
The Prague Bulletin of Mathematical Linguistics
NUMBER 102 OCTOBER 2014 17–26

A Fast and Simple Online Synchronous Context
Free Grammar Extractor

Paul Baltescu, Phil Blunsom
University of Oxford, Department of Computer Science

Abstract
Hierarchical phrase-based machine translation systems rely on the synchronous context

free grammar formalism to learn and use translation rules containing gaps. The grammars
learned by such systems become unmanageably large even for medium sized parallel corpora.
The traditional approach of preprocessing the training data and loading all possible translation
rules into memory does not scale well for hierarchical phrase-based systems. Online grammar
extractors address this problem by constructing memory efficient data structures on top of the
source side of the parallel data (often based on suffix arrays), which are used to efficiently match
phrases in the corpus and to extract translation rules on the fly during decoding. This paper
describes an open source implementation of an online synchronous context free grammar ex-
tractor. Our approach builds on the work of Lopez (2008a) and introduces a new technique for
extending the lists of phrase matches for phrases containing gaps that reduces the extraction
time by a factor of 4. Our extractor is available as part of the cdec toolkit1 (Dyer et al., 2010).

1. Introduction

Grammar extraction is the part of a machine translation pipeline responsible for
finding the set of applicable translation rules in a word-aligned parallel corpus. Every
time a machine translation system receives a sentence as input, the extractor is queried
for the set of translation rules that match subphrases of the given sentence. The overall
translation time depends on the extractor’s ability to efficiently identify these rules.
This paper introduces a fast and simple grammar extractor for hierarchical phrase
based translation systems.

1Our code is available here: https://github.com/redpony/cdec/tree/master/extractor.

© 2014 PBML. Distributed under CC BY-NC-ND. Corresponding author: paul.baltescu@cs.ox.ac.uk
Cite as: Paul Baltescu, Phil Blunsom. A Fast and Simple Online Synchronous Context Free Grammar Extractor.
The Prague Bulletin of Mathematical Linguistics No. 102, 2014, pp. 17–26. doi: 10.2478/pralin-2014-0010.

https://github.com/redpony/cdec/tree/master/extractor
http://creativecommons.org/licenses/by-nc-nd/3.0/

PBML 102 OCTOBER 2014

The traditional approach to grammar extraction is achieved with the help of phrase
tables, dictionary-like data structures that map all the source phrases in the training
corpus to their target side candidates. Phrase tables are generated in a preprocessing
step, by iterating over each sentence in the word-aligned parallel corpus and extract-
ing all phrase pairs up to a fixed width, such that a translation rule contains a word
only if it also contains all the words aligned to it (Och and Ney, 2004). Phrase tables
have been designed with phrase-based systems in mind (Koehn et al., 2003; Och and
Ney, 2004), where the number of extractable phrase pairs is linear in the phrase width
parameter. Even so, loading all the translation rules into memory can be problematic
for large corpora or in memory constrained environments (mobile devices, commod-
ity machines, etc.).

Hierarchical phrase-based translation systems (Chiang, 2007) learn and use trans-
lation rules containing gaps. For such systems, the number of extractable translation
rules is exponential in the phrase width parameter. As a result, the grammars learned
by hierarchical phrase-based systems are too large to fit in memory for almost all rel-
evant setups. A naive solution is to filter the phrase tables and remove all translation
rules that are not applicable for a given test set, but this approach does not scale to
unseen sentences which are to be expected by any machine translation application.

Several memory efficient alternatives to phrase tables have been proposed. Zens
and Ney (2007) store phrase tables on disk organized in a prefix tree data structure for
efficient read access. Callison-Burch et al. (2005) and Zhang and Vogel (2005) intro-
duce a phrase extraction technique based on suffix arrays which extracts translation
rules on the fly during decoding. Lopez (2007) shows how online extractors based
on suffix arrays can be extended to handle phrases with gaps. These two approaches
have comparable lookup times despite the fact that the former has a better asymptotic
complexity (constant vs. logarithmic) because slower disk reads are involved. In most
scenarios, the suffix array approach is preferred (e.g. Schwartz and Callison-Burch
(2010)) because it yields several benefits. The phrase width limitation for translation
rules is no longer required as it has no effect on the memory footprint of the precom-
puted data structures. Also, less time is spent when tuning translation models, as
the precomputed data structures need not be constructed again when new scoring
features are added.

