
The Prague Bulletin of Mathematical Linguistics
NUMBER 102 OCTOBER 2014 37–46

The Machine Translation Leaderboard

Matt Post, Adam Lopez
Human Language Technology Center of Excellence, Johns Hopkins University

Abstract
Much of an instructor’s time is spent on the management and grading of homework. We

present the Machine Translation Leaderboard, a platform for managing, displaying, and au-
tomatically grading homework assignments. It runs on Google App Engine, which provides
hosting and user management services. Among its many features are the ability to easily define
new assignments, manage submission histories, maintain a development / test set distinction,
and display a leaderboard. An entirely new class can be set up in minutes with minimal con-
figuration. It comes pre-packaged with five assignments used in a graduate course on machine
translation.

1. Introduction

Much of an instructor’s time is spent on the management and grading of home-
work. For many types of learning, such as the grading of essays, this time is a neces-
sary and critical component of the learning process. But there are also many types of
assignments that are easily automatable. Time spent grading them, and in managing
assignment infrastructure (whether physical or digital), are drains on the instructor’s
limited resources which could be better spent elsewhere.

For homework assignments in the data sciences, grading can be automated us-
ing sites like kaggle.com, where students can upload solutions to empirical problems
posed by instructors. Unfortunately, kaggle does not allow instructors to use custom
evaluation measures, which makes it a poor fit for fields like machine translation that
use idiosyncratic, domain-specific metrics.

To help with this, we present the Machine Translation Leaderboard (MTL), a plat-
form for managing, displaying, and automatically grading homework assignments.
It runs on Google App Engine, which provides hosting, authentication, and user

© 2014 PBML. Distributed under CC BY-NC-ND. Corresponding author: post@cs.jhu.edu
Cite as: Matt Post, Adam Lopez. The Machine Translation Leaderboard. The Prague Bulletin of Mathematical
Linguistics No. 102, 2014, pp. 37–46. doi: 10.2478/pralin-2014-0012.

kaggle.com
http://creativecommons.org/licenses/by-nc-nd/3.0/

PBML 102 OCTOBER 2014

management services tied to a Google account. Students use a web interface to up-
load the results of their assignments (not code), which are then automatically graded
and displayed. Among the MTL’s many features are the ability to easily define new
assignments, manage student submissions and submission histories, automatically
grade them, maintain a development / test set distinction, and display a competitive
leaderboard. An entirely new class can be setup in minutes, with minimal configura-
tion. Packaged with the MTL are five assignments: alignment, decoding, evaluation,
reranking, and inflection. Each of these assignments includes baseline (default) out-
puts and upper bounds, and provides ample room for improvement on their metrics
through student exploration of both standard and novel approaches to these classic
machine translation problems.

The MTL served as the foundation of a combined graduate and undergraduate
course in machine translation, taught by the authors at Johns Hopkins University in
the spring of 2014. The time we saved allowed us to focus on other aspects of teaching,
including a course emphasis on scientific writing.

2. Quick-Start Guide

A new class with the default set of assignments can be setup in minutes, with
minimal configuration.

1. Create an account at appengine.google.com
2. Create a new application. The name (“Application Identifier”) you choose will

become part of the URL for your class, e.g., “leaderboard” will result in a class
URL of leaderboard.appspot.com. We will use the variable $APPID to refer to
your choice.

3. Install the Google App Engine SDK for Python from
https://developers.google.com/appengine/downloads

4. Clone the repository

$ git clone https://github.com/mjpost/leaderboard.git
$ cd leaderboard

5. Edit app.yaml, changing the value of the “application” key to the identifier you
chose above

application: $APPID

6. Deploy.

$ appcfg.py --oauth2 update .

38

appengine.google.com
leaderboard.appspot.com
https://developers.google.com/appengine/downloads

M. Post, A. Lopez The Machine Translation Leaderboard (37–46)

The first time you do this, a web browser window will open, prompting you to
authenticate.

You can now access the leaderboard interface for uploading assignment results
by loading your course’s base URL ($APPID.appspot.com), and you can access the
leaderboard itself at $APPID.appspot.com/leaderboard.html.

