 0.52

system score
onlineA 0.649
onlineB 0.584
uedin-uncnstr. 0.577
uedin-wmt14 0.568
cu-depfix 0.566
cu-bojar 0.555
cu-funky 0.546
CU-TectoMT 0.411
commercial1 0.365
commercial2 0.318

(f) onlineA, hits: 0.47

system score
cu-funky 0.630
cu-depfix 0.600
cu-bojar 0.582
uedin-uncnstr. 0.559
onlineB 0.557
uedin-wmt14 0.542
onlineA 0.491
CU-TectoMT 0.446
commercial1 0.378
commercial2 0.331

(g) cu-funky, hits: 0.74

system score
cu-bojar 0.588
cu-depfix 0.582
cu-funky 0.564
onlineB 0.562
uedin-uncnstr. 0.559
uedin-wmt14 0.545
onlineA 0.498
CU-TectoMT 0.449
commercial1 0.392
commercial2 0.346

(h) cu-bojar, hits: 0.88

system score
cu-depfix 0.587
cu-bojar 0.570
cu-funky 0.566
onlineB 0.562
uedin-uncnstr. 0.561
uedin-wmt14 0.548
onlineA 0.498
CU-TectoMT 0.449
commercial1 0.394
commercial2 0.345

(i) cu-depfix, hits: 0.93

Table 3: The results of evaluating unseen systems using exact matching and the leave-
one-out technique. Each subtable is labelled with the left-out system. We also report
the hit rates. The table for the system uedin-wmt14 is omitted for the sake of brevity.
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thus faces a sparse data issue which affects wrongly translated spans much more than
good ones.

To support this statement we have performed an analysis of some sentences from
the test set. In the following example sentences, we have marked the hit segments by
bold font and the missed segments by italic font:

Source: Amongst other things, it showed that the Americans even monitored the
mobile phone of German Chancellor Angela Merkel.

Candidate: Kromě jiných věcí ukázalo, že Američané i sledovali mobilní telefon Ger-
mana kancléře Angely Merkelové.

The missed segment “Kromě jiných věcí” in this sentence is translated quite well (so
the above statement does not hold here). However, the only hit segment here “mobilní
telefon” is translated correctly and the missed segment “Germana kancléře Angely
Merkelové” is not translated correctly. Judging how easy a segment is to translate,
is even more difficult than judging the translations. Nevertheless it is obvious that
the hit segment “the mobile phone” is easy to translate and the missed segment “of
German Chancellor Angela Merkel” is much more difficult to translate. We can see
this also in the last example:

Source: They had searched frantically for their missing dog and posted appeals on
social networking sites after she had ran into the quarry following the
minor accident.

Candidate: Měli zoufale hledal své chybějící psa a odvolání na sociálních sítích poté,
co se dostal do lomu po drobné nehody.

Both of the hit segments are translated very well and we can say that they are also
very easy to translate. On the other hand, the missed segments are understandable
but not perfect. Compared to the hit segment, they are also more difficult to translate.

Following the manual analysis, we can conclude that MT systems are much more
likely to agree on better translations. This however prevents us from matching the
segments exactly, because it gives us very overestimated scores for the unseen candi-
dates.

4.2. Matching the Closest Segment by Edit Distance

We would like to compute the scores for all the segments to avoid the problem
stated in the previous section. A natural way to approximate the “correct” ranks for
unseen segments is to use the rank of the segment from the database with the closest
edit distance. We use the character-based Levenshtein distance, which is defined as
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the minimum number of insertions, deletions and substitutions of characters required
to transform a given string to another:

lev(a, b) = min
e∈E(a,b)

(
D(e) + S(e) + I(e)

)
whereE(a, b)denotes a set of all sequences of edit operations that transform the string
a to the string b, and D(e), S(e), I(e) denote number of deletions, substitutions and
insertions respectively in the sequence s. If more segments in the database have the
same minimal distance to the unseen segment, we compute the average of their ranks.

Similarly to the previous experiment, we extracted the pairwise comparisons and
computed the Ratio of wins (ignoring ties), see Table 4 for the results. For each left-
out system, we also report the average edit distance (AED) of the unseen segments to
the closest segments in the database.

The overall rankings of the systems are much more reasonable compared to the
exact matching, although they are still not perfect. The scores of systems that were
left out are not always the best in the obtained rankings but they are still heavily over-
estimated. This shows not only that systems are more likely to agree on the better
translations than on the worse ones, but also that they produce translations that are
closer to better translations than to other translations of similar quality.

The average edit distances vary a lot. The systems cu-bojar, cu-depfix and cu-funky
have very low AED (0.2–1.7), because they are very similar to each other. Systems
CU-TectoMT, onlineA and onlineB are in the middle of the AED range (3.1–3.9) and
since they are quite solitary in the set of ranked systems we can consider their AEDs
as representative values. Systems commercial1 and commercial2 have the highest
AEDs. This could be explained by the fact that both of the systems are rule based and
produce dissimilar translations to those generated by the statistical based systems. It
is interesting, however, that their translations are not even similar to each other.

To support the above statement (that the closest segment to an unseen candidate
is more likely to be of better quality), we have performed the following analysis: For
each left-out system we computed how often the closest segment has better, equal or
worse rank than the “unseen” segment. (We can actually do that, because we know
the true rank of the segment before it was removed from the database.) We computed
these relative frequencies only on the missed segments (the closest segment was not
the same segment). The outcomes for the individual systems are given in Table 5.
In total, more than a half of the closest segments have a better rank than the original
segments and only 20.6 % of the segments have the same rank. This is a very poor
result because it means that our approximation method that ranks unseen translations
has the accuracy of only 20.6 %. This accuracy does not differ much for individual
systems but there is an expected trend of similar systems (cu-bojar, cu-depfix) having
this accuracy slightly higher.

Figure 3 plots how these relative frequencies vary with the edit distance. We see
that the relative number of closest systems that are ranked better than the original
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system score
uedin-uncnstr. 0.592
cu-depfix 0.576
onlineB 0.562
cu-bojar 0.558
cu-funky 0.555
uedin-wmt14 0.548
onlineA 0.498
CU-TectoMT 0.446
commercial1 0.397
commercial2 0.347
(a) uedin-uncnstr., AED: 2.0

system score
cu-depfix 0.566
onlineB 0.553
uedin-uncnstr. 0.551
cu-bojar 0.548
cu-funky 0.545
uedin-wmt14 0.537
commercial1 0.495
onlineA 0.488
CU-TectoMT 0.433
commercial2 0.334
(b) commercial1, AED: 5.4

system score
cu-depfix 0.559
onlineB 0.549
uedin-uncnstr. 0.546
cu-bojar 0.541
cu-funky 0.539
uedin-wmt14 0.533
commercial2 0.484
onlineA 0.483
CU-TectoMT 0.430
commercial1 0.379
(c) commercial2, AED: 5.7

system score
cu-depfix 0.566
CU-TectoMT 0.557
onlineB 0.554
uedin-uncnstr. 0.552
cu-bojar 0.548
cu-funky 0.545
uedin-wmt14 0.539
onlineA 0.489
commercial1 0.387
commercial2 0.337
(d) CU-TectoMT, AED: 3.9

system score
onlineB 0.614
cu-depfix 0.574
uedin-uncnstr. 0.559
cu-bojar 0.556
cu-funky 0.552
uedin-wmt14 0.546
onlineA 0.496
CU-TectoMT 0.444
commercial1 0.395
commercial2 0.345

(e) onlineB, AED: 3.1

system score
onlineA 0.581
cu-depfix 0.570
onlineB 0.556
uedin-uncnstr. 0.555
cu-bojar 0.553
cu-funky 0.549
uedin-wmt14 0.542
CU-TectoMT 0.441
commercial1 0.391
commercial2 0.341

(f) onlineA, AED: 3.4

system score
cu-funky 0.597
cu-depfix 0.575
onlineB 0.561
uedin-uncnstr. 0.559
cu-bojar 0.557
uedin-wmt14 0.546
onlineA 0.497
CU-TectoMT 0.445
commercial1 0.396
commercial2 0.346

(g) cu-funky, AED: 1.7

system score
cu-bojar 0.580
cu-depfix 0.576
onlineB 0.562
uedin-uncnstr. 0.561
cu-funky 0.555
uedin-wmt14 0.548
onlineA 0.499
CU-TectoMT 0.447
commercial1 0.398
commercial2 0.348

(h) cu-bojar, AED: 0.4

system score
cu-depfix 0.579
onlineB 0.564
uedin-uncnstr. 0.563
cu-bojar 0.561
cu-funky 0.556
uedin-wmt14 0.550
onlineA 0.501
CU-TectoMT 0.448
commercial1 0.399
commercial2 0.349

(i) cu-depfix, AED: 0.2

Table 4: The results of evaluating unseen systems using edit distance matching and
leave-one-out technique. Each subtable is labelled with the left-out system. The ab-
breviation AED stands for average edit distance, which is computed across all seg-
ments. The table for the system uedin-wmt14 is omitted for the sake of brevity. 99
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Unseen system Worse Equal Better
commercial1 28.0 % 18.2 % 53.8 %
commercial2 23.4 % 16.8 % 59.8 %
cu-bojar 22.8 % 30.5 % 46.7 %
cu-depfix 34.2 % 31.4 % 34.4 %
cu-funky 29.3 % 22.9 % 47.8 %
CU-TectoMT 26.2 % 17.8 % 56.0 %
onlineA 28.7 % 19.1 % 52.2 %
onlineB 33.5 % 19.9 % 46.6 %
uedin-unconstrained 32.8 % 21.5 % 45.7 %
uedin-wmt14 32.1 % 21.9 % 46.0 %
All 28.5 % 19.7 % 51.9 %

Table 5: Comparisons of the unseen and the closest segments’ ranks. This table shows
how often the rank of the closest segment in the database was worse, equal or better
than the original rank of the “unseen” segment. These relative frequencies were com-
puted only on the missed segments (which weren’t already in the database).
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Figure 3: Comparisons of the unseen and the closest segments’ ranks with respect to
the edit distance. The results in this figure are computed on all the systems.
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Unseen segment Closest segment D C
s dokumenty upřednostňujícím
doprovodem hradu

se dokumenty favorizovat do-
provod hradu

18 W

ze 120 domova m2 z 120 m2 domova 7 B
vaše ústa ohřívá protein vaše ústa zahřívání bílkovin 10 B
videokonference videokonferenci 1 B
popřel užívání kokainu a popřela užívání kokainu a 1 W
přibližně šedesát- drah kilometru přibližně šedesát-dráha kilometru 3 E
v Liverpoolském porotním soudu Liverpool Korunního soudu 11 B
je nesmysl v gravitaci filmu Je nesmysl ve filmu gravitace 15 B
Pak 64,23 % oprávněných voličů pak 64,23 % oprávněných voličů 1 B
podle DPA agentury podle DPA agentury té 3 W

Table 6: Example candidates and the closest segments. The second last column (D)
stands for distance and contains distances of the unseen candidates to the closest seg-
ments. The last column (C) stands for comparison; the closest segment is either worse
(W), equally good (E) or better (B) than the original unseen segment.

segment grows quite significantly with the edit distance. The relative number of
the worse segments is more or less stable (around 0.3), independent of the edit dis-
tance. The relative number of closest segments that are ranked equally as the original
segment is decreasing with the edit distance. For example, for the segments whose
edit distance to the closest segment is 17, only 10 percent of the closest segments are
equally ranked. Relying on similar segments to predict the quality of a new one thus
cannot work.

We also list a few example candidate segments in Table 6 together with the cor-
responding closest segments from the database and their distances. The last column
in the table indicates whether the closest segment was ranked better, equal or worse
than the “unseen” one.

Unfortunately, we have to conclude that the proposed method, which reuses the
database for evaluating unseen translations, does not work. We analyzed the results
and the main cause of this failure seems to be that the systems tend to agree on better
translations and their translations tend to be more similar to better translations in the
database so we cannot predict their rank accurately.