The remainder of this paper describes our suffix array based grammar extractor
for hierarchical phrase-based systems. Section 2 reviews how suffix arrays are used
for contiguous phrase extraction (Lopez, 2008a). Section 3 introduces our new tech-
nique for extracting phrases with gaps. Section 4 briefly covers the intended usage for
our tool and discusses other implementation specific details which might make our
tool appealing to the research community. Section 5 concludes the paper with a set
of experiments demonstrating the benefits of the novel technique introduced in this
paper and other speed gains obtained as a result of careful implementation.

18

Paul Baltescu, Phil Blunsom SCFG Grammar Extraction (17–26)

2. Grammar extraction for contiguous phrases

A suffix array (Manber and Myers, 1990) is a memory efficient data structure which
can be used to efficiently locate all the occurrences of a pattern, given as part of a
query, in some larger string (referred to as text in the string matching literature, e.g.
Gusfield (1997)). A suffix array is simply the list of suffixes in the text string sorted
in lexicographical order. A suffix is encoded by its starting position and the overall
size of the suffix array is linear in the size of text string. A crucial property of suffix
arrays is that all suffixes starting with a given prefix form a compact interval within
the suffix array.

Suffix arrays are well suited to solve the central problem of contiguous phrase ex-
traction: efficiently matching phrases against the source side of the parallel corpus.
Once all the occurrences of a certain phrase are found, candidate translation rules are
extracted from a subsample of phrase matches. The rule extraction algorithm (Och
and Ney, 2004) is linear in the size of the phrase pattern and adds little overhead to
the phrase matching step.

Before a suffix array can be applied to the phrase matching problem, the source
side of the parallel corpus is preprocessed as follows: first, words are replaced with
numerical ids and then all sentences are concatenated together into a single array. The
suffix array is constructed from this array. In our implementation, we use a memory
efficient suffix array construction algorithm proposed by Larsson and Sadakane (2007)
having O(N logN) time complexity. The memory requirements of the suffix array are
linear in the size of the training data.

The algorithm for finding the occurrences of a phrase in the parallel corpus uses
binary search to locate the interval of suffixes starting with that phrase pattern in the
suffix array. Let w1, w2, . . . , wK be the phrase pattern. Since a suffix array is a sorted
list of suffixes, we can binary search the interval of suffixes starting with w1. This
contiguous subset of suffix indices continues to be lexicographically sorted and bi-
nary search may be used again to find the subinterval of suffixes starting with w1, w2.
However, all suffixes in this interval are known to start with w1, so it is sufficient to
base all comparisons on only the second word in the suffix. The algorithm is repeated
until the whole pattern is matched successfully or until the suffix interval becomes
empty, implying that the phrase does not exist in the training data. The complexity
of the phrase matching algorithm is O(K logN). We note that w1, . . . , wK−1 is a sub-
phrase of the input sentence as well and the extractor applies the phrase matching
algorithm for w1, . . . , wK−1 as part of a separate query. Matching w1, . . . , wK−1 exe-
cutes the first K−1 steps of the phrase matching algorithm for w1, . . . , wK. Therefore,
the complexity of the matching algorithm can be reduced to O(logN) per phrase, by
caching the suffix array interval found when searching for w1, . . . , wK−1 and only
executing the last step of the algorithm for w1, . . . , wK.

Let M be the length of a sentence received as input by the decoder. If the decoder
explores the complete set of contiguous subphrases of the input sentence, the suffix

19

PBML 102 OCTOBER 2014

array is queried O(M2) times. We make two trivial observations to further optimize
the extractor by avoiding redundant queries. These optimizations do not lead to major
speed-ups for contiguous phrase extraction, but are important for laying the founda-
tions of the extraction algorithm for phrases containing gaps. First, we note that if
a certain subphrase of the input sentence does not occur in the training corpus, any
phrase spanning this subphrase will not occur in the corpus as well. Second, phrases
may occur more than once in a test sentence, but all such repeating occurrences share
the same matches in the training corpus. We add a caching layer on top of the suffix
array to store the set of phrase matches for each queried phrase. Before applying the
pattern matching algorithm for a phrasew1, . . . , wK, we verify if the cache does not al-
ready contain the result for w1, . . . , wK and check if the search for w1, . . . , wK−1 and
w2, . . . , wK returned any results. The caching layer is implemented as a prefix tree
with suffix links and constructed in a breadth first manner so that shorter phrases are
processed before longer ones (Lopez, 2008a).