2.1. Administrative accounts

By default, the Google account used to create and host the leaderboard is the ad-
ministrative account. This account has the following special permissions:

• Viewing submissions from all students, regardless of their privacy settings.
• Viewing scores for all submissions on hidden test data.
• Submitting baseline, default, and oracle entries.
• Accessing back-end administration.
You may wish to grant administrative permission to co-instructors and TAs:
1. Navigate to the back-end administration page:

appengine.google.com/dashboard?&app_id=s~$APPID
2. From the navigation menu, click on “Permissions” under “Administration”
3. Add the Google accounts of your colleagues

2.2. Setting Deadlines

By default, only the first assignment is enabled, and its deadline has already passed.
To enable assignments, you must do three things:

1. Uncomment the assignment’s scorer in the file leaderboard.py.

scorer = [
scoring.upload_number,
scoring.alignment,
scoring.decode,
scoring.evaluation,
scoring.rerank,
scoring.inflect,

]

2. Adjust the assignment’s due date. Edit scoring/upload_number.py and set the
value of the deadline variable:

deadline = datetime.datetime(2014, 07, 17, 23, 59)

3. Deploy the changes:

39

$APPID.appspot.com
$APPID.appspot.com/leaderboard.html
appengine.google.com/dashboard?&app_id=s~$APPID

PBML 102 OCTOBER 2014

$ appcfg.py --oauth2 update .

2.3. The Leaderboard

Visit $APPID.appspot.com/leaderboard.html to view the leaderboard. It displays
a grid whose columns are assignments and whose rows are student entries. The rows
are sorted from best to worst according to the most recent assignment.

Note that students have the option to hide their results from the leaderboard. This
settings only hides their results from other students; accessed from an administrative
account, the leaderboard displays everyone’s results, denoting hidden students with
strikeout text. Therefore, if you are displaying the leaderboard on a project, be sure
to logout from your appspot.com account before accessing the leaderboard.

3. Modifying and Creating Assignments

3.1. Data Model and API

We have pre-packaged five assignments with the leaderboard, but it is easy to add
new assignments. Before doing so, it is useful to understand the basic data model and
API implemented in leaderboard.py. It defines two types of database records using
Google’s NDB (entity database) API. The first is a Handle record, which corresponds
to a user that appears on the leaderboard.

class Handle(ndb.Model):
user = ndb.UserProperty() # handle with no user belongs to admins
leaderboard = ndb.BooleanProperty()
handle = ndb.TextProperty()
submitted_assignments = ndb.BooleanProperty(repeated=True)

Handles are managed by the leaderboard code and need not be modified by as-
signment code. New assignment types are more likely to interact with the Assign-
ment record, which corresponds to a single student submission for an assignment.

class Assignment(ndb.Model):
handle = ndb.KeyProperty()
number = ndb.IntegerProperty()
filename = ndb.StringProperty()
filedata = ndb.BlobProperty()
score = ndb.FloatProperty()
test_score = ndb.FloatProperty()

40

$APPID.appspot.com/leaderboard.html
appspot.com

M. Post, A. Lopez The Machine Translation Leaderboard (37–46)

percent_complete = ndb.IntegerProperty()
timestamp = ndb.DateTimeProperty(auto_now_add=True)

When a student uploads a solution to an assignment, the leaderboard code sets
several of these fields, including handle, number, filename, filedata, and timestamp.
An assignment will mostly interact with score, test_score, and percent_complete.
Rather than modify these fields directly, it is preferred to modify them through a
callback function that each new assignment type must provide with the following
signature:

def score(data, assignment_key, test=False)

When a student uploads their results, this function is invoked twice: once with
test=False and once with test=True, to provide development and test set scores,
respectively. Each call provides the full contents of the uploaded file in the data
field and the NDB key of the new assignment record in the assignment_key field.
Although the callback may use this key to update the score or test_score fields di-
rectly, this is not the preferred way to update scores. Instead, score(...) should
return it as the first value of a two-element tuple that the caller expects. The second
element of the tuple is used to update percent_complete of the Assignment record.
So, if an assignment can be scored quickly, the correct behavior is to simply return
(s, 100), where s is the computed score.