4.3. Enhancing Reference Translations

Following the conclusions from the previous two sections, it seems that errors in
machine translation are very unique. Any database of bad examples (bad translations)
is therefore very sparse.
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In the following experiment, we therefore use only the good candidate segments
from the annotated database. The approach used here is, however, different from
the previous experiments. We would like to measure how similar candidates are to
the good translations from the database. This resembles what automatic metrics do
when measuring the similarity between a candidate and reference translations. We
have therefore decided to use one of the standard metrics – BLEU – to measure this
similarity. First, we are going to introduce the metric and then we are going to cus-
tomize it for our experiment.

Metric BLEU was developed by Papineni et al. (2002) and it is one of the most
popular metrics in the machine translation evaluation. It is defined as the geometric
mean of n-gram precisions for n ∈ {1 . . .N}, where N is usually 4. More precisely, for
a candidate c and reference translations ri where i ∈ I, let the clipped count of an
n-gram g be defined as follows:

countclip(g, c, r) = min
(

count(g, c), max
i∈I

(count(g, ri))
)

where count(g, s) denotes the count of n-gram g in the sentence s. The (modified)
precision pn is then defined as:

pn =

∑
g∈n-grams(c) countclip(g, c, r)∑

g∈n-grams(c) count(g, c)

Using the computed n-gram precisions, we can compute the final BLEU score:

BLEU = BP · exp
(

1

N

N∑
i=1

logpn

)
where BP is the brevity penalty (meant to penalize short outputs, to discourage im-
proving precision at the expense of recall) defined as follows:

BP =

{
1 if |c| > |r|

exp(1− |r|/|c|) if |c| ≤ |r|

where |c| and |r| are the lengths of the candidate and reference translations respec-
tively. In the case of multiple reference translations, |r| could be the average length,
the maximum length or the length closest to the candidate c.

Since the assigned ranks in the database are relative, we cannot know which seg-
ments are really good in terms of the absolute quality. We have to assume that there
is at least one good candidate translation among the ranked candidates and consider
all candidate segments with the best rank as the good translations. We select these
candidate segments for each source segment for each sentence.

We use the selected good segments as the reference translations in addition to the
original reference sentence translated by a human expert. Since the new references are
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System Score
cu-depfix 0.305
cu-funky 0.302
uedin-unconstrained 0.302
cu-bojar 0.300
uedin-wmt14 0.296
onlineB 0.289
onlineA 0.259
CU-TectoMT 0.225
commercial1 0.176
commercial2 0.160

(a) SRBLEU, correlation: 0.9745

System Score
cu-depfix 0.221
cu-bojar 0.221
cu-funky 0.221
uedin-unconstrained 0.220
uedin-wmt14 0.215
onlineB 0.207
onlineA 0.187
CU-TectoMT 0.157
commercial1 0.114
commercial2 0.102

(b) BLEU, correlation: 0.9751

Table 7: Overall system ranking according to SRBLEU and BLEU scores. For
both of the metrics, we have computed Pearson correlation with human scores.

only short segments and do not cover a whole sentence, we use only the length of the
original reference sentence in the computation of the brevity penalty. To distinguish
this method from the standard BLEU with the single official reference translation, we
will call this method SRBLEU.

Please note, that introducing the new reference translations, which do not change
the brevity penalty, can only increase the clipped counts of n-grams occurring in the
short segments. Candidates will be rewarded for having n-grams that are also in the
good segment translations in the database.

The overall rankings of the evaluated systems as given by SRBLEU and
BLEU are in Table 7. As expected, the SRBLEU scores are indeed much higher
than BLEU. However, the reported system level correlations of these two metrics are
almost equal (correlation of SRBLEU is even a little bit lower). The additional
“reference translations” of short segments thus do not bring any useful information.

5. Experiments with MERT

The MERT (Minimum Error Rate Training) method is most often used with BLEU.
Recently, there have been a lot of experiments utilizing other automatic metrics. In
WMT11 (Callison-Burch et al., 2011), there was a shared task, in which participants
tuned a common system with different metrics, and WMT15 plans to run the task
again4. In WMT11, the tuned systems were then evaluated by humans and some of
them outperformed the baseline system tuned with BLEU.

4http://www.statmt.org/wmt15/tuning-task/
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It is not feasible to employ any sort of human evaluation directly in the MERT
process. On one hand, human evaluation is very slow and expensive, on the other
hand, MERT requires to evaluate very long n-best list in each iteration. There are
some suggestions to do the manual evaluation in a clever way and lower the amount
of manual work. For example, Zaidan and Callison-Burch (2009) noticed that a lot
of short segments are repeated in a n-best list and therefore suggest to extract these
short segments from a n-best list in each MERT iteration and let humans rank them.
(Actually our short segment extraction method was partially inspired by this work.)
However, they did not try this method in an actual MERT run yet for lack of resources.

We believe that a much less expensive way to introduce an element of human eval-
uation in the MERT method is to use some sort of semi-automatic metric in which a
certain amount of manual work is needed at the beginning and then the metric eval-
uates translations automatically. In this section, we therefore experiment with pre-
viously introduced metrics, which rely on the collected database of short segment
ranks.

5.1. Tuned System

The system we tried to tune is the system cu-bojar by Tamchyna et al. (2014), which
we also used in previous sections as one of the evaluated systems. This system is
Moses-based and combines several different approaches:

• factored phrase-based Moses model
• domain-adapted language model
• deep-syntactic MT system TectoMT
The parallel data used to train the phrase tables consist of 14.83 million parallel

sentences taken from the CzEng corpus (Bojar et al., 2012) and 0.65 million sentences
taken from the Europarl corpus (Koehn, 2005). The monolingual data used to train
language models consist of 215.93 million sentences taken from the Czech side of the
CzEng corpus and from 5 sources of a news domain.

We used the implementation of MERT that is distributed with Moses toolkit.5

5.2. Metric Variants

Our original idea was that we will use the alignment produced by the Moses de-
coder when translating the n-best list to project the extracted short source segments to
the target side to have candidates that would be extracted the same way as the ranked
segments in the database. Unfortunately, the alignment produced by the Moses de-
coder is very sparse and unreliable (which may be caused by a bug in the code), so
we had to get along without the alignment.

The naive approximation is to just test whether the ranked candidate segments
from the database also occur in evaluated sentences. The first metric we use in the

5http://www.statmt.org/moses/
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MERT experiment is therefore very similar to the Exact Matching method in Sub-
section 4.1. For each ranked source segment we test if any of its candidate segments
occurs in the evaluated sentence. If it does, we extract all the pairwise comparisons
from the matched segment. If more candidate segments occur in the evaluated trans-
lation, we choose the longest segment (assuming that the shorter segments are just
substrings of the longest one). The final score is then computed as Ratio of wins
(ignoring ties). We call this metric EM in the following.

Even if the hit rate (percentage of segment candidates that are already ranked in
the database) computed on a whole n-best list would be 100 %, the EM met-
ric still does not evaluate whole sentences and could be too coarse and harsh. More-
over, if the hit rate drops during the tuning, the metric score would be computed on
a very small percentage of the development set and it would be very unstable. To en-
sure that the tuning is stable, we interpolate all the metrics in this section (if not said
otherwise) together with BLEU with equal weights. We also tried to tune using the
EM metric solely but the tuned system translated very badly and the hit rate
dropped very low during the tuning. We could explain this by a hypothesis that the
system was tuned to translate a few ranked segments well (so these segments were
hits) but other segments were missed and translated badly. The optimal metric score
was therefore computed on a very small fraction of the development set and did not
reflect the overall quality of the translation.

Since we do not have the alignment and cannot extract the candidate segments ex-
actly, we unfortunately cannot use the method introduced in Subsection 4.2, which
matches the closest segment in the database by edit distance. To avoid the shortcom-
ings of the EM metric (the metric is not computed on all the extracted source
segments and an unseen system is more likely to cause a hit in the database with bet-
ter translations), we propose another variant called PU. This variant
differs from EM in that it considers all missed segments as the worst trans-
lations. We agree that the assumption that all unseen and unranked segments are
wrong is not correct, but this approach could increase the hit rate. The question is
then whether we prefer to have a system that produces a lot of segments which were
already ranked (even badly) or a system that produces a lot of unranked segments,
which we hope to be of better quality.

The last variant we experiment with is SRBLEU metric introduced in Sub-
section 4.3. Because this metric is already based on BLEU metric (and uses the refer-
ence translation) we do not interpolate it with BLEU anymore.

5.3. Results and Analysis

We report the results of the tuned system in Table 8. We used the tuned systems to
translate the test set (newstest2012) and then we evaluated these translations automat-
ically and manually. For the automatic evaluation we used metrics BLEU (Papineni
et al., 2002) and CDER (Leusch et al., 2006). We have also conducted a small scale
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#Mert Automatic Manual
iter- Evaluation Evaluation

Tunable metric ations BLEU 1-CDER Better Worse
BLEU (baseline) 11 0.1782 0.3855 — —

EM 20 0.1637 0.3674 22 % 38 %
PU 8 0.1772 0.3850 34 % 25 %

SRBLEU 8 0.1753 0.3835 29 % 49 %

Table 8: Results of systems that were optimized to a SegRanks based metric. The
items in the first column specify the metric that was used when tuning the system on
the development test. The columns BLEU and 1-CDER contain just scores of these
metrics computed on the test set translated with the tuned weights. The last two
columns contain percentages of better and worse sentences compared to the baseline
system in the manual evaluation.

manual evaluation. For each evaluated system, we randomly sampled 100 sentences
which were translated differently6 to the baseline and by the evaluated system. Then
we compared manually the sampled sentences with the corresponding translations
produced by the baseline system. The task was to choose which sentence is better or
whether they are of the same quality. We report how many of the sampled sentences
were better and how many of them were worse than the corresponding baseline trans-
lation.

None of the metric variants outperformed the baseline system tuned solely to
BLEU in the automatic evaluation. This was expected, since the best performing sys-
tem according to BLEU should be the one that was tuned by BLEU. However, the
system tuned by PU has both the BLEU and CDER scores only a little
bit lower.

In the manual evaluation, the only system that outperformed the baseline was
the system tuned to PU. This means that forcing the system to pro-
duce known and evaluated segments when translating development set helps to chose
better weights. This, however, also means that we discouraged the tuned system to
produce unknown and maybe better translations. The best hypothetical translation
according to the optimized metric that the tuned system can produce during MERT
consists of the best ranked segments from the database. However, there certainly exist
better translations.

To see the differences between EM and PU, we have plot-
ted the values of hit rates computed in each MERT iteration in Figure 4. PU-
 gets to the hit rate of 0.7 very quickly (in the sixth iteration) and it’s growth is

658.6 % of all test set sentences were translated differently to the baseline by SRBLEU, 62.4 % by
PU and 83.4 % by EM
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Figure 4: Hit rates computed on the n-best lists produced in each MERT iteration

quite stable. This is expected, since the objective function also indirectly optimizes the
hit rate. The hit rate in EM also grows but much more slowly. It stabilizes
around the of value 0.5. It is good that the final value is quite high so the EM
is computed on a non-negligible amount of data. However, it takes many more itera-
tions for EM to get to the value of 0.5 that it takes for PU to
get to the value of 0.7.

6. Conclusions

In this article, we proposed a new method for manual MT evaluation, called Seg-
Ranks, in which the annotators rank short segments of a translated sentence relative
to each other. Ranking of short segments is easier than ranking of whole sentences
and therefore faster. Furthermore, we have developed an easy-to-use and modern an-
notation interface and conducted a manual evaluation experiment using the proposed
method.

When computing overall system scores, the short segment ranks give similar re-
sults to the official WMT evaluation with less effort. The measured inter- and intra-
annotator κ scores (the normalized agreements) are indeed slightly higher than the
corresponding values in the WMT manual evaluation.

To explore the possibility of reusing the collected database of ranked segments
to evaluate unseen translations, we have performed several experiments. Although
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most of them did not work as expected, we tried to identify and analyze the roots of the
failures. The main cause seems to be the fact that each error in machine translation
is unique and that segments produced by more than one system are likely to be of
better quality. This is also related to another observation we make, that translations
are more likely to be closer to better translations than to translations equally good
or worse. Maybe, if we had a more dense database (many more than 10 evaluated
systems), these phenomena would not influence the results so adversely.

