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Abstract
This paper presents an open source implementation1 of a neural language model for ma-

chine translation. Neural language models deal with the problem of data sparsity by learning
distributed representations for words in a continuous vector space. The language modelling
probabilities are estimated by projecting a word’s context in the same space as the word repre-
sentations and by assigning probabilities proportional to the distance between the words and
the context’s projection. Neural language models are notoriously slow to train and test. Our
framework is designed with scalability in mind and provides two optional techniques for re-
ducing the computational cost: the so-called class decomposition trick and a training algorithm
based on noise contrastive estimation. Our models may be extended to incorporate direct n-
gram features to learn weights for every n-gram in the training data. Our framework comes
with wrappers for the cdec and Moses translation toolkits, allowing our language models to be
incorporated as normalized features in their decoders (inside the beam search).

1. Introduction

Language models are statistical models used to score how likely a sequence of
words is to occur in a certain language. They are central to a number of natural lan-
guage applications, including machine translation. The goal of a language model in
a translation system is to ensure the fluency of the output sentences.

1Our code is publicly accessible at: https://github.com/pauldb89/oxlm
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Most machine translation systems today use highly efficient implementations of
n-gram language models (Heafield, 2011; Stolcke, 2002). N-gram language models
represent the target vocabulary as a discrete set of tokens and estimate the conditional
probabilities P(wi|wi−1, . . . , wi−n) via frequency counting. Kneser-Ney smoothing
(Chen and Goodman, 1999) is typically used to ameliorate the effect of data sparsity.
Querying n-gram language models is extremely fast as the only operations involved
are hashtable or trie lookups, depending on the implementation.

Neural language models (Bengio et al., 2003) are a more recent class of language
models which use neural networks to learn distributed representations for words.
Neural language models project words and contexts into a continuous vector space.
The conditional probabilities P(wi|wi−1, . . . , wi−n) are defined to be proportional to
the distance between the continuous representation of the word wi and the context
wi−1, . . . , wi−n. Neural language models learn to cluster word vectors according to
their syntactic and semantic role. The strength of neural language models lies in their
ability to generalize to unseen n-grams, because similar words will share the proba-
bility of following a context. Neural language models have been shown to outperform
n-gram language models using intrinsic evaluation (Chelba et al., 2013; Mikolov et al.,
2011a; Schwenk, 2007) or as part of other natural language systems such as speech rec-
ognizers (Mikolov et al., 2011a; Schwenk, 2007). In machine translation, it has been
shown that neural language models improve translation quality if incorporated as
an additional feature into a machine translation decoder (Botha and Blunsom, 2014;
Vaswani et al., 2013) or if used for n-best list rescoring (Schwenk, 2010). Querying
a neural language model involves an expensive normalization step linear in the size
of the vocabulary and scaling this operation requires special attention in order for a
translation system to maintain an acceptable decoding speed.

The goal of this paper is to introduce an open source implementation of a feed
forward neural language model. As part of our implementation, we release wrap-
pers which enable the integration of our models as normalized features in the cdec
(Dyer et al., 2010) and Moses (Koehn et al., 2007) decoders. Our framework is designed
with scalability in mind and provides two techniques for speeding up training: class-
based factorization (Morin and Bengio, 2005) and noise contrastive estimation (Mnih
and Teh, 2012). The class decomposition trick is also helpful for reducing the cost
of querying the language model and allows a decoder incorporating our feature to
maintain an acceptable decoding speed. In addition to this, our framework option-
ally extends neural language models by incorporating direct n-gram features (similar
to Mikolov et al. (2011a)).

2. Related work

In this section, we briefly analyze three open source neural language modelling
toolkits. We discuss how each implementation is different from our own and show
where our approach has additional strengths.
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CSLM (Schwenk, 2010) is an open source toolkit implementing a continuous space
language model which has a similar architecture to our own. CSLM employs a short-list
to reduce the computational cost of the normalization step. A short-list contains the
most frequent words in the training corpus. Schwenk (2010) reports setting the size of
the short-list to 8192 or 12288 words. The continuous space language model is used to
predict only the words in the short-list, while the remaining words are scored using a
back-off n-gram language model. We believe this optimization hurts the model where
the potential benefit is the greatest, as the strength of neural language models relies
in predicting rare words. In addition to this, CSLM may only be used to rescore n-best
lists and cannot be incorporated as a feature in a decoder.