However, in special cases computing an assignment’s score may require some time
to compute, and the leaderboard provides functionality to handle this. In this case,
the score(...) callback may return (float("-inf"), 0), to indicate that the score
has not yet been computed. The callback should then invoke a new background task
to complete the scoring behavior, and this function should update percent_complete
periodically until the score is computed. The leaderboard uses this information to dis-
play a progress bar to the student. An example can be found in scoring/decode.py.

3.2. Pre-packaged Assignments

The Leaderboard comes pre-packaged with five assignments. Instructions for each
assignment appear on our course webpages (http://mt-class.org/jhu/), under the
Homework tab.

3.2.1. Assignment 1: Align

In this assignment, the input is a parallel text and students must produce word-
to-word alignments.1 The pre-packaged version of the assignment scores alignments

1http://mt-class.org/jhu/hw1.html

41

http://mt-class.org/jhu/
http://mt-class.org/jhu/hw1.html

PBML 102 OCTOBER 2014

Table 1. List of included assignments. All file locations are relative to the scoring
subdirectory.

Assignment Description File
Setup Make sure everything is working upload_number.py
Alignment Implement a word aligner alignment.py
Decoding Maximize the model score of a decoder decode.py
Evaluation Choose the better of MT system outputs evaluation.py
Reranking Rerank k-best lists by adjusting feature

weights
rerank.py

Inflection Choose the appropriate inflection for
each of a sequence of lemmas

inflect.py

against 484 manually aligned sentences of the Canadian Hansards.2 The alignments
were developed by Och and Ney (2000), which we obtained from the shared task re-
sources organized by Mihalcea and Pedersen (2003). We use the first 37 sentences of
the corpus as development data and the remaining 447 as test. The scorer is imple-
mented in scoring/alignment.py with data in scoring/alignment_data. To score
against a different dataset, simply change the data files.

3.2.2. Assignment 2: Decode

In this assignment, the input is a fixed translation model and a set of input sen-
tences, students and they must produce translations with high model score.3 The
model we provide is a simple phrase-based translation model (Koehn et al., 2003) con-
sisting only of a phrase table and trigram language model. Under this simple model,
for a French sentence f of length I, English sentence e of length J, and alignment a
where each element consists of a span in both e and f such that every word in both
e and f is aligned exactly once, the conditional probability of e and a given f is as
follows.4

p(e, a|f) ∝
∏

⟨i,i ′,j,j ′⟩∈a

p(fi
′

i |e
j ′

j)

J+1∏
j=1

p(ej|ej−1, ej−2) (1)

To evaluate output, we compute the conditional probability of e as follows.

2http://www.isi.edu/natural-language/download/hansard/
3http://mt-class.org/jhu/hw2.html
4For simplicity, this formula assumes that e is padded with two sentence-initial symbols and one

sentence-final symbol, and ignores the probability of sentence segmentation, which we take to be uniform.

42

http://www.isi.edu/natural-language/download/hansard/
http://mt-class.org/jhu/hw2.html

M. Post, A. Lopez The Machine Translation Leaderboard (37–46)

p(e|f) ∝
∑
a

p(e, a|f) (2)

Note that this formulation is different from the typical Viterbi objective of standard
beam search decoders, which do not sum over all alignments, but approximate p(e|f)
by maxa p(e, a|f). Though the computation in Equation 2 is intractable (DeNero and
Klein, 2008), it can be computed in a few minutes via dynamic programming on rea-
sonably short sentences, a criterion met by the 48 sentences we chose from the Cana-
dian Hansards. The corpus-level probability is then the product of all sentence-level
probabilities in the data. Since this computation takes more than a few seconds, we
added functionality to the leaderboard to display a progress bar, which can be reused
by other custom scorers following the methods used in scoring/decode.py. The
corresponding datasets are in scoring/decoding_data. To score against a different
dataset, simply change the data files.

