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Abstract
We present morphogen, a tool for improving translation into morphologically rich languages

with synthetic phrases. We approach the problem of translating into morphologically rich lan-
guages in two phases. First, an inflection model is learned to predict target word inflections
from source side context. Then this model is used to create additional sentence specific trans-
lation phrases. These “synthetic phrases” augment the standard translation grammars and
decoding proceeds normally with a standard translation model. We present an open source
Python implementation of our method, as well as a method of obtaining an unsupervised mor-
phological analysis of the target language when no supervised analyzer is available.

1. Introduction

Machine translation into morphologically rich languages is challenging, due to lex-
ical sparsity on account of grammatical features being expressed with morphology.
In this paper, we present an open-source Python tool, morphogen, that leverages target
language morphological grammars (either hand-crafted or learned unsupervisedly)
to enable prediction of highly inflected word forms from rich, source language syn-
tactic information.1

Unlike previous approaches to translation into morphologically rich languages,
our tool constructs sentence-specific translation grammars (i.e., phrase tables) for each
sentence that is to be translated, but then uses a standard decoder to generate the final

1https://github.com/eschling/morphogen
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translation with no post-processing. The advantages of our approach are: (i) newly
synthesized forms are highly targeted to a specific translation context; (ii) multiple
alternatives can be generated with the final choice among rules left to a standard
sentence-level translation model; (iii) our technique requires virtually no language-
specific engineering; and (iv) we can generate forms that were not observed in the
bilingual training data.

This paper is structured as follows. We first describe our “translate-and-inflect”
model that is used to synthesize the target side of lexical translations rule given its
source and its source context (§2). This model discriminates between inflectional op-
tions for predicted stems, and the set of inflectional possibilities is determined by a
morphological grammar. To obtain this morphological grammar, the user may either
provide a morphologically analyzed version of their target language training data, or
a simple unsupervised morphology learner can be used instead (§3). With the mor-
phologically analyzed parallel data, the parameters of the discriminative model are
trained from the complete parallel training data using an efficient optimization pro-
cedure that does not require a decoder.

At test time, our tool creates synthetic phrases representing likely inflections of
likely stem translations for each sentence (§4). We briefly present the results of our
system on English–Russian, –Hebrew, and –Swahili translation tasks (§5), and then
describe our open source implementation, and discuss how to use it with both user-
provided morphological analyses and those of our unsupervised morphological an-
alyzer2 (§6).

2. Translate-and-Inflect Model

The task of the translate-and-inflect model is illustrated in Figure 1 for an En-
glish–Russian sentence pair. The input is a sentence e in the source language3 to-
gether with any available linguistic analysis of e (e.g., its dependency parse). The
output f consists of (i) a sequence of stems, each denoted σ, and (ii) one morpholog-
ical inflection pattern for each stem, denoted µ.4 Throughout, we use Ωσ to denote
the set of possible morphological inflection patterns for a given stem σ. Ωσ might be

2Further documentation is available in the morphogen repository.
3In this paper, the source language is always English. We use e to denote the source language (rather

than the target language), to emphasize the fact that we are translating from a morphologically impover-
ished language to a morphologically rich one.

4When the information is available from the morphological analyzer, a stem σ is represented as a tuple
of a lemma and its inflectional class.
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она пыталась пересечь пути на ее велосипед

she had attempted to cross the road on her bike

PRP   VBD         VBN          TO    VB       DT     NN    IN  PRP$   NN

nsubj

aux

xcomp

σ:пытаться_V,+,μ:mis2sfm2e

C50   C473        C28          C8    C275   C37   C43  C82 C94   C331

root

-1 +1

Figure 1. The inflection model predicts a form for the target verb stem based on its
source attempted and the linear and syntactic source context. The inflection pattern
mis-sfm-e (main+indicative+past+singular+feminine+medial+perfective) is that of

a supervised analyzer.

defined by a grammar; our models restrict Ωσ to be the set of inflections observed
anywhere in our monolingual or bilingual training data as a realization of σ.5

We define a probabilistic model over target words f. The model assumes inde-
pendence between each target word f conditioned on the source sentence e and its
aligned position i in this sentence.6 This assumption is further relaxed in §4 when
the model is integrated in the translation system. The probability of generating each
target word f is decomposed as follows:

p(f | e, i) =
∑

σ⋆µ=f

p(σ | ei)︸ ︷︷ ︸
gen. stem

×p(µ | σ,e, i)︸ ︷︷ ︸
gen. inflection

.

Here, each stem is generated independently from a single aligned source word ei, but
in practice we use a standard phrase-based model to generate sequences of stems and
only the inflection model operates word-by-word.