3. Grammar extraction for phrases with gaps

Synchronous context free grammars are the underlying formalism which enable
hierarchical translation systems to use translation rules containing gaps. For a de-
tailed introduction to synchronous context free grammars in machine translation see
Lopez (2008b). In this section, we present an algorithm for extracting synchronous
context free rules from a parallel corpus, which requires us to adapt the phrase ex-
traction algorithm from Section 2 to work for discontiguous phrases.

Let us make some notations to ease the exposition of our phrase extraction algo-
rithm. Leta, b and c be words in the source language, X a non-terminal used to denote
the gaps in translation rules and α and β source phrases containing zero or more oc-
currences of X. Let Mα be the set of matches of the phrase α in the source side of the
training corpus, where a phrase match is defined by a sequence of indices marking
the positions where the contiguous subphrases of α are found in the training data.
Our goal is to find Mα for every phrase α. Section 2 shows how to achieve this if X
does not occur in α.

Let us consider the case when α contains at least one non-terminal. If α = Xβ

or α = βX, then Mα = Mβ, because the phrase matches are defined only in terms
of the indices where the contiguous subpatterns match the training data. The words
spanned by the leading or trailing non-terminal are not relevant because they do not
appear in the translation rule. Since |β| < |α|, Mβ is already available in the cache as
a consequence of the breadth first search approach we use to compute the sets M.

The remaining case is α = aβc, where both Maβ and Mβc have been computed
at a previous step. We take into consideration two cases depending on whether the
next-to-last symbol of α is a terminal or not (i.e. α = aβbc or α = aβXc, respec-
tively). In the former case, we calculate Mα by iterating over all the phrase matches
in Maβb and selecting those matches that are followed by the word c. In the sec-

20

Paul Baltescu, Phil Blunsom SCFG Grammar Extraction (17–26)

ond case, we take note of the experimental results of Lopez (2008a) who shows that
translation rules that span more than 15 words have no effect on the overall quality
of translation. In our implementation, we introduce a parameter max_rule_span for
setting the maximum span of a translation rule. For each phrase match in MaβX, we
check if any of the following max_rule_spanwords is c (subject to sentence boundaries
and taking into account the current span of aβX) and insert any new phrase matches
in Mα accordingly. Note that Mα can also be computed by considering two cases
based on the second symbol in α (i.e. α = abβc or α = aXβc) and by searching the
word a at the beginning of the phrase matches in Mbβc or MXβc. In our implemen-
tation, we consider both options and apply the one that is likely to lead to a smaller
number of comparisons. The complexity of the algorithm for computing Mα=aβc is
O(min(|Maβ|, |Mβc|)).

Lopez (2007) presents a similar grammar extraction algorithm for discontiguous
phrases, but the complexity for computing Mα is O(|Maβ| + |Mβc|). Lopez (2007)
introduces a separate optimization based on double binary search (Baeza-Yates, 2004)
of time complexity O(min(|Maβ|, |Mβc|) log max(|Maβ|, |Mβc|)), designed to speed
up the extraction algorithm when one of the lists is much shorter than the other. Our
approach is asymptotically faster than both algorithms. In addition to this, we do not
require the listsMα to be sorted, allowing for a much simpler implementation. (Lopez
(2007) needs van Emde Boas trees and an inverted index to efficiently sort these lists.)

The extraction algorithm can be optimized by precomputing an index for the most
frequent discontiguous phrases (Lopez, 2007). To construct the index, we first need to
identify the set of the most frequent K contiguous phrases in the training data, where
K is an argument for our extraction tool. We use the LCP array (Manber and Myers,
1990), an auxiliary data structure constructed in linear time from a suffix array (Kasai
et al., 2001), to find all the contiguous phrases in the training data that occur above a
certain frequency threshold. We add these phrases to a max-heap together with their
frequencies and extract the most frequent K contiguous patterns. We iterate over the
source side of the training data and populate the index with all the discontiguous
phrases of the form uXv and uXvXw, where u, v and w are amongst the most frequent
K contiguous phrases in the training data.

4. Usage and implementation details

Our grammar extractor is designed as a standalone tool which takes as input a
word-aligned parallel corpus and a test set and produces as output the set of transla-
tion rules applicable to each sentence in the test set. The extractor produces the output
in the format expected by the cdec decoder, but the implementation is self-contained
and easily extendable to other hierarchical phrase-based translation systems.