3.2.3. Assignment 3: Evaluate

In this assignment, the input is a dataset in which each sample consists of a ref-
erence sentence and a pair of translation outputs. The task is to decide which of the
translation outputs is better, or if they are of equal quality.5 Hence the task is a three-
way classification problem for each input, optionally using the reference to compute
features (which might include standard evaluation measures such as BLEU). To eval-
uate, results are compared against human assessments of the translation pairs, taken
from the 2012 Workshop on Machine Translation (Callison-Burch et al., 2012). In our
homework assignments, we also provided a training dataset for which human assess-
ments are provided so that students can train classifiers for the problem. The scorer is
implemented in scoring/evaluation.py with data in scoring/eval_data. To score
against a different dataset, simply change the data files.

3.2.4. Assignment 4: Rerank

In this assignment, the input consists of n-best lists of translations and their asso-
ciated features produced by a machine translation system on a test corpus. The task
is to select the best translation for each input sentence according to BLEU, computed
against a hidden reference sentence. The n-best lists were provided by Chris Dyer as
an entry for the Russian-English translation task in the 2013 Workshop on Machine
Translation (Bojar et al., 2013). The scorer is implemented in scoring/rerank.py, and
the corresponding datasets are in scoring/rerank_data. To score against a different
dataset, simply change the data files.

5http://mt-class.org/jhu/hw3.html

43

http://mt-class.org/jhu/hw3.html

PBML 102 OCTOBER 2014

Table 2. Assignment five (inflection) statistics.

split sentences tokens lemmas
train 29,768 518,647 35,701
dev 4,042 70,974 11,304
test 4,672 80,923 11,655

3.2.5. Assignment 5: Inflect

In this assignment, the input is a sequence of lemmatized Czech words. The task
is to choose the correct inflection for each word (reminiscent of Minkov et al. (2007)).
For example:

(1) Oba
oba‘2

tyto
tento

úkoly
úkol

jsou
být

vědecky
vědecky_(̂*1ý)

i
i-1

technicky
technicky_(̂*1ý)

mimořádně
mimořádně_(̂*1ý)

obtížné
obtížný

.

.
‘Both of these tasks are scientifically and technically extremely difficult.‘

The data comes from the Prague Dependency Treebank v2.0, which is distributed
through the Linguistic Data Consortium.6 The homework assignment7 contains in-
structions and a script to format the data directly from the LDC repository directory.

3.3. Creating New Assignments

The MT Leaderboard is easily extended with new assignments:
1. Create an entry for the assignment in list scorernear the top of leaderboard.py:

scorer = [
scoring.upload_number,
scoring.new_assignment,
scoring.alignment,
scoring.decode,
scoring.evaluation,
scoring.rerank,
scoring.inflect,

]

2. Next, create a file scoring/new_assignment.py. This file must define four vari-
ables (the assignment name, a text description of its scoring method for the

6https://catalog.ldc.upenn.edu/LDC2006T01
7http://mt-class.org/jhu/hw5.html

44

https://catalog.ldc.upenn.edu/LDC2006T01
http://mt-class.org/jhu/hw5.html

M. Post, A. Lopez The Machine Translation Leaderboard (37–46)

leaderboard header, a boolean indicating the scoring method sort order, and
the assignment deadline) and two functions, score(...) and oracle()

$ cd scoring
$ cp upload_number.py new_assignment.py
Edit new_assignment.py

3. Place any data in the directory scoring/new_assignment_data/.
That’s it. Assignments become available as soon as they are listed in the main

leaderboard.py script, and students can upload assignments as long as the deadline
hasn’t passed.

4. Case Study

In our spring 2014 class at Johns Hopkins, we received 307 submissions from 17
students over five assignments using the leaderboard as described here. Students
responded positively to the leaderboard, for instance commenting that “The imme-
diate feedback of the automatic grading was really nice”. Some students used the
leaderboard grader for a large number of experiments, which they then reported in
writeups. For further information on how we incorporated the leaderboard into our
class, empirical results, and student responses, see Lopez et al. (2013).

The MTL is only one component of a good class on machine translation. The time
we saved was put into other tasks, including an emphasis on scientific writing: Stu-
dents were required to submit a thorough ACL-style writeup of every homework as-
signment, including a description of the problem, a description of their approach, and
quantitative and qualitative analysis of their findings. These writeups were graded
carefully, and students received feedback on their writing. We also required students
to submit their code, which we manually reviewed.