In the last experiment, we tried to use the database to tune a machine translation
system using the MERT method. We proposed several variants of SegRanks-based
metrics adapted for the MERT tuning. The tuned systems were evaluated by humans
against the baseline system tuned by BLEU. We were able to improve the tuning of
the system using the technique that considered unseen segments as bad and therefore
pushed the system to produce known and already evaluated segments.
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Abstract
Phrase structure trees have a hierarchical structure. In many subjects, most notably in tax-

onomy such tree structures have been studied using ultrametrics. Here syntactical hierarchical
phrase trees are subject to a similar analysis, which is much simpler as the branching structure
is more readily discernible and switched. The ambiguity of which branching height to choose,
is resolved by postulating that branching occurs at the lowest height available. An ultrametric
produces a measure of the complexity of sentences: presumably the complexity of sentences
increases as a language is acquired so that this can be tested. All ultrametric triangles are equi-
lateral or isosceles. Here it is shown that X structure implies that there are no equilateral tri-
angles. Restricting attention to simple syntax a minimum ultrametric distance between lexical
categories is calculated. A matrix constructed from this ultrametric distance is shown to be
different than the matrix obtained from features. It is shown that the definition of -
can be replaced by an equivalent ultrametric definition. The new definition invokes a mini-
mum distance between nodes and this is more aesthetically satisfying than previous varieties
of definitions. From the new definition of - follows a new definition of of the central
notion in syntax namely .

1. Introduction

1.1. Ultrametric Literature

Ultrametrics are used to model any system that can be represented by a bifurcat-
ing hierarchical tree. To list briefly some areas where ultrametrics have been applied.
Perhaps the most important application is to taxonomy, Jardine and Sibson (1971,
Ch.7), and Sneath and Sokal (1973). Here the end of a branch of the tree represents
a species and the ultrametric distance between them show how closely the species
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are related. Hierarchical cluster methods classify species and also shows how closely
species are related. This technique has also been used in semantics, Shepard and Ara-
bie (1979). The technique can become quite complicated because it involves statistical
analysis with continuous variates. Ultrametrics have been applied frequently in the
theory of spin glass, Weissman (1993). Ultrametrics have been used for description
of slowly driven dissipative systems, which exhibit avalanche-like behaviour, these
include earthquakes, extinction events in biological evolution, and landscape forma-
tion, Boettcher and Paczuski (1997); also ultrametrics can describe systems with fast
relaxation, Vlad (1994). Ultrametrics are used in the theory of neural nets, Parga and
Virasoro (1986). The dynamics of random walks on ultrametric spaces have been stud-
ied, Ogielchi and Stein (1985). Ultrametrics have been applied to the thermodynamics
of macromolecules such as RNA, Higgs (1996), the directed polymer problem Perlman
and Schwarz (1992), and sociology Schweinberger and Snijders (2003). Bounds on the
size of ultrametric structure have been discussed by Baldi and Baum (1986). From
a more theoretical angle, a category theory approach has been elucidated by Rutten
(1996), a model theoretic approach to ultrametrics is given by Delon (1984), and ul-
trametric might be related to T-theory, Andreas Dress and Terhalle (1996). The rela-
tionship between ultrametric distance and hierarchy is further discussed in Guénoche
(1997). Construction of optimal ultrametric trees is discussed by Young and DeSarbo
(1995). Ultrametrics are related to p-adelic quantities, Karwowski and Mendes (1994),
Murtagh (2004) and B. Dragovich and Volovich (2009). P-adelic quantities are used
in string theory: the way that ultrametrics enters here is explained in §10&§13.4 of
Brekke and Freund (1993). There does not seem to be any straightforward connection
of any of the above to the optimization techniques of Prince and Smolensky (1997).
As well as ultrametric trees, there are also decision trees Hammer (1998), and the con-
nection between them is still not known. Some of the above ultrametric applications
have been reviewed by R. Rammal and Virasoro (1986). Chomskian syntatic trees
have been axiomatized by Backofen and Vijay-Shankar (1995).

1.2. Ultrametric Inequalities

There is the following relationship between trees and ultrametrics. An N-leaf
edge(node)-weighted tree corresponds to an N×N square matrix M in which Mij =
the sum of the weights of the edges (nodes) in the shortest path between i and j. When
the weights are non-zero and non-negative, M is a distance in the usual sense.

∀x, y, z Mxy = 0 if x = y (1)
Mxy > 0 for x ̸= y (2)
Mxy = Myx (3)
Mxy ≤ Mxz +Mzy. (4)
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Figure 1: Different syntactic descriptions of “the man ate a dog”

However if the triangle inequality (4) is replaced by

Mxy ≤ max{Mxz,Mzy}. (5)

then M is an ultrametric, equation (5) implies (4).

1.3. Syntactic Phrase Trees

For the analysis of syntactic phrase trees the necessary technique is quite simple
and is illustrated by the examples in Section 2. Psychological analysis of phrase trees
has been carried out by Johnson (1965) and Levelt (1970). The phrase tree approach
has critics Botha (1965); also Evans and Levison (2009) question the existence of lan-
guage universals. The examples here mainly follow the examples in Lockward (1972),
Kayne (1981), McCloskey (1988), and especially Haegeman (1994). There are at least
five reasons for introducing an ultrametric description of syntax.

The first is to completely specify tree (also called dendrogram) structure. Consider
the following example illustrated by Figure 1.

For current syntactic models sometimes nodes are taken to occur at the highest
level, and sometimes the two trees are equivalent see McCloskey (1988, footnote 6);
however consider the ultrametric distance between ‘the’ and ‘man’,

A(the,man) = 1, B(the,man) = 2, (6)

where the numbers are the height of the lowest common node above the two lexical
items. This ambiguity does not occur in current syntactic models, and a purpose of
an ultrametric model is to disambiguate the difference in height, because this might
have consequence in the complexity of the encoded model, see the next point.

The second is it gives a measure of the complexity of a sentence: the greater the
ultrametric distance required the more complex a sentence is. The above can also be
viewed in terms of ‘closeness’. The example Figure 1 illustrates that current syntactic
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models give no notion of how ‘close’ determiners and nouns are. However ultramet-
rics do give an indication of closeness and this can be compared: firstly to the closeness
indicated by features, secondly to the idea that if elements of a sentence are not suffi-
ciently close then there is a  Chomsky (1986b) to movement, roughly speaking
barriers impede the movement of phrases to different places in a sentence. Only the
closeness as indicates by features is looked at here. In traditional syntax phrases can
be iteratively embedded to give sentences of unbounded length and complexity. A
degree of sentence complexity perhaps corresponds to the height of the tree repre-
senting the sentence. As people can only process a finite amount of information this
height must be finite. In the traditional theoretical framework there is no finite bound
on sentence length. An upper bound could perhaps be found by experiment. Inspec-
tion of phrase trees suggests a first guess of h = 12.

The third is that it means that syntax is described in the same formalism as that
used in a lot of other sciences, for example those topics described in the first paragraph
of Section 1.1, so that there is the possibility of techniques being used in one area being
deployed in another.

The fourth is that an ultrametric formulation might allow a generalization so that
ideas in syntax can be applied to other cognitive processes.

The fifth, see the next section 1.4, and perhaps the most important, is that it might
be possible to use some sort of minimum distance principle in syntax: it could be this
minimum description which would have application in other cognitive processes. In
other words that ultrametric trees should be simple rather than complicated and that
the sort of mechanism use to encode simple tress might be used elsewhere.

1.4. Ockham’s Razor

Minimum description in science goes back several hundred years to “Ockham’s ra-
zor” or perhaps further, see for example Sorton (1947, page 552). The principle of
least action (see for example Bjorken and Drell (1965, §11.2) ) in physics is that mini-
mal variation of a given action gives field equations which describe the dynamics of
a system. For example, Maxwell’s equations can be derived from a simple action by
varying it. In the present context one would hope that syntax allows for a minimum
encoding of semantic information, the minimum encoding being given by some ul-
trametric measure. A different approach along these lines is that of Rissanen (1983)
and Zadrozny (1999). Briefly they assign a length of 1 to each symbol in a sentence,
then the    states that the best theory to explain a set of data
is the one which minimizes both the sum of: i) the length, in bits, of the description
of the theory, and ii) the length, in bits, of data when encoded with the help of the
theory. Christiansen (2001) discusses how constraint handling rules (CHR) can be
applied to grammars. This can be thought of as a minimizing procedure.
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Figure 2: A  tree

1            2           3      ...............................................N

Figure 3: N- branching

1.5. Reticulate & N-ary Trees

A  tree is a tree in which there are one or more sets of reconvergent
branches, illustrated by Figure 2, a - tree is a tree in which the branches
do not reconverge. N- branching is illustrated by Figure 3. B branching is
N- branching with N = 2. N- branching can be replaced by binary branching
if additional layers are used. A  tree is a tree in which all the branches are
binary. Syntactic phrase trees are - and . In most linguistic
theories all syntactic phrase trees have X structure, Jackendoff (1977). X structure
implies binary branching, see Section 2.3 and Figure 8. Here attention is restricted to
theory which has X structure.

1.6. Sectional Contents

In Section 2 it is shown how to represent trees by matrices and triangles. All X
triangles are isosceles but not equilateral. In Section 3 the matrix U for the minimum
ultrametric distance for lexical categories is given. For simplicity discussion is limited
to active voice sentences with only determiners, nouns, transitive verbs, adjectives,
and prepositions. Inclusion of case theory, COMP, INFL,.. might be of interest but
would complicate matters. In Section 4 the singular matrix F for features is given. F
is not an ultrametric matrix and there appears to be no relation to U. In Section 5 it
is shown that the notion of - is equivalent to an ultrametric minimum dis-
tance. This allows a new definition of government to be given. In appendix Section 7
other linguistic hierarchies are discussed; in particular there appears to be at least two
separate occurrences of culturally determined partial ordered hierarchies - the acces-
sibility hierarchy for relative clauses and the universal colour ordering. For completion
in appendix Section 7 there is a very brief account of what these hierarchies are, a
comparison and contrasting of them, and the speculation that they are specific exam-
ples of a grand cultural hierarchy. The question arises of why such hierarchies should
exist, and it might be because they reduce the amount of memory needed to process
information by clumping information together in the style of Miller (1956); for a more
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Figure 4: The simplest  tree for “Alf must jump high”

recent reference see Cowan (2001). A hierarchy is an example of a representation as
discussed by Roberts (2005).

2. X Structure Implies No Equilateral Triangles

2.1. Binary and N-ary Branching for simple sentences

X structure implies   Haegeman (1994, p.139), and the Figure 8.
To see what this implies for ultrametric distances consider all five species of 
 tree. The fixed word order in ’Alf must jump high’ reduces the total number
of possible matrices form 15 to 8. The first has diagram Figure 4 (compare Haegeman
(1994, p.141 diagram 84a) ) and corresponding matrix:

First =

• A M J H

A 0 1 2 2

M . 0 2 2

J . . 0 1

H . . . 0

(7)

respectively, where A, M, . . . are short for ’Alf’, ’must’. The matrices correspond-
ing to the other four   trees are (compare Haegeman (1994, p.141&142
diagrams 84b,c,d,e):

Second =

• A M J H

A 0 3 3 3

M . 0 2 2

J . . 0 1

H . . . 0

(8) Third =

• A M J H

A 0 3 3 3

M . 0 1 2

J . . 0 1

H . . . 0

(9)
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Figure 5: The 4- tree for “Alf must jump high”

Fourth =

• A M J H

A 0 2 2 3

M . 0 1 3

J . . 0 3

H . . . 0

(10) Fifth =

• A M J H

A 0 1 2 3

M . 0 2 3

J . . 0 3

H . . . 0

(11)

There are two 3- trees with matrices (compare Haegeman (1994) p.142 (Haege-
man, 1994) diagrams 84g and 84h): Haegeman (1994, p.142 diagrams 84g and 84h)):

Sixth =

• A M J H

A 0 1 1 2

M . 0 1 2

J . . 0 2

H . . . 0

(12) Seventh =

• A M J H

A 0 2 2 2

M . 0 1 1

J . . 0 1

H . . . 0

(13)

and finally there is one 4- tree (compare Haegeman (1994) p.142 (Haegeman,
1994) diagram 84f) Haegeman (1994, p.142 diagram 84f)) with diagram Figure 5 and
matrix:

Eighth =

• A M J H

A 0 1 1 1

M . 0 1 1

J . . 0 1

H . . . 0

(14)

2.2. Triangle representation of the proceeding matrices

All ultrametric triangles are isosceles with small base, but only some are equilat-
eral. The previous subsection (2.1) suggests that binary branching implies that there
are no equilateral triangles in ultrametric models of syntax. For example from matrix
(13), d(A,M) = 1, d(A, J) = 2, d(M, J) = 2 has the triangle representation Figure 6,
and from matrix (14), d(A,M) = 1, d(A, J) = 1, d(M, J) = 1 giving in the triangle
representation Figure 7.