NPLM (Vaswani et al., 2013) is another open source implementation of a neural lan-
guage model. In contrast to our implementation, Vaswani et al. (2013) do not explic-
itly normalize the values produced by their model and claim that these scores can
be roughly interpreted as probabilities. In practice, we observed that unnormalized
scores do not sum up to values close to 1 when the predicted word is marginalized
over the vocabulary. Our approach trades decoding speed for the guarantee of using
properly scaled feature values.

RNNLM (Mikolov et al., 2011b) is an open source implementation of a recurrent neu-
ral language model. Recurrent neural language models have a somewhat different
architecture where the hidden layer at step i is provided as input to the network at
step i + 1. RNNLM uses the class decomposition trick to speed up queries. The toolkit
also allows extending the language models with direct n-gram features. RNNLM has
been successfully used in speech recognition tasks (Mikolov et al., 2011a), and Auli
and Gao (2014) show that recurrent neural language models considerably improve
translation quality when integrated as an unnormalized feature into a decoder.

3. Model description

Our implementation follows the basic architecture of a log-bilinear language model
(Mnih and Hinton, 2007). We define two vector representations qw, rw ∈ RD for ev-
ery wordw in the vocabulary V . qw representsw’s syntactic and semantic role when
the word is part of the conditioning context, while rw is used to represent w’s role
as a prediction. For some word wi in a given corpus, let hi denote the conditioning
context wi−1, . . . , wi−n. To find the conditional probability P(wi|hi), our model first
computes a context projection vector:

p =

n−1∑
j=1

Cjqhij
, (1)

whereCj ∈ RD×D are position-specific transformation matrices. Our implementation
provides an optional flag which applies a component-wise sigmoid non-linearity to
the projection layer, transforming the model into one similar to Bengio et al. (2003).
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The model computes a set of similarity scores indicating how well each word w ∈ V
matches the context projection of hi. The similarity score is defined as:

ϕ(w,hi) = rTwp + bw, (2)

where bw is a bias term incorporating the prior probability ofw. The similarity scores
are transformed into a probability distribution using the softmax function:

P(wi|hi) =
exp(ϕ(wi, hi))∑
w∈V exp(ϕ(w,hi))

(3)

The complete set of parameters is (Cj, Q, R,b), where Q,R ∈ RD×|V | and b ∈ R|V |.
The model is trained using minibatch stochastic gradient descent to minimize the neg-
ative log-likelihood of the training data. L2 regularization is used to prevent overfit-
ting.

3.1. Class based factorization

The difficulty of scaling neural language models lies in optimizing the normal-
ization step illustrated in Equation 3. Our implementation relies on class based de-
composition (Morin and Bengio, 2005; Goodman, 2001) to reduce the cost of normal-
ization. We partition our vocabulary in K classes {C1, . . . , CK} using Brown clustering
(Liang, 2005; Brown et al., 1992) such thatV =

∪K
i=1 Ci and Ci∩Cj = ∅, ∀1 ≤ i < j ≤ K.

We define the conditional probability as:

P(wi|hi) = P(ci|hi)P(wi|ci, hi), (4)

where ci is the index of the class wi is assigned to, i.e. wi ∈ Cci
. We associate a

vector representation sc and a bias term tc for each class c. The class conditional
probability is computed reusing the prediction vector p by means of a scoring function
ψ(c, hi) = sTcp+ tc. Each conditional distribution is now normalized separately:

P(ci|hi) =
exp(ψ(ci, hi))∑K
j=1 exp(ψ(cj, hi))

(5)

P(wi|ci, hi) =
exp(ϕ(wi, hi))∑

w∈Cci
exp(ϕ(w,hi))

(6)

The best performance is achieved when K ≈
√

|V | and the word classes have roughly
equal sizes. In that case, the normalization cost for predicting a word is reduced from
O(|V |) to O(

√
|V |).