5. Future Work

With the display of a leaderboard sorted by student scores against hidden devel-
opment data, the MT Leaderboard provides a competitive environment in hopes of
motivating students to experiment with different approaches. However, competition
isn’t always the best motivator; some of our students chose to hide their handles from
the leaderboard. We considered but did not implement a more cooperative approach
in which students work together to improve an oracle computed over all of their sub-
missions. For example, in the alignment setting, we could select, for each sentence,
the one with the best AER across all students, and then compute AER over the whole
set. At submission time, the student could then be shown how much their submission
increased the oracle score. This idea could also be extended to system combination,
for example, by having student submissions vote on alignment links.

45

PBML 102 OCTOBER 2014

Acknowledgements

We thank Chris Dyer for improving our assignments, and the students of our 2014
class at Johns Hopkins for testing everything out.

Bibliography

Bojar, Ondřej, Christian Buck, Chris Callison-Burch, Christian Federmann, Barry Haddow,
Philipp Koehn, Christof Monz, Matt Post, Radu Soricut, and Lucia Specia. Findings of the
2013 workshop on statistical machine translation. In Proc. of WMT, 2013.

Callison-Burch, Chris, Philipp Koehn, Christof Monz, Matt Post, Radu Soricut, and Lucia Spe-
cia. Findings of the 2012 workshop on statistical machine translation. In Proc. of WMT,
2012.

DeNero, John and Dan Klein. The complexity of phrase alignment problems. In Proc. of ACL,
2008.

Hajič, Jan, Jarmila Panevová, Eva Hajičová, Petr Sgall, Petr Pajas, Jan Štěpánek, Jiří Havelka,
Marie Mikulová, Zdeněk Žabokrtský, and Magda Ševčíková Razímová. Prague Depen-
dency Treebank 2.0. LDC2006T01, Linguistic Data Consortium, Philadelphia, PA, USA,
ISBN 1-58563-370-4, Jul 2006, 2006. URL http://ufal.mff.cuni.cz/pdt2.0/.

Koehn, Philipp, Franz J. Och, and Daniel Marcu. Statistical phrase-based translation. In Proc.
of NAACL, 2003.

Lopez, Adam, Matt Post, Chris Callison-Burch, , Jonathan Weese, Juri Ganitkevitch, Narges
Ahmidi, Olivia Buzek, Leah Hanson, Beenish Jamil, Matthias Lee, Ya-Ting Lin, Henry Pao,
Fatima Rivera, Leili Shahriyari, Debu Sinha, Adam Teichert, Stephen Wampler, Michael
Weinberger, Daguang Xu, Lin Yang, and Shang Zhao. Learning to translate with products
of novices: a suite of open-ended challenge problems for teaching MT. Transactions of the
Association for Computational Linguistics, (1):165–178, 2013.

Mihalcea, Rada and Ted Pedersen. An evaluation exercise for word alignment. In Proc. on
Workshop on Building and Using Parallel Texts, 2003.

Minkov, Einat, Kristina Toutanova, and Hisami Suzuki. Generating complex morphology for
machine translation. In Proceedings of the 45th Annual Meeting of the Association of Computa-
tional Linguistics, volume 45, pages 128–135, 2007.

Och, Franz Josef and Hermann Ney. Improved statistical alignment models. In Proc. of ACL,
2000.

Address for correspondence:
Matt Post
post@cs.jhu.edu
Human Language Technology Center of Excellence
Johns Hopkins University
810 Wyman Park Drive
Baltimore, MD 21211

46

http://ufal.mff.cuni.cz/pdt2.0/

	Introduction
	Quick-Start Guide
	Administrative accounts
	Setting Deadlines
	The Leaderboard

	Modifying and Creating Assignments
	Data Model and API
	Pre-packaged Assignments
	Assignment 1: Align
	Assignment 2: Decode
	Assignment 3: Evaluate
	Assignment 4: Rerank
	Assignment 5: Inflect

	Creating New Assignments

	Case Study
	Future Work