2.1. Modeling Inflection

In morphologically rich languages, each stem may be combined with one or more
inflectional morphemes to express different grammatical features (e.g., case, definite-
ness, etc.). Since the inflectional morphology of a word generally expresses multiple
features, we use a model that uses overlapping features in its representation of both

5This is a practical decision that prevents the model from generating words that would be difficult for a
closed-vocabulary language model to reliably score. When open-vocabulary language models are available,
this restriction can easily be relaxed.

6This is the same assumption that Brown et al. (1993) make in, for example, IBM Model 1.
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
source aligned word ei

parent word eπi
with its dependency πi → i

all children ej | πj = i with their dependency i → j

source words ei−1 and ei+1




token
part-of-speech tag

word cluster


– are ei, eπi

at the root of the dependency tree?
– number of children, siblings of ei

Table 1. Source features φ(e, i) extracted from e and its linguistic analysis. πi

denotes the parent of the token in position i in the dependency tree and πi → i the
typed dependency link.

the input (i.e., conditioning context) and output (i.e., the inflection pattern):

p(µ | σ,e, i) =
exp

[
φ(e, i)⊤Wψ(µ) +ψ(µ)⊤Vψ(µ)

]∑
µ ′∈Ωσ

exp [φ(e, i)⊤Wψ(µ ′) +ψ(µ ′)⊤Vψ(µ ′)]
. (1)

Here, φ is an m-dimensional source context feature vector function, ψ is an n-dimen-
sional morphology feature vector function,W is an m× n parameter matrix, and V is
an n× n parameter matrix. In our implementation,φ andψ return sparse vectors of
binary indicator features, but other features can easily be incorporated.

2.2. Source Contextual Features: φ(e, i)

In order to select the best inflection of a target-language word, given the source
word it translates from and the context of that source word, we seek to leverage numer-
ous features of the context to capture the diversity of possible grammatical relations
that might be encoded in the target language morphology. Consider the example
shown in Figure 1, where most of the inflection features of the Russian word (past
tense, singular number, and feminine gender) can be inferred from the context of the
source word it is aligned to. To access this information, our tool uses parsers and other
linguistic analyzers.

By default, we assume that English is the source language and provide wrappers
for external tools to generate the following linguistic analyses of each input sentence:

• Part-of-speech tagging with a CRF tagger trained on sections 02–21 of the Penn
Treebank,

• Dependency parsing with TurboParser (Martins et al., 2010), and
• Mapping of the tokens to one of 600 Brown clusters trained from 8B words of

English text.7

7The entire monolingual data available for the translation task of the 8th ACL Workshop on Statisti-
cal Machine Translation was used. These clusters are available at http://www.ark.cs.cmu.edu/cdyer/
en-c600.gz
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From these analyses we then extract features from e by considering the aligned source
word ei, its preceding and following words, and its dependency neighbors. These
are detailed in Table 1 and can be easily modified to include different features or for
different source languages.

3. Morphological Grammars and Features

The discriminative model in the previous section selects an inflectional pattern
for each candidate stem. In this section, we discuss where the inventory of possible
inflectional patterns it will consider come from.

3.1. Supervised Morphology

If a target language morphological analyzer is available that analyses each word
in the target of the bitext and monolingual training data into a stem and vector of
grammatical features, the inflectional vector may be used directly to define ψ(µ) by
defining a binary feature for each key-value pair (e.g., Tense=past) composing the tag.
Prior to running morphogen, the full monolingual and target side bilingual training
data should be analyzed.

3.2. Unsupervised Morphology

Supervised morphological analyzers that map between inflected word forms and
abstract grammatical feature representations (e.g., +) are not available for ev-
ery language into which we might seek to translate. We therefore provide an unsu-
pervised model of morphology that segments words into sequences of morphemes,
assuming a concatenative generation process and a single analysis per type. To do so,
we assume that each word can be decomposed into any number of prefixes, a stem,
and any number of suffixes. Formally, we let M represent the set of all possible mor-
phemes and define a regular grammar M∗MM∗ (i.e., zero or more prefixes, a stem,
and zero or more suffixes). We learn weights for this grammar by assuming that the
probability of each prefix, stem, and suffix is given by a draw from a Dirichlet distri-
bution over all morphemes and then inferring the most likely analysis.