84



Paul Baltescu, Phil Blunsom, Hieu Hoang Neural Language Models (81–92)

3.2. Noise contrastive estimation

Training neural language models using stochastic gradient descent is slow because
the entire matrix R ∈ RD×|V | is modified with every gradient update. The class based
factorization reduces the cost of computing the gradient of R to O(D ×

√
|V |). In

our implementation, we provide an optimization for computing the gradient updates
based on noise contrastive estimation, a technique which does not involve normalized
probabilities (Mnih and Teh, 2012). Noise contrastive training can be used with or
without class based decomposition.

The key idea behind noise contrastive estimation is to reduce a density estimation
problem to a classification problem, by training a binary classifier to discriminate be-
tween samples from the data distribution and samples from a known noise distribu-
tion. In our implementation, we draw the noise samples ni from the unigram distri-
bution denoted by Pn(w). Following Mnih and Teh (2012), we use k times more noise
samples than data samples, where k is specified via an input argument. The posterior
probability that a word is generated from the data distribution given its context is:

P(C = 1|wi, hi) =
P(wi|hi)

P(wi|hi) + kPn(wi)
(7)

Mnih and Teh (2012) show that the gradient of the classification objective:

J(θ) =

m∑
i=1

logp(C = 1|θ,wi, hi) +

km∑
i=1

logp(C = 0|θ, ni, hi) (8)

is an approximation which converges to the maximum likelihood gradient as k→ ∞.
Noise contrastive estimation allows us to replace the normalization terms with model
parameters. Mnih and Teh (2012) showed that setting these parameters to 1 results
in no perplexity loss. In our implementation of noise contrastive training, we simply
ignore the normalization terms, but this optimization is not applicable at test time.

3.3. Direct n-gram features

Direct features (or connections) for unigrams were originally introduced in neural
language models by Bengio et al. (2003). Mikolov et al. (2011a) extend these features
to n-grams and show they are useful for reducing perplexity and improving word
error rate in speech recognizers. Direct n-gram features are reminiscent of maximum
entropy language models (Berger et al., 1996) and are sometimes called maximum
entropy features (e.g. in Mikolov et al. (2011a)).

The basic idea behind direct features is to define a set of binary feature functions
f(w,h) and to assign each function a weight from a real valued vector u. In our im-
plementation, we define a feature function f(w,h) for every n-gram in the training
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data, up to some order specified by an input argument. To account for word classes,
we also define a set of n-gram features gc(w,h) and a vector of weights vc for each
word cluster c. An n-gram (w,h) has a corresponding feature function gc(w,h) only
ifw ∈ Cc. To incorporate the features into our model, we update the scoring functions
as follows:

ψ(ci, hi) = sTci
p + tci

+ uT f(wi, hi) (9)
ϕ(wi, hi) = rTwi

p + bwi
+ vT

ci
gci

(wi, hi) (10)

Otherwise, our model definition remains unchanged. The weight vectors u and vc

are learned together with the rest of the parameters using gradient descent. From
the perspective of the machine translation system, the language model is extended to
learn weights for every n-gram in the training data, weights which bear a similar role
to the frequency counts used by traditional n-gram language models.

4. Implementation details

4.1. Training language models

Our language modelling framework is implemented in C++. Compiling it will re-
sult in a number of binaries. train_sgd, train_factored_sgd and train_maxent_sgd
are used for training language models, while the other binaries are useful for evalu-
ation and debugging. Due to lack of space, we will only discuss the most important
arguments provided in the training scripts. For a complete list of available options
and a short description of each, any binary may be run with the --help argument.
Examples of intended usage and recommended configurations are released together
with our code.

train_sgd is used to train neural language models without class factorization or
direct features. The binary reads the training data from the file specified via the --
input parameter. The optional --test-set parameter is used to specify the file con-
taining the test corpus. If specified, the training script computes the test set perplexity
every 1000 minibatches and at the end of every training epoch. The --model-out ar-
gument specifies the path where the language model is saved. The language model
is written to disk every time the test set perplexity reaches a new minimum. The --
order parameter specifies the order of the model, the --word-width parameter spec-
ifies the size of the distributed representations and the --lambda-lbl parameter is
the inverse of the variance for the L2 regularizer. If --noise-samples is set to 0, the
model is trained using stochastic gradient descent. Otherwise, the parameter specifies
the number of noise samples drawn from the unigram distribution for each training
instance during noise contrastive training.