In the next section it is proved that X structure implies that there are no equilateral
triangles.
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Figure 8: The X Template

2.3. The X Template

The X template Figure 8 is the form that nodes take in syntax.
The matrix representation of this is:

µX =

• Spec X YP

Spec 0 i+ 2 i+ 2

X . 0 i+ 1

YP . . 0

(15)

From this the triangle representation is Figure 9. This is isosceles but not equilateral.

3. The minimum ultrametric distance between lexical categories

3.1. The minimum distance principle

We assume that it is the minimum distance between lexical categories that is im-
portant, and refer to this as the   . In part this is motivated
by the discussion in Section 1.4. A current psycholinguistic model of sentence produc-
tion is the garden path model, see for example Frazier (1987). Part of this model re-
quires the minimal attachment principle, which is “do not postulate unnecessary nodes.”:
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Figure 9: The triangle representation of X structure
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Figure 10: The correct tree for the example in Section 1.

this can be thought of as a minimum principle. The    im-
plies that the correct tree for equation (6) illustrated by Figure 1 is Figure 10, so that
all entries occur at the lowest possible height.

Thus in particular tree A is preferred to tree B. This assumption does not effect
the matrix U (16) given and described below, but will have an effect when the anal-
ysis is extended to θ-theory, see Haegeman (1994, §3.2.3). From the above d(N,D) =
1, d(N,V) = d(D,V) = 2. Similarly from Figure 11, d(V,A) = 4.

Constructing other examples gives the ultrametric distance matrix

U =

• D N V A P

D 0 1 2 2 2

N . 0 2 2 2

V . . 0 4 3

A . . . 0 3

P . . . . 0

(16)
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Figure 11: The distance between verbs and adjectives.

Ignoring the determiner D (‘a’ or ‘the’) and ordering the matrix NPVA (noun, pro-
noun, verb, adjective) suggests the pattern

I =

0 i i i . . .

. 0 i+ 1 i+ 1 . . .

. . 0 i+ 2 . . .

. . . 0 . . .

(17)

which is compatible with the X matrix of the last section; however it does not follow
by necessity as the X case holds for a single sentence and U is constructed from the
syntactical representations of several sentences.

4. Features

4.1. A matrix representation of features

This section investigates whether there is a general framework which can describe
both the preceding and also “features”. An objective is to reduce the large number
of objects that can be ’spec’ and so on by using the objects features: in other words to
introduce a type of atomic theory. Roughly speaking the idea behind features is that
adjectives and prepositions have qualities in them that are associated with verbs and
nouns, as can be seen from (18) adjectives have +N & +V and prepositions have -N &
-V. Haegeman (1994, p.146) gives the following (18) diagram for features:

Features diagram =

Noun +N −V

Verb −N +V

Adj. +N +V

Pre. −N −V

(18)
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in words nouns have features of +noun and -verb, adjectives have features of +noun
and +verb, and so on. This can be represented by the matrix

Features matrix = F =

· Noun Verb

Noun +1 −1

Verb −1 +1

Adj. +1 +1

Pre. −1 −1

(19)

The Pauli matrices (see for example Bjorken and Drell (1965, p.378) ) are

I =

(
1 0

0 1

)
, σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i

i 0

)
, σ3 =

(
1 0

0 −1

)
. (20)

A square matrix can be constructed by assuming that the matrix is symmetric. This
leaves only one unknown F(A, P). Taking F(A, P) = −1 gives equal number of positive
and negative entries in the matrix

F completion = FC =

• N V A P

N +1 −1 +1 −1

V −1 +1 +1 −1

A +1 +1 +1 −1

P −1 −1 −1 +1

(21)

which is singular as its determinant vanishes. There appears to be no relation between
matrix FC (21) and matrix U (16). FC can be expressed as

FC =

(
I− σ1 −iσ2 + σ3

+iσ2 + σ3 I− σ1

)
. (22)

However this does not correspond in any straightforward way to any of the Dirac
matrices (see for example Bjorken and Drell (1965, p.378) ) in standard representations.

4.2. Pseudo-inverse of the features matrix

Another way to proceed is to use pseudo-inverses which can be calculated using
the program Octave, then

pinv(F) =
1

8

(
1 −1 1 −1

−1 1 1 −1

)
, (23)

then in terms of Pauli matrices (20)

F =

(
I− σ1

σ3 + iσ2

)
, pinv(F) =

1

8
(I− σ1, σ3 − iσ2) , (24)
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giving products

pinv(F) ∗ F = I, F ∗ pinv(F) = 1

2

(
I− σ1 0

0 I− σ1

)
. (25)

Having got an inverse (23) one would hope to be able to use it to predict properties of
nouns, verbs and so on, but it is not yet clear how.

4.3. Truth features matrix

The above approach is not unique; consider instead of objects having ±N,±V hav-
ing truth values

Features truth diagram =

Noun T F

Verb F T

Adj. T T

Pre. F F

(26)

with corresponding matrix

Features truth matrix = T =

· Noun Verb

Noun 1 0

Verb 0 1

Adj. 1 1

Pre. 0 0

(27)

with inverse

pinv(T ) =
1

3

(
2 −1 1 0

−1 2 1 0

)
, (28)

giving products

pinv(T ) ∗ T = I, T ∗ pinv(T ) = 1

3


2 −1 1 0

−1 2 1 0

1 1 2 0

0 0 0 0

 , (29)

which do not simplify in terms of Pauli matrices (20).
The structure of the two approaches does not seem to be the same as can be seen

by looking at (19) and (27); and so far it is not clear which is better. It is possible
that the above features approach can be extended using more features; for example
introducing D=determiner one has the 23 = 8 objects {D = (1 ± 1)/2,N = (1 ±
1)/2, V = (1 ± 1)/2}, and one could take {1, 0, 0} to be a determiner {1, 1, 0} to be a
noun phrase and so on, then there is the question of how many features have to be
introduced to represent all tree objects.
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Smith                     will            eat            the            elephant.

   Det            N

     N                                V                  NP

  NP           AUX       VP

  S

Figure 12: Illustration of 

5. Ultrametric Approach to Government

Recall the following definitions in Haegeman (1994):

5.1. Definition of .

Definition Haegeman (1994, p.85) Node A  node B iff:
i) h(A) is higher up or at the same height on the tree as h(B) i.e.h(A) ≥ h(B)
ii) it is possible to trace a path from A to B going only downward,
or at most going to one higher node.
Remarks
The first requirement is that A is at a greater height than B. The second requirement
restricts the possible downward route from A to B so that it contains at most one
upward segment.
Example (compare Haegeman (1994, p.83) )The phrase tree in Figure 12 gives the
‘dominates’ matrix:
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D =

• S NP(S) N(S) AUX VP V NP(E) Det N(e)
S 1 1 1 1 1 1 1 1 1

NP(S) 0 1 1 0 0 0 0 0 0

N(S) 0 0 1 0 0 0 0 0 0

AUX 0 0 0 1 0 0 0 0 0

VP 0 0 0 0 1 1 1 1 1

V 0 0 0 0 0 1 1 1 1

NP(E) 0 0 0 0 0 0 1 1 1

Det 0 0 0 0 0 0 0 1 0

N(E) 0 0 0 0 0 0 0 0 1

(30)

where 1 indicates “A dominates B” and 0 indicates that it does not.

5.2. Definition of C-

Definition Haegeman (1994, p.134)
Node A - (constituent-commands) node B iff:

i) A does not dominate B and B does not dominate A,
ii) The first branching node dominating A also dominates B.
Remarks
The first requirement is that there is no direct route up or down from A to B passing
more than one higher node. The second requirement restricts A and B to be ’close’.
Haegeman’s first criterion for dominance needs to be adjusted: if it is correct then
h(A) > h(B) and h(B) > h(A) so that the set of all - is empty, therefore
greater than or equal ≥ is used here instead of greater than >. Haegeman’s second
criterion for dominance also needs to be adjusted: if no higher node is allowed the set
of - is again empty. Chomsky (1986a, p.161) approaches the subject in a
different manner using maximal projections.

For example, in Figure 13, 0 < j < k < l. The corresponding ultrametric matrix is

U =

• A B C D

A 0 k k l

B . 0 j l

C . . 0 l

D . . . 0

(31)

The - matrix CM is

CM =

• A B C D

A 1 1 1 0

B 0 1 1 0

C 0 1 1 0

D 1 1 1 1

(32)
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Figure 13: Example of -.

where 1 indicates A - A, and 0 indicates that it does not, similarly for B,
C, D.

5.3. Definitions of C-D & G

Definition Haegeman (1994, p.134)
The total of all the nodes - by an element is the - of that element.
Definition Haegeman (1994, p.135)
A  B iff:
i) A is a ,
ii)A - B and B - A.
Remarks:
The first requirement is a restriction on the set A (in linguistic terminology the cate-
gory A). A  is a part of speech which generalizes the notion of a verb gov-
erning an object; unfortunately there does not seem to be a formal definition of it. The
second requirement is that A and B should be sufficiently ‘close’.

5.4. Definitions of CU-D & CU-C

Now let D(A) be the set of all the ultrametric distances to other nodes at the same
height and let M(A) be the set of these which have the smallest value.
Call M(A) the - of A and say A - all BεM(A) (in words B is a
member of M(A). This is illustrated by Figure 14.

5.5. Theorem showing the identity between C-D & CU-D

Theorem:
The sets A - B and A - B are identical, likewise the -
and the -.

Proof:
From the i) part of the definition of - h(A) = h(B), so that we are only
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h=i+k    F

h=i+l    H

h=i      A           B            C           D

h=i+j                  S

Figure 14: Illustration of the Theorem.

concerned with nodes at the same height h(A) = i. Let the first branching node above
A be F, with h(F) = i+k. Let H be any node dominating F, with h(H) = i+ l. Let E be
the subsidiary node dominating B and C and dominated by F, with h(E) = i+ j. The
closest nodes to A are B and C both with an ultrametric distance k. The sets D(A) and
M(A) are D(A)={A,B,C,D}, M(A)={A,B,C}. A both - and -
itself and B and C. The actual integer values i, j, k, . . . are arbitrary and thus the result
holds in general.

5.6. A New Definition of Government

This allows a new definition of . A  B iff:
i) A is a .
ii) both AεM(B) and BεM(A) (in words A is a member of M(B) and vice versa).
This definition of  is the same as the previous definition of ,
but with the - requirement replaced by an ultrametric requirement that
distances be minimal.

6. Conclusion

The definition of government in Section 5.6 might at sometime in the future allow
the five points in Section 1.3 to be addressed.
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SU > DO > IO > OBL > GEN > OCOMP

Figure 15: The accessibility hierarchy

7. Appendix: Other Linguistic Hierarchies

7.1. The Accessibility Hierarchy

A   (RC) is a clause that modifies a noun or pronoun that occurs
elsewhere in a sentence. The accessibility hierarchy (AH) for relative clauses is given by
Keenan and Comrie (1977) and illustrated in Figure 15.

Noun phrases (NP) occurring to the left of “>” are more accessible than those on
the right. SU is short for subject, DO for direct object, IO for indirect object, OBL for
major oblique case NP, GEN for genitive NP, OCOMP for object of comparison. The
properties of the accessible hierarchy are contained in two sets of constraints.

The accessible hierarchy constraints (AHCs) are:
AHC1) A language must be able to relativize subjects.
ACH2) Any RC forming strategy must apply to a continuous segment of the AH.
ACH3) Strategies that apply at one point of the AH may in principle cease to apply

at any lower point.
The primary relativization constraints (PRCs) are
PRC1) A language must have a primary RC-forming strategy.
PRC2) If a primary strategy in a given language can apply to a low position on the

AH, then it can apply to all higher positions.
PRC3) A primary strategy may cut off at any point on the AH.