Our tool performs grammar extraction in two steps. The preprocessing step takes
as input the parallel corpus and the file containing the word alignments and writes to
disk binary representations of the data structures needed in the extraction step: the

21

PBML 102 OCTOBER 2014

symbol table, the source suffix array, the target data array, the word alignment, the
precomputed index of frequent discontiguous phrases and a translation table storing
estimates for the conditional word probabilities p(s|t) and p(t|s), for every source
word s and target word t collocated in the same sentence pair in the training data.
The translation probabilities are required for the scoring features in the extraction
step. The output of the preprocessing step is written to disk in a directory specified
by the user. A configuration file is also produced to reduce the number of parameters
the user has to provide to the extraction step. The preprocessed data structures can
be reused when extracting grammars for different test sets. The extraction step takes
as input the precomputed data structures and a test corpus and produces a set of
grammar files containing the applicable translation rules for each sentence in the test
set. Note that our extraction tool expects the entire test corpus as input only to match
the intended overall usage of the cdec pipeline and that the tool itself at no point takes
advantage of the fact that the whole test corpus is known in advance.

Our extractor is written in C++. Compiling the code yields two binaries, sacompile
and extract, corresponding to the two steps described above. sacompile takes the
following parameters:

• --help: Prints a list of available options.
• --source: The path to the file containing the source side of the parallel corpus,

one sentence per line.
• --target: The path to the file containing the target side of the parallel corpus,

one sentence per line.
• --bitext: The path to the parallel corpus, one pair of sentences per line. The

expected format is source_sentence ||| target_sentence. This parameter
needs to be set only if --source and --target are not provided.

• --alignment: The path to the word alignment file. The expected format is the
same as the one used by tools like cdec or Moses 2.

• --output: The directory where the binary representations are written.
• --config: The path where the config file will be created.
• --max_rule_span: The maximum number of words spanned by a rule.
• --max_symbols: The maximum number of symbols (words and non-terminals

symbols) in the source side of a rule.
• --min_gap_size: The minimum number of words spanned by a non-terminal.
• --frequent: The number of frequent contiguous phrases to be extracted for the

construction of the precomputed index.
• --super_frequent: The number of super frequent contiguous phrases to be

used in the construction of the precomputed index (a subset of the contiguous
phrases extracted with the --frequent parameter). Discontiguous phrases of
the form uXvXw are added to the index only if either both u and v or v and w

are super-frequent.

2More details here: http://www.cdec-decoder.org/guide/fast_align.html

22

http://www.cdec-decoder.org/guide/fast_align.html

Paul Baltescu, Phil Blunsom SCFG Grammar Extraction (17–26)

• --min_frequency: The minimum number of times a phrase must occur in the
corpus to be considered a candidate for the set of most frequent phrases.

• --max_phrase_len: The maximum number of words spanned by a frequent con-
tiguous phrase.

The extract binary takes the following parameters:
• --help: Prints a list of available options.
• --config: The path to the configuration file produced by the preprocessing step.
• --grammars: The directory where the files containing the translation rules for

each sentence are written.
• --threads: The number of threads used for parallel extraction.
• --max_rule_span: The maximum number of words spanned by a rule.
• --max_rule_symbols: The maximum number of symbols (words and non-termi-

nal symbols) in the source side of a rule.
• --min_gap_size: The minimum number of words spanned by a non-terminal.
• --max_nonterminals: The maximum number of non-terminals in a rule.
• --max_samples: A threshold on the number of phrase matches used to extract

translation rules for each phrase.
• --tight_phrases: Use tight constraints for extracting rules (Chiang, 2007).
• --leave_one_out: If the training set is used as a test set, the extractor will ignore

any phrase matches in the test sentence for which the rules are extracted.
The extract binary reads the test corpus from standard input and produces an

summary file at standard output. For both binaries, the only required parameters are
the files and directories required for input and output, while the remaining parame-
ters are initialized with sensible default values.