Factored models are trained with the train_factored_sgd binary. In addition to
the previous arguments, this script includes the --class-file option which points
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to the files containing the Brown clusters. The expected format matches the output
format of Liang (2005)’s agglomerative clustering tool2. If the --class-file argument
is not specified, the user is required to set the --classes argument. In this case, the
word clusters are obtained using frequency binning.

Factored models incorporating direct features are trained with train_maxent_sgd.
We implement two types of feature stores for storing the weights of the n-gram fea-
tures. Sparse feature stores use identity mapping to map every n-gram with its corre-
sponding weight. Collision stores hash the n-grams to a lower dimensional space in-
stead, leading to potential collisions. If configured correctly using the --hash-space
parameter, collision stores require less memory than sparse feature stores, without
any perplexity loss. If the argument is set to 0, sparse stores are used instead. The --
min-ngram-freq argument may be used to ignore n-grams below a frequency thresh-
old, while --max-ngrams may be used to restrict the number of direct features to the
most frequent n-grams in the training data.

4.2. Feature wrappers for cdec and Moses

Our language models may be incorporated into the cdec and Moses decoders as
normalized features to score partial translation hypotheses during beam search. The
decoders often keep the conditioning context unchanged and create new translation
hypotheses by adding new words at the end of the conditioning context. We signifi-
cantly speed up decoding by caching the normalization terms to avoid recomputing
them every time a new word is added after the same context. The normalization cache
is reset every time the decoders receive a new sentence as input.

Compiling our framework results in the libcdec_ff_lbl.so shared library which
is used to dynamically load our language models as a feature in the cdec decoder. To
load the feature, a single line must be added to the decoder configuration file speci-
fying the path to the shared library, the file containing the language model and the
type of the language model (standard, factored or factored with direct features). A
complete cdec integration example is provided in the documentation released with
our code.

The feature wrapper for Moses is included in the Moses repository3. To include
our language models in the decoder, Moses must be compiled with the --with-lbllm
argument pointing to the location of the oxlm repository. The decoder configuration
file must be updated to include the feature definition, the path to the file containing
the language model and the initial feature weight. A complete example on how to
integrate our language models in Moses is provided in the documentation released
with our code.

2The tool is publicly available at: https://github.com/percyliang/brown-cluster
3The feature wrapper is accessible here: https://github.com/moses-smt/mosesdecoder/tree/

master/moses/LM/oxlm
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4.3. Optimizations

Our framework includes several smaller optimizations designed to speed up train-
ing and testing. We provide an optional --diagonal-contexts argument which in-
forms the framework to learn a model with diagonal context matrices. This optimiza-
tion significantly speeds up querying the language model and helps the training al-
gorithm converge after fewer iterations without any loss in perplexity.

Our implementation leverages the benefits of a multithreaded environment to dis-
tribute the gradient calculation during training. The training instances in a minibatch
are shared evenly across the number of available threads (specified by the user via
the --threads parameter). In our gradient descent implementation, we use adaptive
learning (Duchi et al., 2011) to converge to a better set of parameters.

We rely on Eigen, a high-level C++ library for linear algebra, to speed up the matrix
and vector operations involved in training and querying our models. Where possible,
we group together multiple similar operations to further speed up the computations.

Finally, we speed up the process of tuning the translation system feature weights
by taking advantage of the fact that the development corpus is decoded for several it-
erations with different weights. As a result, the n-grams scored by the language model
often repeat themselves over a number of iterations. We maintain sentence-specific
caches mapping n-grams to language model probabilities which are persistent be-
tween consecutive iterations of the tuning algorithm. A persistent cache is loaded
from disk when a sentence is received as input and saved back to disk when the sys-
tem has finished decoding the sentence. This optimization massively speeds up the
process of tuning the translation system and can be enabled via the --persistent-
cache flag in the decoder configuration file.