For a given language a deployment that can be used to relativize a clause at a specified
place on the AH can also be used to relativize all more accessible clauses. The type of
relativization varies from language to language. There appears to be nothing known
on how the skill to deploy a relativization develops in an individual. One would
expect that when a given method is applied the less accessible would take longer to
process. There seems to be no psycholinguistic tests done to see if this is indeed the
case.

7.2. The Berlin-Kay Universal Colour Partial Ordering

The perception of colour often involves the deployment of a colour name strategy.
The effect of this is to alter the way the colour is perceived. The five principles of
colour perception are:

CP1) The communicability of a referent in an array and for a particular community
is very closely related to the memorability of that referent in the same array and for
members of the same community.
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Figure 16: The Berlin-Kay Universal Colour Partial Ordering

CP2) In the total domain of colour there are eleven small focal areas in which are
found the best instances of the colour categories named in any particular language.
The focal areas are human universals, but languages differ in the number of basic
colour terms they have: they vary from two to eleven.

CP3) Colour terms appear to evolve in a language according to the Berlin and Kay
(1969) universal partial ordering illustrated by Figure 16.

CP4) Focal colours are more memorable and easier to recognize than any other
colours, whether or not the subject speaks a language having a name for the colour.

CP5) The structure of the colour space determined by multi-dimensional scaling
of perceptual data is probably the same for all human communities and it is unrelated
to the space yielded by naming data.

Again there is a culturally determined linguistic partial ordering (or hierarchy). On this
occasion it determines the semantic content of individual words rather than syntax
rules. Again there appears to be nothing known on how the skill develops in an indi-
vidual, or any timing tests on the possession of a colour name strategy. The existence
of two separate hierarchical partial orderings suggests that there is a general mecha-
nism for there construction. Most members of a community seem to develop these
culturally determined skills suggesting that the capacity to develop them is usually
innate but their manifestation depends on environment.
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Exact Expected Average Precision of the Random Baseline
for System Evaluation

Yves Bestgen
CECL, Université catholique de Louvain

Abstract
Average precision (AP) is one of the most widely used metrics in information retrieval and

natural language processing research. It is usually thought that the expected AP of a system
that ranks documents randomly is equal to the proportion of relevant documents in the col-
lection. This paper shows that this value is only approximate, and provides a procedure for
efficiently computing the exact value. An analysis of the difference between the approximate
and the exact value shows that the discrepancy is large when the collection contains few docu-
ments, but becomes very small when it contains at least 600 documents.

1. Introduction

Many tasks in information retrieval, computational linguistics and machine learn-
ing aim at finding relevant items among a collection of items, such as documents
matching a query, subjective statements, collocations, semantic neighbors, sentences
between which textual entailment holds, and so forth. To evaluate the proposed sys-
tems, precision (the proportion of retrieved documents that are relevant) and recall
(the proportion of relevant documents that have been retrieved) are favored. When
the system ranks the documents according to their estimated relevance, performance
is typically assessed through a precision-recall curve that is summarized by average
precision (AP) (Büttcher et al., 2010; Robertson, 2008). AP is equal to the average of
the precision value obtained after each relevant document is retrieved (i.e., when re-
call increases) and corresponds to the area under the uninterpolated precision-recall
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curve (PR) (Voorhees and Harman, 1999). More formally,

AP =

∑N
i=1

i
n

R
(1)

where R is number of relevant documents and n the rank of the ith document ac-
cording to the system. This rank goes from 1 to N, the number of documents in the
collection (see Robertson (2008, p. 689) for another, yet equivalent, formula of AP).

If AP is often used to compare the performance of different systems on the same
test collection, with each system serving as benchmark for the others, the AP obtained
by a system is sometimes compared to a random baseline AP: the expected AP that
would be obtained by a system that ranks the documents in a completely random
way (e.g. Marszalek et al., 2009; Nakano et al., 2011; Pecina, 2010; Pohlmeyer et al.,
2011; Ramisch et al., 2008; Rasiwasia et al., 2010). This baseline AP is considered to
be equal to the proportion of relevant documents in the collection, also called the
category prevalence. This paper shows that this value is only approximate (section
2), and provides a procedure for efficiently computing the exact value (section 3). An
analysis of the difference between the approximate and the exact value shows that the
discrepancy is large when the collection contains few documents, but becomes very
small when it contains at least 600 documents (section 4).

2. The Proportion of Relevant Documents is not Equal to the Expected AP
for the Random Baseline

Researchers employing the proportion of relevant documents as the expected value
of the random baseline AP do not justify the choice of this value. Presumably, they
start from the fact that AP is equal to the area under the PR curve, and that a system
that ranks the documents in a completely random way should uniformly distribute
the relevant documents along the ranking. The proportion of relevant documents re-
trieved relative to the total number of documents considered should thus be constant
at all ranking positions. It follows that the corresponding PR curve is a straight line
whose intercept is the proportion of relevant documents in the collection (p = R/N)
and whose slope is 0. The area under this “curve” is the proportion of relevant docu-
ments.

A very simple example is sufficient to show that the proportion of relevant docu-
ments is only an approximation of the actual AP for the random baseline. Consider a
test collection consisting of five documents, of which two are relevant: p is thus 0.40.
It is very easy to list all the possible rankings and to compute their AP as shown in
Table 1. In this table, document relevance is represented by a binary variable set to
one when the document is relevant. Since all these rankings are equally probable for
a system that ranks documents randomly, the expected AP of the random baseline is
the mean AP computed on all possible permutations. For this example, it is thus not
0.40 (R/N), but 0.593.
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Ranking AP
1st 2nd 3rd 4th 5th

1 1 0 0 0 (1/1 + 2/2) / 2 = 1.00
1 0 1 0 0 (1/1 + 2/3) / 2 = 0.83
1 0 0 1 0 (1/1 + 2/4) / 2 = 0.75
1 0 0 0 1 (1/1 + 2/5) / 2 = 0.70
0 1 1 0 0 (1/2 + 2/3) / 2 = 0.58
0 1 0 1 0 (1/2 + 2/4) / 2 = 0.50
0 1 0 0 1 (1/2 + 2/5) / 2 = 0.45
0 0 1 1 0 (1/3 + 2/4) / 2 = 0.42
0 0 1 0 1 (1/3 + 2/5) / 2 = 0.37
0 0 0 1 1 (1/4 + 2/5) / 2 = 0.33

Sum = 5.93
Expected AP = 5.93 / 10 = 0.593

Table 1. Expected AP of the random baseline for N = 5 and R = 2

3. An Accurate and Efficient Procedure for Calculating the AP for the Ran-
dom Baseline

To compute the expected AP of the random baseline for other values ofN and R (or
p), one could imagine using the procedure outlined in Table 1. The problem is that it
would require enumerating a very large number of permutations when N is large and
R is not too close to 0 or to N. It corresponds to the number of different permutations
of N objects when some of these are identical, that is, N!/(R!× (N− R)!). This results
in more than 17,000 billion different rankings to list for N = 100 and p = 0.10.

Looking at this table, a much more efficient solution can be proposed. If the two
divisors (R and the total number of different permutations) are set aside, there remains
a sum of precision scores at rankn (i.e., i/n),n corresponding to the possible positions
in the ranking of each ith relevant document. For each value of i (i ranging from 1 to
R), there are N − R + 1 possible ranks, since the ith relevant document cannot occur
before the ith rank or after theN−R+i rank; otherwise, there are not enough positions
available for the R− i remaining relevant documents. Furthermore, for each value of
i, there are in theory a total of N!/(R! × (N − R)!) precision scores to compute, since
the ith relevant document is present in every possible permutation. But the problem
can be reformulated in terms of the probability that the ith relevant document occurs
at each of the N − R + 1 possible ranks, all the probabilities computed for a given i

summing to 1. This formulation requires the calculation of only R×(R+N−1) values.
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i n dhyper(i,N,N-R,n) i/n Final prob. P@n Contribution to AP

1 1 0.4 1.00 0.4 1.00 0.400
1 2 0.6 0.50 0.3 0.50 0.150
1 3 0.6 0.33 0.2 0.33 0.067
1 4 0.4 0.25 0.1 0.25 0.025
2 2 0.1 1.00 0.1 1.00 0.100
2 3 0.3 0.67 0.2 0.67 0.134
2 4 0.6 0.50 0.3 0.50 0.150
2 5 1.0 0.40 0.4 0.40 0.160

Sum = 1.186
Expected AP = 1.186 / 2 = 0.593

Note: dhyper() returns the density for the hypergeometric function. P@n
stands for precision at rank n.

Table 2. Calculation of the expected AP of the random baseline for N = 5 and R = 2

The proposed procedure is, therefore, to calculate, for each rank n, the probability
that the ith relevant document occurs at that rank, producing a precision score at
rank n equal to i/n. This probability is equal to the probability of having i successes
in n draws without replacement from a population of size N containing R successes and
N − R failures, with the additional condition that the ith success occurs at the last
draw (i.e., at rank n). The first part of this probability is given by the hypergeometric
distribution whose formula is:

P(X = i) =

(
R
i

)(
N−R
n−i

)(
N
n

) (2)

where
(
R
i

)
is a binomial coefficient, corresponding here to i!/(R!(R − i)!). Regarding

the additional condition, the probability of a success at the last draw when there are
i successes in n draws is obviously i/n. Multiplying this final probability by the pre-
cision score at rank n produces the contribution of each ith relevant document to the
total sum of AP, and it only remains to divide this sum by R to obtain the expected
AP of the random baseline.

Table 2 applies this calculation procedure1 to the example of Table 1. In this ex-
ample, the gain in number of operations is very small (eight instead of 10), but for
N = 100 and R = 10, it is reduced from more than 17,000 billion to 910. Calculating

1In this table, the Final prob. values for each i sum to 1, as explained. This is not the case for the prob-
abilities from the hypergeometric distribution alone, which sum to 1 for a given n only if one adds the
probabilities for all possible i (i.e., the number of successes) including 0 success.
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a hypergeometric probability takes more time than finding a possible permutation,
but extremely efficient procedures for calculating these probabilities are available in
every major statistical software.

The very simple R function (R Core Team, 2013) given below implements the cal-
culation procedure of the expected AP of the random baseline for any values of N and
R.

RandomAPExact = function(N=0, R=0) {
ap = 0
for (i in 1:R) {
for (n in i:(N-R+i)) {
ap = ap + dhyper(i,R,N-R,n)*(i/n)*(i/n)

}
}
ap = ap/R
ap
}

Function call: RandomAPExact(10,4)
Result: [1] 0.5285979

For N = 100 and p = 0.10, this function takes 0.011 seconds to compute the solution,
and just over 131 seconds for N = 10000 and p = 0.40 on an Intel Core i5 2.66GHz
processor. If there is no doubt that the exact procedure is computationally intensive
compared to the calculation of the approximate value, the R code provided allows to
calculate it very easily and it should only be used once for an evaluation task. What
is a handful of minutes compared to the time required for the development of an IR
system and for its evaluation?

4. How Large is the Difference Between the Exact Value and the Usual Es-
timate?

To get an idea of the importance of differences between the exact AP and the ap-
proximate AP for the random baseline, Figure 1 shows the evolution of this difference
for many values of N and p, the exact value being systematically larger than the ap-
proximate value. As can be seen, the difference decreases when N increases or p

increases. As soon as N is at least equal to 600, it is less than 0.01 for all tested values
of p.

5. Conclusion

This paper shows that the AP for the random baseline usually used in informa-
tion retrieval and computational linguistics is only an approximation of the exact AP,
and it presents an efficient procedure to compute the latter. An analysis of the dif-
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Figure 1. Difference between the exact and the approximate AP of the random
baseline for several values of N and p
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ference between the exact value and the approximate value shows that the discrep-
ancy between them reduces when the size of the collection of documents increases.
While many evaluations of IR systems are performed on very large collections of doc-
uments, some research areas use much smaller collections because of the difficulties
encountered in their constitution (i.e., less resourced languages, emerging tasks or
tasks requiring complex relevance judgment that can only be performed by human
experts). The smallness of the collections can be further enhanced by the use of a ran-
dom under-sampling procedure advocated by Jeni et al. (2013) to reduce the impact of
large imbalance between the positive and negative examples on performance metrics.