Hyperparemeters. To run the unsupervised analyzer, it is necessary to specify the
Dirichlet hyperparameters (αp, αs, αt) which control the sparsity of the inferred pre-
fix, stem, and suffix lexicons, respectively. The learned morphological grammar is
(rather unfortunately) very sensitive to these settings, and some exploration is neces-
sary. As a rule of thumb, we observe that αp, αs ≪ αt ≪ 1 is necessary to recover
useful segmentations, as this encodes that there are many more possible stems than
inflectional affixes; however the absolute magnitude will depend on a variety of fac-
tors. Default values are αp = αs = 10−6, αt = 10−4; these may be adjusted by factors
of 10 (larger to increase sparsity; smaller to decrease it).

55



PBML 100 OCTOBER 2013

Unsupervised morphology features: ψ(µ) For the unsupervised analyzer, we do
not have a mapping from morphemes to grammatical features (e.g., +past); how-
ever, we can create features from the affix sequences obtained after morphological
segmentation. We produce binary features corresponding to the content of each po-
tential affixation position relative to the stem. For example, the unsupervised analysis
wa+ki+wa+ of the Swahili word wakiwapiga will produce the following features:

Prefix[-3][wa] Prefix[-2][ki] Prefix[-1][wa].

3.3. Inflection Model Parameter Estimation

From the analyzed parallel corpus (source side syntax and target side morpho-
logical analysis), morphogen sets the parameters W and V of the inflection predic-
tion model (Eq. 1) using stochastic gradient descent to maximize the conditional log-
likelihood of a training set consisting of pairs of source sentence contextual features
(φ) and target word inflectional features (ψ). The training instances are word align-
ment pairs from the full training corpus. When morphological category information
is available, an independent model may be trained for each open-class category (e.g.,
nouns, verbs); but, by default a single model is used for all words (excluding words
shorter than a minimum length).

It is important to note here that our richly parameterized model is trained on the
full parallel training corpus, not just on the small number of development sentences.
This is feasible because, in contrast to standard discriminative translation models
which seek to discriminate good complete translations from bad complete transla-
tions, morphogen’s model must only predict how good each possible inflection of an
independently generated stem is. All experiments reported in this paper used models
trained on a single processor using a Cython implementation of the SGD optimizer.8

4. Synthetic Phrases

How is morphogen used to improve translation? Rather than using the translate-
and-inflect model directly to perform translation, we use it just to augment the set of
rules available to a conventional hierarchical phrase-based translation model (Chiang,
2007; Dyer et al., 2010). We refer to the phrases it produces as synthetic phrases. The
aggregate grammar consists of both synthetic and “default” phrases and is used by
an unmodified decoder.

The process works as follows. We use the suffix-array grammar extractor of Lopez
(2007) to generate sentence-specific grammars from the fully inflected version of the
training data (the default grammar) and also from the stemmed variant of the training

8For our largest model, trained on 3.3M Russian words, n = 231K ∗ m = 336 feature were produced,
and 10 SGD iterations at a rate of 0.01 were performed in less than 16 hours.
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Russian supervised
Verb: 1st Person

child(nsubj)=I child(nsubj)=we
Verb: Future tense

child(aux)=MD child(aux)=will
Noun: Animate

source=animals/victims/...
Noun: Feminine gender

source=obama/economy/...
Noun: Dative case

parent(iobj)
Adjective: Genitive case

grandparent(poss)

Hebrew
Suffix ים (masculine plural)

parent=NNS after=NNS
Prefix א (first person sing. + future)

child(nsubj)=I child(aux)='ll
Prefix כ (preposition like/as)

child(prep)=IN parent=as
Suffix י (possesive mark)

before=my child(poss)=my
Suffix ה (feminine mark)

child(nsubj)=she before=she
Prefix כש (when)

before=when before=WRB

Swahili
Prefix li (past)

source=VBD source=VBN
Prefix nita (1st person sing. + future)

child(aux) child(nsubj)=I
Prefix ana (3rd person sing. + present)

source=VBZ
Prefix wa (3rd person plural)

before=they child(nsubj)=NNS
Suffix tu (1st person plural)

child(nsubj)=she before=she
Prefix ha (negative tense)

source=no after=not

Figure 2. Examples of highly weighted features learned by the inflection model. We selected a
few frequent morphological features and show their top corresponding source context features.

data (the stemmed grammar). We then extract a set of translation rules that only con-
tain terminal symbols (sometimes called “lexical rules”) from the stemmed grammar.
The (stemmed) target side of each such phrase is then re-inflected using the inflection
model described above (§2), conditioned on the source sentence and its context. Each
stem is given its most likely inflection. The resulting rules are added to the default
grammar for the sentence to produce the aggregate grammar.