5. Experiments

In this section, we provide experimental results to illustrate the strengths of our
language modelling framework. We report perplexities and improvements in the
BLEU score when the language model is used as an additional feature in the decoder.
We also report the training times for stochastic gradient descent and noise contrastive
estimation. Finally, we compare the average time needed to decode a sentence with
our language modelling feature against a standard system using only an efficient im-
plementation of a backoff n-gram model.

In our experiments, we used the europarl-v7 and the news-commentary-v9 French-
English data to train a hierarchical phrase-based translation system (cdec). The cor-
pus was tokenized, lowercased and filtered to exclude sentences longer than 80 words
or having substantially different lengths using the preprocessing scripts available in
cdec4. After preprocessing, the training corpus consisted of 2,008,627 pairs of sen-

4We followed the indications provided here: http://www.cdec-decoder.org/guide/tutorial.html
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Model Training Training time Perplexity BLEU
algorithm (hours)

KenLM - 0.1 267.814 24.75
FactoredLM SGD 34.1 226.44 25.2
FactoredLM NCE 1 9.4 258.623 25.25
FactoredLM NCE 10 12.5 245.748 25.06
FactoredLM NCE 50 18.1 241.481 25.23

DirectFactoredLM SGD 42.0 210.275 25.46

Table 1. Training time, perplexities and BLEU scores for various models.

tences. The corpus was aligned using fast_align (Dyer et al., 2013) and the align-
ments were symmetrized using the grow-diag-final-and heuristic. We split the new-
stest20125 data evenly into a development set and a test set, by assigning sentences
to each dataset alternatively. The translation system is tuned on the development set
using MIRA. We report average BLEU scores over 3 MIRA runs.

The baseline system includes an efficient implementation (Heafield, 2011) of a 5-
gram language model (KenLM). The language models are trained on the target side
of the parallel corpus, on a total of 55,061,862 tokens. Before training the neural lan-
guage models, singletons are replaced with a special <unk> token. The neural lan-
guage model vocabulary consists of 57,782 words and is factored into 240 classes using
Brown clustering. In our experiments, we set the order of the neural language models
to 5, the dimensionality of the word representations to 200 and make use of diagonal
contexts. The standard factored language model is labelled with FactoredLM. Direct-
FactoredLM is an extension incorporating direct n-gram features. In our experiments,
we define a feature function for every n-gram (n ≤ 5) observed at least 3 times in the
training corpus. The feature weights are hashed into a collision store with a capacity
of 5 million features.

Table 1 summarizes the results of our experiments. We indicate the algorithm used
to train each neural language model. Stochastic gradient descent is denoted by SGD,
while noise contrastive estimation is denoted by NCE and followed by the number
of noise samples used for estimating the gradient for each data point. In both cases,
the gradient optimization was distributed over 8 threads and the minibatch size was
set to 10,000 data points. We note that noise contrastive estimation leads to models
with higher perplexities. However, that has no effect on the overall quality of the
translation system, while massively reducing the training time of the neural language
models. Overall, we observe a BLEU score improvement of 0.7 when a factored lan-
guage model with direct n-gram features is used in addition to a standard 5-gram
language model.

5The corpus is available here: http://www.statmt.org/wmt14/translation-task.html
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Model Decoding time (seconds)
KenLM 0.447

FactoredLM 3.356
DirectFactoredLM 6.633

Table 2. Average decoding speed.

Table 2 shows the average decoding speed with our neural language modelling
features. The average decoding time is reported on the first 100 sentences of the devel-
opment set. Overall, the neural language models slow down the decoder by roughly
an order of magnitude.

In conclusion, this paper presents an open source implementation of a neural lan-
guage modelling toolkit. The toolkit provides techniques for speeding up training and
querying language models and incorporates direct n-gram features for better trans-
lation quality. The toolkit facilitates the integration of the neural language models
as a feature in the beam search of the cdec and Moses decoders. Although our lan-
guage modelling features slow down the decoders somewhat, they guarantee that the
probabilities used to score partial translation hypotheses are properly normalized.
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