Our implementation leverages the benefits of a multithreaded environment to speed
up grammar extraction. The test corpus is distributed dynamically across the num-
ber of available threads (specified by the user with the --threads parameter). All the
data structures computed in the preprocessing step are immutable during extraction
and can be effectively shared across multiple threads at no additional time or mem-
ory cost. In contrast, the existing extractor (implementing Lopez (2008a)’s algorithm)
available in cdec uses a multi-process approach to parallel extraction. This is ill-suited
for memory constrained environments because the preprocessed data structures are
copied across all the processes used for extraction. As a result, the amount of memory
available will restrict the degree of parallelization that the extractor can achieve.

Our code is released together with a suite of unit tests based on the Google Test
and Google Mock frameworks. The unit tests are provided to encourage developers to
add their own features to our grammar extractor without the fear that their changes
might have unexpected consequences.

23

PBML 102 OCTOBER 2014

Implementation Time (minutes) Memory (GB)
Original cython extractor 28.518 6.4
C++ reimplementation 2.967 6.4

Current work (C++) 2.903 6.3

Table 1. Results for the preprocessing step.

Implementation Time (minutes) Memory (GB)
Original cython extractor 309.725 4.4
C++ reimplementation 381.591 6.4

Current work (C++) 75.496 5.7

Table 2. Results for the phrase extraction step.

5. Experiments

In this section, we present a set of experiments which illustrate the benefits of our
new extractor. We compare our implementation with the one available in cdec which
implements the algorithm proposed by Lopez (2008a). The existing extractor is writ-
ten in cython. In order to make the comparison fair and to prove that the speed ups
we obtain are indeed a result of our new algorithm, we also report results for an im-
plementation of Lopez (2008a)’s algorithm in C++.

For our experiments, we used the French-English data from the europarl-v7 cor-
pus, a set of 2,002,756 pairs of sentences containing a total of 104,722,300 tokens. The
training corpus was tokenized, lowercased and pairs of sentences with unusual length
ratios were filtered out using the corpus preparation scripts available in cdec3. The
corpus was aligned using fast_align (Dyer et al., 2013) and the alignments were sym-
metrized using the grow-diag-final-and heuristic. We extracted translation rules for
the newstest2012 test corpus4. The test corpus consists of 3,003 sentences and was to-
kenized and lowercased using the same scripts as the training corpus.

Table 1 shows results for the preprocessing step of the three implementations. We
note a 10-fold time reduction when reimplementing Lopez (2008a)’s algorithm in C++.
We believe this is a consequence of inefficient programming when the precomputed
index is constructed in the cython code and not a result of using different program-
ming languages. Our new implementation does not significantly outperform an effi-
cient implementation of the preprocessing step of Lopez (2008a)’s extractor because
it computes the same set of data structures.

3We followed the indications provided here: http://www.cdec-decoder.org/guide/tutorial.html.
4The test corpus is available here: http://www.statmt.org/wmt14/translation-task.html.

24

http://www.cdec-decoder.org/guide/tutorial.html
http://www.statmt.org/wmt14/translation-task.html

Paul Baltescu, Phil Blunsom SCFG Grammar Extraction (17–26)

Implementation Time (minutes) Memory (GB)
Original cython extractor 37.950 35.2
C++ reimplementation 51.700 10.1

Current work (C++) 9.627 6.1

Table 3. Results for parallel extraction using 8 processes/threads.

The second set of results (Table 2) show the running times and memory require-
ments of the extraction step. Our C++ reimplementation of Lopez (2008a)’s algorithm
is slightly less efficient than the original cython extractor, supporting the idea that
the two programming languages have roughly similar performance. We note that our
novel extraction algorithm is over 4 times faster than the original approach of Lopez
(2008a). The increased memory usage is not a real concern because it does not exceed
the amount of memory used in the preprocessing step.

Table 3 demonstrates the benefits of parallel phrase extraction. We repeated the
experiments from Table 2 using 8 processes in cython and 8 threads in C++. As ex-
pected, the running times decrease roughly 8 times. The benefits of shared-memory
parallelism are evident, our new implementation is saving 29.1 GB of memory. Our
implementation continues to use less memory than the preprocessing step even when
running in multithreaded mode.

In conclusion, this paper presents an open source implementation of a SCFG ex-
tractor integrated with cdec that is 4 times faster than the existing extractor (Lopez,
2008a) and that is better designed for parallel environments. Compared to traditional
phrase tables, our approach is considerably more memory efficient without involving
any pruning based on the test corpus, therefore scaling to unseen sentences.