In conclusion, it can be recommended that researchers who plan to compare their
system to the random baseline AP use the proposed procedure to calculate the exact
expected value when the test collection is of limited size or, when there are at least
600 documents in the collection, state in their report that the proportion of relevant
documents in the collection is an excellent approximation of the exact value.

Acknowledgements

Yves Bestgen is a Research Associate with the Belgian Fund for Scientific Research
(F.R.S-FNRS).

Bibliography
Büttcher, Stefan, Charles Clarke, and Gordon Cormack. Information Retrieval: Implementing and

Evaluating Search Engines. MIT Press, 2010.
Jeni, László, Jeffrey Cohn, and Fernando De La Torre. Facing imbalanced data - recommenda-

tions for the use of performance metrics. In ACII ’13: 2013 Humaine Association Conference
on Affective Computing and Intelligent Interaction, pages 245–251, 2013.

Marszalek, Marcin, Ivan Laptev, and Cordelia Schmid. Actions in context. In IEEE Conference
on Computer Vision and Pattern Recognition, pages 2929–2936, 2009.

Nakano, Takuho, Akisato Kimura, Hirokazu Kameoka, Shigeki Miyabe, Shigeki Sagayama,
Nobutaka Ono, Kunio Kashino, and Takuya Nishimoto. Automatic video annotation via hi-
erarchical topic trajectory model considering cross-modal correlations. In Acoustics, Speech
and Signal Processing, pages 2380–2383, 2011.

Pecina, Pavel. Lexical association measures and collocation extraction. Language Resources &
Evaluation, 44:137–158, 2010.

Pohlmeyer, Eric, Jun Wang, David Jangraw, Bin Lou, Shih-Fu Chang, and Paul Sajda. Closing
the loop in cortically-coupled computer vision: a brain–computer interface for searching
image databases. Journal of Neural Engineering, 8:1–14, 2011.

R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statis-
tical Computing, 2013.

Ramisch, Carlos, Paulo Schreiner, Marco Idiart, and Aline Villavicencio. An evaluation of
methods for the extraction of multiword expressions. In LREC Workshop towards a Shared
Task for Multiword Expressions, pages 50–53, 2008.

137



PBML 103 APRIL 2015

Rasiwasia, Nikhil, Jose Costa Pereira, Emanuele Coviello, Gabriel Doyle, Gert Lanckriet, Roger
Levy, and Nuno Vasconcelos. A new approach to cross-modal multimedia retrieval. In
ACM MM ’10, the International Conference on Multimedia, pages 251–260, 2010.

Robertson, Stephen. A new interpretation of average precision. In 31st Annual international
ACM SIGIR Conference, pages 689–690, 2008.

Voorhees, Ellen and Donna Harman. Overview of the seventh text retrieval conference. In
Seventh Text REtrieval Conference (TREC-7). NIST Special Publication, 1999.

Address for correspondence:
Yves Bestgen
yves.bestgen@uclouvain.be
Centre for English Corpus Linguistics
Université catholique de Louvain
Place du cardinal Mercier, 10
Louvain-la-Neuve, 1348, Belgium

138



The Prague Bulletin of Mathematical Linguistics
NUMBER 103 APRIL 2015 139–159

A Python-based Interface
for Wide Coverage Lexicalized Tree-adjoining Grammars

Ziqi Wang, Haotian Zhang, Anoop Sarkar
School of Computing Science, Simon Fraser University

Abstract
This paper describes the design and implementation of a Python-based interface for wide

coverage Lexicalized Tree-adjoining Grammars. The grammars are part of the XTAG Grammar
project at the University of Pennsylvania, which were hand-written and semi-automatically
curated to parse real-world corpora. We provide an interface to the wide coverage English and
Korean XTAG grammars. Each XTAG grammar is lexicalized, which means at least one word
selects a tree fragment (called an elementary tree or etree). Derivations for sentences are built by
combining etrees using substitution (replacement of a tree node with an etree at the frontier of
another etree) and adjunction (replacement of an internal tree node in an etree by another etree).
Each etree is associated with a feature structure representing constraints on substitution and
adjunction. Feature structures are combined using unification during the combination of etrees.
We plan to integrate our toolkit for XTAG grammars into the Python-based Natural Language
Toolkit (NLTK: nltk.org). We have provided an API capable of searching the lexicalized etrees
for a given word or multiple words, searching for a etree by name or function, display the
lexicalized etrees to the user using a graphical view, display the feature structure associated
with each tree node in an etree, hide or highlight features based on a regular expression, and
browsing the entire tree database for each XTAG grammar.

1. Introduction

Tree-Adjoining Grammars (TAG) represents a tree manipulating system. TAG was
first proposed in (Joshi et al., 1975) as grammatical formalism that extends context-
free grammars (CFG) with an extended domain of locality (namely a tree structure
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rather than a CFG rule). The main reasons to consider TAG as a suitable formalism
for the analysis of the syntax of natural language are:

• TAG can be viewed as a system that can be used for lexicalization of a CFG.
Unlike the Griebach normal form for CFGs, a lexicalized TAG can preserve the
tree set of the original CFG (Schabes et al., 1988; Schabes and Waters, 1995). Most
linguistic applications of TAG use a lexicalized TAG (LTAG).

• Like CFGs, TAGs are parsable in polynomial time.
• TAG can generate crossing dependencies which are widespread in natural lan-

guage, while CFGs can only generate nested dependencies.

A comprehensive introduction to TAG, both the formalism and the linguistic ap-
plication of TAG appears in (Joshi and Schabes, 1997). Large scale LTAG grammars
have been constructed by hand for English as part of the XTAG project at the Univer-
sity of Pennsylvania (UPenn) (XTAG Group, 2001) and French (at the TALANA group,
University of Paris 7, France) and somewhat smaller ones for German (at DFKI, Saar-
brücken, Germany), Korean (at UPenn), Chinese (at UPenn), and Hindi (at CDAC,
Pune, India). The earliest stochastic variant of TAG was proposed by (Resnik, 1992;
Schabes, 1992). LTAG grammars have been extracted from annotated corpora (Xia
et al., 2001; Xia, 2001; Chiang, 2000; Chen and Vijay-Shanker, 2000), which in turn
have been used for lexicalized statistical parsing (Chiang, 2000; Sarkar, 2001). In this
paper, our focus will be on the hand-written large scale LTAG grammars developed
as part of the XTAG project at the University of Pennsylvania (XTAG Group, 2001).

The goal of this work is to provide a modern programming interface to the large
scale LTAG grammars developed as part of the XTAG project at the University of Penn-
sylvania. We provide a conversion of the grammar files for English and Korean wide
coverage LTAG grammars. To this end, we describe in this paper our Python-based
API for viewing and manipulating these LTAG grammars. We plan to incorporate
our modules into the Python-based Natural Language Toolkit (NLTK) project so that
anybody who downloads the NLTK project can have access to the linguistic annota-
tions that are part of the LTAG grammars developed during the XTAG project. All
the data is also available through online repositories and packaged for distribution
and convenient use by our codebase. This is particularly useful as the software that
was originally developed for manipulating these grammars by the XTAG project is no
longer being maintained.

2. Tree-adjoining grammars

In this section we summarize the representation used in the XTAG grammars. The
material here is a summary of the extended description provided in the XTAG tech-
nical report describing the English grammar (XTAG Group, 2001).

Tree-adjoining grammar (TAG) is a formal tree rewriting system. TAG and Lex-
icalized Tree-Adjoining Grammar (LTAG) have been extensively studied both with
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respect to their formal properties and to their linguistic relevance. TAG and LTAG are
formally equivalent, however, from the linguistic perspective LTAG is the system we
will be concerned with in this paper. We will often use these terms TAG and LTAG
interchangeably.

The motivations for the study of LTAG are both linguistic and formal. The ele-
mentary objects manipulated by LTAG are structured objects (trees or directed acyclic
graphs) and not strings. Using structured objects as the elementary objects of the for-
mal system, it is possible to construct formalisms whose properties relate directly to
the study of strong generative capacity (i.e., structural descriptions), which is more
relevant to the linguistic descriptions than the weak generative capacity (sets of strings).

Rather than giving formal definitions for LTAG and derivations in LTAG we will
give a simple example to illustrate some key aspects of LTAG. We show some elemen-
tary trees of a toy LTAG grammar of English. Figure 1 shows two elementary trees for
a verb such as likes. The tree α1 is anchored on likes and encapsulates the two argu-
ments of the verb. The tree α2 corresponds to the object extraction construction. Since
we need to encapsulate all the arguments of the verb in each elementary tree for likes,
for the object extraction construction, for example, we need to make the elementary
tree associated with likes large enough so that the extracted argument is in the same
elementary domain. Thus, in principle, for each ‘minimal’ construction in which likes
can appear (for example, subject extraction, topicalization, subject relative, object rel-
ative, passive, etc.) there will be an elementary tree associated with that construction.
By ‘minimal’ we mean when all recursion has been factored away. This factoring of
recursion away from the domain over which the dependencies have to be specified
is a crucial aspect of LTAGs as they are used in linguistic descriptions. This factor-
ing allows all dependencies to be localized in the elementary domains. In this sense,
there will, therefore, be no long distance dependencies as such. They will all be local
and will become long distance on account of the composition operations, especially
adjoining.

Figure 2 shows some additional trees. Trees α3, α4, and α5 are initial trees and
trees β1 and β2 are auxiliary trees with foot nodes marked with *. A derivation using
the trees in Figure 1 and Figure 2 is shown in Figure 3. The trees for who and Harry are
substituted in the tree for likes at the respective NP nodes, the tree for Bill is substituted
in the tree for think at the NP node, the tree for does is adjoined to the root node of
the tree for think tree (adjoining at the root node is a special case of adjoining), and
finally the derived auxiliary tree (after adjoining β2 to β1) is adjoined to the indicated
interior S node of the tree α2. This derivation results in the derived tree for who does
Bill think Harry likes as shown in Figure 4. Note that the dependency between who and
the complement NP in α2 (local to that tree) has been stretched in the derived tree in
Figure 4. This tree is the conventional tree associated with the sentence.

However, in LTAG there is also a derivation tree, the tree that records the history of
composition of the elementary trees associated with the lexical items in the sentence.
This derivation tree is shown in Figure 5. The nodes of the tree are labeled by the
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Figure 1. LTAG: Elementary trees for likes. The same predicate-argument structure
can be syntactically realized in different ways. All the different syntactic

transformations produce a set of elementary trees for each predicate. This set is
grouped together into a tree family for each type of predicate.
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Figure 2. LTAG: Sample elementary trees
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Figure 3. LTAG derivation for who does Bill think Harry likes
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Figure 4. LTAG derived tree for who does Bill think Harry likes
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α3 α4β1
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Figure 5. LTAG derivation tree

tree labels such as α2 together with the lexical anchor.1 The derivation tree is the
primary derivation structure for LTAG: the derived tree can be directly created using
the information in the derivation tree.

Large scale wide coverage grammars have been built using LTAG, the XTAG En-
glish grammar (an LTAG grammar and lexicon for English) being the largest so far
(for further details see (XTAG Group, 2001).

2.1. Feature Structures and TAG

A feature structure is a set of key-value pairs (i.e. features), in which the value
could be of basic type or other feature structure. Two or more keys could share the
same value, and value could be shared among keys. This property facilitates interac-
tions between tree nodes. The main operation defined for feature structure is unifi-
cation, through which two feature structures are merged into one. Unification could
fail if there is conflicting feature. A feature structure based TAG is a TAG with feature
structures attached to tree nodes.

In the XTAG grammars, each node in each LTAG tree is decorated with two feature
structures (top and bottom feature structures), in contrast to the CFG based feature
structure grammars. This is necessary because adjoining can augment a tree inter-
nally, while in a CFG based grammar or even in a tree substitution grammar a tree
can be augmented only at the frontier. It is possible to define adjoining and substitu-
tion (as it is done in the XTAG system) in terms of appropriate unifications of the top
and bottom feature structures.