The standard translation rule features present on the stemmed grammar rules are
preserved, and morphogen adds the following features to help the decoder select good
synthetic phrases: (i) a binary feature indicating that the phrase is synthetic; (ii) the log
probability of the inflected form according to the inflection model; and (iii) if available,
counts of the morphological categories inflected.

5. Experiments

We briefly report in this section on some experimental results obtained with our
tool. We ran experiments on a 150k sentence Russian–English task (WMT2013; news-
commentary), a 134k sentence English–Hebrew task (WIT3 TED talks corpus), and a
15k sentence English–Swahili Task. Space precludes a full discussion of the perfor-
mance of the classifier,9 but we can also inspect the weights learned by the model to
assess the effectiveness of the features in relating source-context structure with target-
side morphology. Such an analysis is presented in Figure 2.

9We present our approach and the results of both the intrinsic and extrinsic evaluations in much more
depth in Chahuneau et al. (in review)

57



PBML 100 OCTOBER 2013

→ → →
Baseline 14.7±0.1 15.8±0.3 18.3±0.1

+Class LM 15.7±0.1 16.8±0.4 18.7±0.2

+Synthetic
unsupervised 16.2±0.1 17.6±0.1 19.0±0.1

supervised 16.7±0.1 — —

Table 2. Translation quality (measured by bleu) averaged over 3 MIRA runs.

5.1. Translation

We evaluate our approach in the standard discriminative MT framework. We use
cdec (Dyer et al., 2010) as our decoder and perform MIRA training (Chiang, 2012) to
learn feature weights. We compare the following configurations:

• A baseline system, using a 4-gram language model trained on the entire mono-
lingual and bilingual data available.

• An enriched system with a class-based n-gram language model10 trained on the
monolingual data mapped to 600 Brown clusters. Class-based language mod-
eling is a strong baseline for scenarios with high out-of-vocabulary rates but in
which large amounts of monolingual target-language data are available.

• The enriched system further augmented with our inflected synthetic phrases.
We expect the class-based language model to be especially helpful here and cap-
ture some basic agreement patterns that can be learned more easily on dense
clusters than from plain word sequences.

We evaluate translation quality by translating and measuring BLEU on a held-out
evaluation corpus, averaging the results over 3 MIRA runs (Table 2). For all languages,
using class language models improves over the baseline. When synthetic phrases are
added, significant additional improvements are obtained. For the English–Russian
language pair, where both supervised and unsupervised analyses can be obtained,
we notice that expert-crafted morphological analyzers are more efficient at improving
translation quality.

6. Morphogen Implementation Discussion and User’s Guide

This section describes the open-source Python implementation of this work, mor-
phogen.11 Our decision to use Python means the code—from feature extraction to
grammar processing—is generally readable and simple to modify for research pur-
poses. For example, with few changes to the code, it is easy to expand the number of

10For Swahili and Hebrew, n = 6; for Russian, n = 7.
11https://github.com/eschling/morphogen
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synthetic phrases created by generating k-best inflections (rather than just the most
probable inflection), or to restrict the phrases created based on some source side cri-
terion such as type frequency, POS type, or the like.

Since there are many processing steps that must be coordinated to run morphogen,
we provide reference workflows using ducttape12 for both supervised and unsuper-
vised morphological analyses (discussed below). While these workflows are set up to
be used with cdec, morphogen generates grammars that could be used with any de-
coder that supports per-sentence grammars. The source language processing, which
we do for English using TurboParser and TurboTagger, could be done with any tagger
and any parser that can produce basic Stanford dependencies. The source language
does not necessarily need to be English, although our approach depends on having
detailed source side contextual information.13

We now review the steps that must be taken to run morphogen with either an ex-
ternal (generally supervised) morphological analyzer or the unsupervised morpho-
logical analyzer we described above. These steps are implemented in the provided
ducttape workflows.

Running morphogenwith an external morphological analyzer. If a supervised mor-
phological analyzer is used, the parallel training data must be analyzed on the target
side, with each line containing four fields (source sentence, target sentence, target
stem sentence, target analysis sequence), where fields are separated with the triple
pipe (|||) symbol. Target language monolingual data must likewise be analyzed and
provided in a file where each line contains three fields (sentence, stem sentence, anal-
ysis sequence) and separated by triple pipes. For supervised morphological anal-
yses, the user must also provide a python configuration file that contains a func-
tion get_attributes,14 which parses the string representing the target morphological
analysis into a set of features that will be exposed to the model as the target morpho-
logical feature vector ψ(µ).

Running morphogen with the unsupervised morphological analyzer. To use unsu-
pervised morphological analysis, two additional steps (in addition to those required
for an external analyzer) are required:

12ducttape is an open-source workflow management system similar to make, but designed for research
environments. It is available from https://github.com/jhclark/ducttape.