Bibliography

Baeza-Yates, Ricardo A. A fast set intersection algorithm for sorted sequences. In Combinatorial
Pattern Matching, pages 400–408. Springer Berlin Heidelberg, 2004.

Callison-Burch, Chris, Colin Bannard, and Josh Schroeder. Scaling phrase-based statistical ma-
chine translation to larger corpora and longer phrases. In Proceedings of the 43rd Annual
Meeting of the Association for Computational Linguistics (ACL’05), pages 255–262, Ann Arbor,
Michigan, June 2005. Association for Computational Linguistics.

Chiang, David. Hierarchical phrase-based translation. Computational Linguistics, 33(2):201–228,
2007.

Dyer, Chris, Adam Lopez, Juri Ganitkevitch, Jonathan Weese, Ferhan Ture, Phil Blunsom, Hen-
dra Setiawan, Vladimir Eidelman, and Philip Resnik. cdec: A decoder, alignment, and
learning framework for finite-state and context-free translation models. In Proceedings of the
ACL 2010 System Demonstrations, pages 7–12, Uppsala, Sweden, July 2010. Association for
Computational Linguistics.

25

PBML 102 OCTOBER 2014

Dyer, Chris, Victor Chahuneau, and Noah A. Smith. A simple, fast, and effective reparameter-
ization of ibm model 2. In Proceedings of the 2013 Conference of the North American Chapter of
the Association for Computational Linguistics (NAACL ’13), pages 644–648, Atlanta, Georgia,
June 2013. Association for Computational Linguistics.

Gusfield, Dan. Algorithms on Strings, Trees, and Sequences: Computer Science and Computational
Biology. Cambridge University Press, New York, USA, 1997.

Kasai, Toru, Gunho Lee, Hiroki Arimura, Setsuo Arikawa, and Kunsoo Park. Linear-time
longest-common-prefix computation in suffix arrays and its applications. In Combinatorial
Pattern Matching, pages 181–192. Springer Berlin Heidelberg, 2001.

Koehn, Philipp, Franz Josef Och, and Daniel Marcu. Statistical phrase-based translation. In
Proceedings of the 2003 Conference of the North American Chapter of the Association for Compu-
tational Linguistics (NAACL ’03), pages 48–54. Association for Computational Linguistics,
2003.

Larsson, N. Jesper and Kunihiko Sadakane. Faster suffix sorting. Theoretical Computer Science,
387(3):258–272, 2007.

Lopez, Adam. Hierarchical phrase-based translation with suffix arrays. In Proceedings of the
2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational
Natural Language Learning (EMNLP-CoNLL ’07), pages 976–985, Prague, Czech Republic,
2007. Association for Computational Linguistics.

Lopez, Adam. Machine translation by pattern matching. ProQuest, 2008a.
Lopez, Adam. Statistical machine translation. ACM Computing Surveys, 40(3):1–49, 2008b.
Manber, Udi and Gene Myers. Suffix arrays: A new method for on-line string searches. In Pro-

ceedings of the First Annual ACM-SIAM Symposium on Discrete Algorithms (SODA ’90), pages
319–327. Society for Industrial and Applied Mathematics, 1990.

Och, Franz Josef and Hermann Ney. The alignment template approach to statistical machine
translation. Computational Linguistics, 30(4):417–449, 2004.

Schwartz, Lane and Chris Callison-Burch. Hierarchical phrase-based grammar extraction in
joshua. The Prague Bulletin of Mathematical Linguistics, 93(1), 2010.

Zens, Richard and Hermann Ney. Efficient phrase-table representation for machine translation
with applications to online MT and speech translation. In Proceedings of the 2007 Conference of
the North American Chapter of the Association for Computational Linguistics (NAACL ’07), pages
492–499, Rochester, New York, 2007. Association for Computational Linguistics.

Zhang, Ying and Stephan Vogel. An efficient phrase-to-phrase alignment model for arbitrarily
long phrase and large corpora. In Proceedings of the 10th Conference of the European Association
for Machine Translation (EAMT-05), pages 30–31, 2005.

Address for correspondence:
Paul Baltescu
paul.baltescu@cs.ox.ac.uk
Department of Computer Science, University of Oxford
Wolfson Building, Parks Road, Oxford, OX1 3QD, United Kingdom

26

	Introduction
	Grammar extraction for contiguous phrases
	Grammar extraction for phrases with gaps
	Usage and implementation details
	Experiments