When doing substitution, the top feature of the new node is the result of unification
of the root node and substitution node, while the bottom feature of the new node is

1The derivation trees of LTAG have a close relationship to the notion of dependency trees, although
there are some crucial differences; however, the semantic dependencies are the same. See (Rambow and
Joshi, 1995) for more details.
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the bottom feature of the root node in substituting tree. See Figure 6 for a schematic
view of how unification is done during the substitution operation in LTAG.

Figure 6. Substitution in feature-based LTAG

Adjunction is more complicated: after the adjunction node has been split into two,
the top feature is now attached with the top half, and the bottom feature is attached
with another half. In addition, in the resulting tree produced by adjunction, the top
feature attached with the root of the auxiliary tree is then unified with the top feature
of the top half, and similarly, the bottom feature attached with the adjunction node of
the auxiliary tree is unified with the bottom feature of another half. See Figure 7 for a
schematic view of how unification is done during the adjunction operation in LTAG.

Figure 7. Adjunction in feature-based LTAG

Constraints on substitution and adjoining are modelled via these feature struc-
tures (Vijay-Shanker, 1987) (except for the null adjunction constraint or NA constraint
which rules out adjunction at a node).
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3. Structure of the XTAG Grammar

Each XTAG grammar (both the English and Korean grammar) is a large lexicalized
Tree Adjoining Grammar. The grammar itself is represented in machine readable
format in a series of files, each of which represents a different module in the grammar.
In this section, we describe each module.

3.1. Trees and Tree Families

The first important concept in the XTAG grammar is the notion of a tree family. As
seen in Figure 1 each predicate lexicalizes many different elementary trees where the
predicate-argument structure is the same but the syntactic construction is different.
All of the different syntactic realizations of a predicate are grouped into a tree family.
In XTAG, the name of the tree family encapsulates the predicate-argument structure.
For instance, the tree family name Tnx0Vplnx1 refers to all the syntactic variations
of a single predicate argument structure where nx0 and nx1 represent the subject and
object NP arguments of the predicate respectively. The predicate is a verb represented
by the V in the name and pl stands for particle. Thus, Tnx0Vplnx1 is a tree family
associated with a multi-word predicate such as walk off. All the trees in the tree family
Tnx0Vplnx1 are lexicalized by the anchor words walk off including trees for passives,
wh-movement, relative clauses, etc.

Function words or non-predicates are assigned trees as well, and so there are tree
files as well in the XTAG grammar where words lexicalize the individual trees in these
tree files rather than all the trees at once.

In tree files, trees are defined as objects, encapsulating the skeleton of elementary
tree, tree name, node information, feature structure for nodes, constraints, comments,
and other GUI-related options, such as switches for drawing.

Tree skeletons are the frameworks of un-lexicalized elementary objects, and they
are essentially DAGs (directed acyclic graphs), with tree nodes being graph nodes,
and internal connections being edges. Tree nodes are again objects with at least three
members: node label, node type, and node constraint. Node label is the symbol it
represents, which must be a non-terminal, and appropriate measures must be taken
to avoid naming collision (see below). Node type annotates whether a node on tree
frontier is a substitution node, adjunction node (for internal nodes this field is empty)
or head node (where the lexical item, i.e. anchor, is attached). We follow the conven-
tion that for substitution node there is a down arrow, for adjunction node there is an
asterisk, and for head node, there is a diamond when displaying trees graphically.
Node constraints rules out combinations that are not qualified, and should be blank
if no constraint is applicable.

In order to prevent node label collision (two nodes on the same tree having identi-
cal label), which can happen in elementary trees, the notion of node label is extended
to have two parts. The first part is exactly the non-terminal symbol it represents,

146



Z. Wang, H. Zhang, A. Sarkar Python interface to XTAG grammar (139–159)

and the second part is appended to differentiate this node from others. Any naming
scheme that guarantees uniqueness is acceptable, however, according to our conven-
tion, root nodes are given suffix .r, and foot nodes are given suffix .f. Besides, all
other nodes that have a common non-terminal symbol are given an increasing nu-
meric suffix. For example, if we have four NP nodes in an auxiliary tree, one of them
being the root node, another being the foot node, and the rest two are generic nodes,
then their label should be NP.r, NP.f, NP, NP.1 respectively.

There are two types of elementary tree, initial tree and auxiliary tree, and in order
to distinguish them, trees with a name that starts with an “alpha” α denote initial
trees, and those whose name starts with a “beta” β denote auxiliary trees. This is just
a naming convention.

3.2. Feature structures

XTAG is organized such that feature structures are specified in three different com-
ponents of the grammar: a Tree database defines feature structures attached to tree
families; a Syn database defines feature structures attached to lexically anchored trees;
and a Morph database defines feature structures attached to (possibly inflected) lexical
entries.

As an example, consider the verb seems This verb can anchor several trees, among
which are trees of auxiliary verbs, such as the tree βVvx, depicted in figure 8. This
tree, which is common to all auxiliary verbs, is associated with the feature structure
descriptions listed in Figure 8 (independently of the word that happens to anchor it).2

When the tree βVvx is anchored by seems, the lexicon specifies additional con-
straints on the feature structures in this tree:

seem betaVvx VP.b:<mode>=inf/nom,
V.b:<mainv> = +

Finally, since seems is an inflected form, the morphological database specifies more
constraints on the node that this word instantiates, as shown in figure 9.

The full set of feature structures that are associated with the lexicalized tree an-
chored by seems is the unification of these three sets of path equations.

The atomic values in feature structures fall into three categories. The first two are
generic strings and booleans (+ or -). A third type of disjunction is also used, usually
represented as a/b/c, which means “a or b or c” (it represents a disjunctive relation).

2We use “handles” such as V.b or NP.t to refer to the feature structures being specified. Each node in a
tree is associated with two feature structures, ‘top’ (.t) and ‘bottom’ (.b). Angular brackets delimit feature
paths, and slashes denote disjunctive (atomic) values.
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VP_r

V♢ VP∗

V.t:<agr> = VP_r.b:<agr>
V.t:<assign-case> = VP_r.b:<assign-case>
V.t:<assign-comp> = VP_r.b:<assign-comp>
V.t:<displ-const set1> = VP_r.b:<displ-const set1>
V.t:<mainv> = VP_r.b:<mainv>
V.t:<mode> = VP_r.b:<mode>
V.t:<neg> = VP_r.b:<neg>
V.t:<tense> = VP_r.b:<tense>
VP.t:<assign-comp> = ecm
VP.t:<compar> = -
VP.t:<displ-const set1> = -
VP_r.b:<compar> = -
VP_r.b:<conditional> = VP.t:<conditional>
VP_r.b:<perfect> = VP.t:<perfect>
VP_r.b:<progressive> = VP.t:<progressive>

Figure 8. An example tree and its associated feature structure descriptions

seems seem V <agr pers> = 3,
<agr num> = sing,
<agr 3rdsing> = +,
<mode> = ind,
<tense> = pres,
<assign-comp> = ind_nil/that/rel/if/whether,
<assign-case> = nom

Figure 9. The morphological database entry for seems

3.3. Morphology

The morphology information in XTAG establishes mappings from inflected words
to a list of tuples. The morphology file contains a mapping from inflected words to
the root word, part of speech (POS) and inflectional information. If there are multiple
records returned, then they are organized as a list. Figure 10 contains an example
of a morphology entry in XTAG. The leftmost word of the first line, facile, is the in-
dex of record. The other two columns are the stem form and part of speech (POS)
respectively.
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Inflected Word Stem POS Inflectional Information
facile facile A
cajoles cajole V 3sg PRES
chills chill N 3pl
chills chill V 3sg PRES

Figure 10. Morphology Example

Index Sense 1 Sense 2 Sense 3 Sense 4
crabs crab N 3pl crabs N 3sg crab V PPART STR crab V 3sg PRES

Figure 11. Multiple Records Example

3.4. Syntax and Feature Templates

Syntax information in XTAG consist of two components: the syntactic mapping
from stems to trees and the list of feature templates.

The syntactic database stores mappings from a stem to a list of structures. It is
queried using an uninflected word as index. The query returns a list of syntactic
items. Each syntactic item is recognized as a structure with header and body, which
contains information to lexicalize TAG trees.

Each entry has a header that contains ENTRY and POS (part of speech) keys. EN-
TRY and POS must appear in pairs, the values of which are inflected word and POS
tag respectively. Duplicated pairs of ENTRY and POS are allowed, and this happens
when the identifier is a phrase rather than a single word. An example of the phrase
“walk off” is presented below.
«INDEX»walk«ENTRY»walk«POS»V«ENTRY»off«POS»PL«FAMILY»Tnx0Vplnx1

After the header the rest of the entry contains either TREES or FAMILY and FEA-
TURES. These three are all optional, but in order to define a non-trivial syntactic item,
at least one of TREES and FAMILY must exist. TREES selects a group of trees by the
file name of one or more generic tree files, while FAMILY selects a group of trees
by the file name of one or more family files. Once the groups are selected, all trees
in these groups will be lexicalized. In the example above, the value of FAMILY is
“Tnx0Vplnx1”; therefore, all trees defined in that file will be lexicalized using “walk”
and “off”.

The FEATURES key in the body specifies feature structures for lexicalization. Please
note that features are also defined in morphology files. The reason of scattering them
in two separate files is that features in morphology file are associated with inflectional
information, while those in syntactic database capture lexical idiosyncrasies. Features
from both files should be applied to the trees.

149



PBML 103 APRIL 2015

@1sg @1st, @sg, <agr 3rdsing> = -!
#_AWH+ A.b:<wh> = +!

Figure 12. Feature Template Example

In a feature template, feature identifiers from the morphology and from syntax
should not be mixed up. Although they coexist in the same file, appropriate mea-
sures must be taken to help distinguish one from another. We extracted two lines
from our implementation of feature template as an example.

Lines starting with a “@” is recognized as inflectional (morphological) features,
while lines starting with a “#” is recognized as syntactic database features. Besides,
“!” is used to terminate one line. In addition, shorthand is allowed when defining
feature entries. Reference to already defined feature structures would expand them
in-place as part of the definition.

3.5. Configuration files

Configuration files consist of metadata files and list of trees, families and other
information about the grammar. Also included here are properties (represented as
feature structures) expected for every root node in a derivation tree (for instance: the
main clause should carry tense, e.g. the toy exploded which rules out untensed main
clauses such as ∗the toy to explode — this requirement is implemented as a feature
structure that will be unified with the root node of the elementary tree which is the
root of the derivation tree for an input sentence).

4. A Client-Server Architecture

Our XTAG grammar viewer is divided into two components: the backend and
frontend. The backend is responsible for data processing, such as finding TAG trees
for a given word; while the frontend implements presentation and user interaction,
such as drawing a TAG tree on the frame buffer with feature structures. We have de-
signed an API that bridges the frontend and backend to make things more modular,
e.g. one could use the backend API to iterate through the grammar and one could
use the frontend API to draw elementary trees that are not in the XTAG grammar.

The server and client could be running on different machines, communicating us-
ing network protocols, such as remote procedure call (RPC), or even web protocol
like HTTP. In the following, we use the term “backend” and “server”, “frontend”
and “client” interchangeably.
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Interface Description
unpack_data() Reads XTAG dataset, and returns memory objects
dump_binary() Dumps memory objects onto file system
load_binary() Loads memory objects from file system

Figure 13. Data Preprocessing Interface Description

5. Backend

In this section, we present the backend of grammar viewer. As previous section
has indicated, the backend serves as a data processor, and handles requests from the
client.

5.1. Data Preprocessing

Data preprocessing or initialization, happens only once on startup. Data prepro-
cessing takes the raw source grammar files and creates machine readable data struc-
tures on which the grammar viewer operates. In the reader step unpack_data() should
take the path or descriptor of the configuration file, extracting global user path, rela-
tive file paths, as well as file names, and concatenate the global user path with each
relative file path and file name respectively (possibly we also need to append a suf-
fix using file type information). Then it reads contents of each file, sending them for
unpacking into memory, and returns these data structures. Since there is critical in-
formation contained in the configuration file, it should be unpacked and included as
well.