13It is also unclear how effective our model would be when translating between two morphologically
rich languages, since we assume that the source language expresses syntactically many of the things which
the target language expresses with morphology. This is a topic for future research, and one that will be
facilitated by morphogen.

14See the morphogen documentation for more information on defining this function. The configuration
for the Russian positional tagset used for the “supervised” Russian experiments is provided as an example.
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We#'ve#heard#that#empty#promise#before#.#|||

Но#мы#и#раньше#слышали#эти#пустые#обещания#.#|||

но#мы#и#раньше#слышать#этот#пустой#обещание#.#|||

C#PL1Lpnn#C#R#VmisLpLaLe#PLLLpaa#Afpmpaf#Ncnpan#.

Tokenized target (inflected):

Tokenized target (stemmed):

POS + inflectional features:

Tokenized source:

Figure 3. Example supervised input; arrows indicate that the text wraps around to the next line
just for ease of reading (there should be no newline character in the input).

• use fast_umorph15 to get unsupervised morphological analyses (see §3.2);
• use seg_tags.py with these segmentations to retrieve the lemmatized and tag-

ged version of the target text. Tags for unsupervised morphological segmenta-
tions are a simple representation of the learned segmentation. Words less than
four characters are tagged with an X and subsequently ignored.

Remaining training steps. Once the training data has been morphologically ana-
lyzed, the following steps are necessary:

• process the source side of the parallel data using TurboTagger, TurboParser, and
Brown clusters.

• use lex_align.py to extract parallel source and target stems with category infor-
mation. This lemmatized target side is used with cdec’s fast_align to produce
alignments.

• combine to get fully preprocessed parallel data, in the form (source sentence,
source POS sequence, source dependency tree, source class sequence, target
sentence, target stem sequence, target morphological tag sequence, word align-
ment), separated by the triple pipe.

• use rev_map.py to create a mapping from (stem, category) to sets of possible
inflected forms and their tags. Optionally, monolingual data can be added to
this mapping, to allow for the creation of inflected word forms that appear in
the monolingual data but not in the parallel training data. If a (stem, category)
pair maps to multiple inflections that have the same morphological analysis, the
most frequent form is used.16

• train structured inflection models with SGD using struct_train.py A separate
inflection model must be created for each word category that is to be inflected.
There is only a single category when unsupervised segmentation is used.

15https://github.com/vchahun/fast_umorph
16This is only possible when a supervised morphological analyzer is used, as our unsupervised tags are

just a representation of the segmentation (e.g. wa+ku+STEM).
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Using morphogen for tuning and testing. At tuning and testing time, the following
steps are run:

• extract two sets of per-sentence grammars, one with the original target side and
the other with the lemmatized target side

• use the extracted grammars, the trained inflection models, and the reverse in-
flection map with synthetic_grammar.py to create an augmented grammar that
consists of both the original grammar rules and any inflected synthetic rules
(§4). By default, only the single best inflection is used to create a synthetic rule,
but this can be modified easily.

• add target language model and optionally a target class based language model.
Proceed with decoding as normal (we tune with MIRA and then evaluate on
our test set)

Using the ducttape workflows. The provided ducttape workflows implement the
above pipelines, including downloading all of the necessary tool dependencies so as
to make the process as simple as possible. The user simply needs to replace the global
variables for the dev, test, and training sets with the correct information, point it at
their version of morphogen, and decide which options they would like to use. Sample
workflow paths are already created (e.g. path with/without Monolingual training
data, with/without class based target language model). These can be modified as
needed.

Analysis tools. We also provide the scripts predict.py and show_model.py. The
former is used to perform an intrinsic evaluation of the inflection model on held out
development data. The latter provides a detailed view of the top features for various
inflections, allowing for manual inspection of the model as in Figure 2. An example
workflow script for the intrinsic evaluation is also provided.

7. Conclusion

We have presented an efficient technique which exploits morphologically analyzed
corpora to produce new inflections possibly unseen in the bilingual training data and
described a simple, open source tool that implements it. Our method decomposes
into two simple independent steps involving well-understood discriminative models.

By relying on source-side context to generate additional local translation options
and by leaving the choice of the global sentence translation to the decoder, we sidestep
the issue of inflecting imperfect translations and we are able to exploit rich annota-
tions to select appropriate inflections without modifying the decoding process or even
requiring that a specific decoder or translation model type be used.
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We also achieve language independence by exploiting unsupervised morpholog-
ical segmentations in the absence of linguistically informed morphological analyses,
making this tool appropriate for low-resource scenarios.
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