Developers can dump a binary image of unpacked memory objects onto the file
system after loading for the first time, and only use that binary dump for later. This re-
duces processing time and file size. Interfaces for this purpose are defined as dump_binary()
and load_binary() respectively.

5.2. Forward Searching

Forward searching, also known as tree selection (please note that we use the term
“tree selection” to refer to using tree file name to include all TAG trees in that file in
Section 3, “Tree Files” Section), is the process of selecting TAG trees given a word or
phrase, and then to lexicalize the selected trees with information about the word or
phrase. This process involves many individual steps, and could be broken down into
smaller independent steps:

After receiving user input from the client, which is usually a string consisting of
one or more words, the first step is to split the string into tokens, and each token is

151



PBML 103 APRIL 2015

an inflected word. These tokens are then passed to a series of procedures, including
morphological analyzer, syntactic analyzer, feature manager and tree manager. Even-
tually the backend returns a list of TAG trees which are lexicalized by the tokens with
feature structures attached to tree nodes.

The morphological analyzer accepts an inflected word as argument, and returns
a set of its possible stem, POS tag, and morphological feature structures. This is ac-
complished by querying the morphological database. This database, as described in
Section 3, is designed to be indexed using an inflected word, and the result is a list
of records. Each record is a three tuple of the stem (root word, we use these two in-
terchangeably), POS tag and feature structures. These records are then returned as a
list. This procedure is defined as word_to_morph().

The syntactic analyzer takes output from the morphological analyzer, and if there
are multiple words (i.e. the lexical entry is a phrase), then we need to collect them
using separate calls to the morphological analyzer into an aggregation, and then re-
turn the trees for the aggregated set of words. The syntactic analyzer extracts syntac-
tic information from the syntactic database. As we have discussed in Section 4, the
syntactic database is indexed using the root word from previous step, and the query
returns a set of syntactic items. Each item has a header acting as an identifier, which
is a stream of ENTRY and POS combinations, and a body that contains at least one
of TREES, FAMILY and FEATURES. The syntactic analyzer combines morphological
information with syntactic information by iterating through all morphological tuples,
querying the syntactic database using the root word (if we are handling phrases, then
only use the first one), and examine the result. Only those syntactic items whose iden-
tifier matches the one constructed using the root word and POS in the parameter is
reserved; others are discarded, because their morphological and syntactical informa-
tion do not conform. Once the syntactic items have been determined, the function
returns with tree files, family files, and features extracted from those items. This pro-
cedure is defined as morph_to_syntax().

The feature manager manages feature structures. This component would return a
feature structure when called with a feature identifier. To avoid instantiating every
feature structure objects during initialization, feature manager could be implemented
with a cache that stores recently used feature structures, only duplicating and return-
ing them when requested, and all other features remains un-instantiated until they
are requested for the first time. Such a parse-on-demand manner would moderately
save initialization time, while introducing slight performance harm later. The inter-
face to access feature structures is defined as get_feature_struct().

The tree manager, similar to feature manager, manages trees. However, it main-
tains tree database at different levels. If trees are requested by tree family name then
a list of trees in that tree family is returned. The request could also be for all trees in
a file that contains related trees but without the same predicate argument structure
(files that contain all the adverb trees, etc.). If the word does not exist in the tree man-
ager a default set of trees is returned. The trees can also be accessed by tree names,
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Interface Description
word_to_morph() Given one token, returns its morphological records
morph_to_syntax() Given morphological records of user inputs, returns

their syntactical items
get_feature_struct() Given feature identifier, returns feature structure ob-

ject
get_tag_tree() Given tree file name or tree name, returns tree object
tree_lexicalization() Given morphological records, syntactic items, tree set

and feature set, returns lexicalized TAG trees with fea-
ture structure

Figure 14. Forward Searching Interface Description

and in this case exactly one tree is returned if it is found. The interface for acquiring
trees is defined as get_tag_tree().

To lookup a particular lexicalized tree we search using a word or group of words.
We then access the morphological records, syntactic items, tree set, and two feature
sets (one from the morphological records, and another from the syntactic database)
using the dataset. Still we need a procedure to combine them, producing a lexical-
ized TAG tree. This process is exactly what was called tree lexicalization in Section 2.
Lexicalization is done in two steps.

The first step is to attach word(s) to TAG trees at the anchor nodes. Trees selected
by the syntactic database possess one or more anchor nodes (represented by a dia-
mond in the graphical view), and the number of anchor nodes is exactly the same
as the words provided by the user. Tokens are attached to anchor nodes from left to
right, i.e. the order they appear in trees is the same the order they are in user input.

The second step is to unify any feature structures that are to be merged into the
lexicalized tree. Since we are dealing with both morphological features and syntac-
tic features, they should be handled separately. Morphological features only carry
inflectional information; therefore, they are unified into the bottom features of the an-
chor nodes respectively. In contrast, syntactic features capture lexical idiosyncrasies,
and so they could be attached to any tree nodes. After this step, the result is a list
of lexicalized trees with feature structures decorating each node in each elementary
tree.

The procedure for final lexicalization using morphological and syntactical infor-
mation is defined as tree_lexicalization(). And after this function returns, the
data is returned to the client.
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Interface Description
construct_tree_to_word_db() Constructs tree to words relations using syntac-

tic database
tree_to_word() Given TAG tree, returns words or phrases that

could be used to lexicalized the tree

Figure 15. Backward Searching Interface Description

5.3. Backward Searching

Backward searching is invoked with an un-lexicalized TAG tree, and it returns
words or phrases that could be used to lexicalize this tree. The data structure for back-
ward searching is another mapping relation, which is constructed using the dataset
in Section 3.

In essence, backward searching requires a database indexed by tree names, and
the query returns a list of words and phrases. The mapping from tree names to words
or phrases is constructed using only the syntactic database, since the mapping from
words to tree files is established in syntactic database. In addition, because only tree
files are involved in the mapping relation, all trees under the same file are mapped to
the same set of words and phrases.

In order to construct a backward searching database, we need to iterate through
each item in the syntactic database, using the tree file or family file in that item as the
index, and append words or phrases in the syntactic item to the record in the back-
ward searching database. The interface is defined as construct_tree_to_word_db().

When the backend receives a request from the user to find all the words or phrases
that could lexicalize an elementary tree, it queries the database with the tree file name
to which the TAG tree in the request belongs, and returns the result. This interface is
defined as: tree_to_word().

5.4. Exploring The Tree Repository

The backend also allows requests be made for a single tree or for listing out all
trees in a tree file. These two are usually needed when users are exploring the tree
repository. Essentially, listing out trees using a file name is simply enumerates the
name of the trees in that file, while querying for a single tree using a tree name re-
trieves that tree using the given name and parses it into a tree instance. This feature
requires a database keeping the relationship between a tree name and a tree file name.

Although these two interfaces are straightforward, the tree returned is un-lexicalized,
which means there are no feature structures and anchor words attached to it. How-
ever, for an un-lexicalized tree, backward searching should also be available, because
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Interface Description
list_trees() Given a tree file name, returns all trees contained in the file
get_tree() Given a tree name, return a TAG tree object

Figure 16. Exploring The Tree Repository Interface Description

all backward searching needs is the tree name, and we always know it.

5.5. Exception Handling

An exception is raised when the dataset appears to be inconsistent, or the backend
could not find the desired entry. It interrupts the normal processing steps and then it
tries to fix the problem, and then resume. By using exception, we do not always means
the exception handling provided by programming language, but we refer to a more
general situation, which indicates that something special must be done in order to
complete the task.

There are several types of exceptions, and generally speaking, they could happen
during any stage of processing. The most typical ones are, morphological record does
not exist, syntactic item does not exist, and syntactic item exists but does not match.
We will discuss them respectively.

By saying morphological record does not exist, we mean that a token from user
input does not have a query result into morphological database. This can be quite
common, especially when dealing with proper nouns. If it is this case, then a special
default morphological record is used, which represents all tokens not in the morpho-
logical database for each part of speech tag.

In the second situation, “syntactic item does not exist”, when a morphological
record is passed to the interface for syntactic searching, if query returns no result,
then the next step could not be taken, because of lack of information. In this case,
the grammar viewer should return a special default syntactic item instead, which is
designed for those unseen words in syntactic database, and has a default set of trees
and features. It does not always yield good result, but is the best we could do.

In the last case, “syntactic item exists but does not match”, we are in a situa-
tion very similar to the previous one. The major difference is that query to syntac-
tic database does return something, but after comparing morphological information
against their syntactic item identifiers (i.e. ENTRY and POS), there is not even one
item that matches, and therefore the result is empty. To deal with this, the most
straightforward method is to disable POS comparisons, matching only on the words.
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Figure 17. GUI to view the elementary trees in the XTAG grammar.

6. Graphical User Interface Design

Graphical User Interface (GUI), or called the front end, or the client, is the part that
interacts with users, collecting user input and feedback, and encapsulates them into
requests that will be sent to the server. The backend and GUI have complementary
functionalities. In Section 5, we have seen that large portion of the backend contributes
to its data processing ability. In this section, we will present knowledge about the GUI
part of the grammar viewer.

The GUI is implemented using the Python GUI package Tkinter and uses addi-
tional helper functions from NLTK. The most useful feature of a GUI windows inter-
face is that users can see the elementary TAG trees drawn on the canvas, and interact
with them.

6.1. Window Layout

The main window layout is illustrated by Figure 17. It is divided into five sections,
each being specialized for one or several similar purposes. The five sections are re-
sponsible for searching (the top), tree listing (middle-left), tree and feature drawing
(middle-right), feature matching, displaying control (bottom), and status report (sta-
tus bar) respectively.

On the top of the window, there are three buttons, one text box, and one drop-
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down list. They help users to do both forward searching and backward searching.
More specifically, the left half is used for forward searching, while the right half is
used for backward searching. In order to do forward searching, users need to enter
the word or phrase into the textbox, and then click “Search” button. After the backend
has finished processing data, the result will be shown on the list box. After searching,
if the user wants to restore the list box to the starting state, just click “Show All” but-
ton, and the list box will be redrawn to show all available trees and tree families. For
backward searching, users could select from the dropdown list on the right part when
there is a tree drawn on the canvas, and the list will be filled with all possible words
and phrases that could be used to lexicalize the current displaying tree. Choose one
word in the dropdown list and click “Select”, then the word will be selected, and the
effect is same as entering the selected word into the textbox and then click “Search”.

On the middle left of the window, there is a list box. After application startup,
the list box simply lists out all trees and tree families in a hierarchical manner, with
tree file name being the first level label, and individual trees being the second level.
If users would like to explore tree repository without lexicalizing any of them, they
could began their journey from here. If the content of the list box has been changed
due to a previous searching, users could restore it to the initial state by click the “Show
All” button on the top of the window.

The middle right part of the window is the canvas dedicated to drawing trees and
feature structures. If there are comments recorded in tree database, then they will
also be drawn. The content on the canvas will change in response if user selects tree
from the list box.

The bottom of the window is responsible for controlling feature structure display.
There are five buttons and one textbox. The “Add Start Features” button on the left
is used to attach the start feature in configuration file to the root node as its top fea-
ture. And the “Hide Features/Show Features” button is used to control whether to
draw feature structure on the canvas. The three other buttons along with the textbox
is used to match features on the current tree. The matching algorithm is presented in
Section 5. The matching pattern is a regular expression that conforms to Python’s re
library, and we have three options: keep those matched, remove those matched, or
simply highlight those matched. These three options correspond to the three buttons
respectively.

A status report is shown in the status bar. In the current version we only dis-
play number of trees and tree families. However, future developers could in addition
choose report the status of the morphological database, syntactic database and the
feature template database.
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Figure 18. GUI to view lexicalized elementary trees in the XTAG grammar.

7. Conclusion

In this paper, we have described a Python-based interface for wide coverage Lex-
icalized Tree-adjoining Grammars. The grammars are part of the XTAG Grammar
project and we hope that by providing an easy to use API to use these grammars that
these grammars can be used for various NLP projects. We plan to incorporate our
grammar viewer and the associated XTAG grammars for English and Korean into the
Python Natural Language Toolkit (NLTK, http://www.nltk.org/).
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