
The Prague Bulletin of Mathematical Linguistics
NUMBER 100 OCTOBER 2013 91–100

Open Machine Translation Core:
An Open API for Machine Translation Systems

Ian Johnson
Capita Translation and Interpreting

Abstract
Open Machine Translation Core (OMTC) is a proposed open API that defines an applica-

tion programming interface (API) for machine translation (MT) systems. The API defined is a
service interface which can be used to underpin any type of MT application. It consists of com-
ponents which allow programmers, with little effort, to integrate different MT back-ends into
their applications since an OMTC compliant MT system presents a consistent interface. OMTC
attempts to standardise the following aspects of an MT system: resources – the abstract repre-
sentation of assets used e.g. documents and translation memories, sessions – a period of time
in which a user interacts with the system, session negotiation – agreement on which services
are to be provided, authorisation – integration with third party authorisation systems to pre-
vent users performing unauthorised actions, scheduling – the management of long running
MT tasks, machine translation engines – a representation of an entity capable of providing
only MT, and translators – a conglomeration of, at least one of the following, an MT engine, a
collection of translation memories, and a collection of glossaries.

1. Introduction

Open Machine Translation Core (OMTC) is a proposed and open API for the con-
struction of machine translation (MT) systems (Johnson, 2013). The central idea of
OMTC is to be able to easily integrate disparate back-end MT systems together into
an application such that the back-ends “look” consistent no matter the flavour of MT.

To identify the aspects and concerns that would be common to MT systems a use
case analysis was carried out. Once the actors and use cases were catalogued then
use cases which any MT system would require were identified. This reduced set was
expanded into UML class diagrams to define the abstract OMTC specification. How-

© 2013 PBML. All rights reserved. Corresponding author: ian.johnson@capita-ti.com
Cite as: Ian Johnson. Open Machine Translation Core: An Open API for Machine Translation Systems. The
Prague Bulletin of Mathematical Linguistics No. 100, 2013, pp. 91–100. doi: 10.2478/pralin-2013-0015.



PBML 100 OCTOBER 2013

ever, OMTC does define concrete classes where necessary. This paper gives a fairly
high level description of the OMTC specification with a view that the reader study
the full specification for details. OMTC attempts to standardise:

• Resources: the abstract representation of assets used by users in an MT system,
e.g. documents and translation memories,

• Sessions: a period of time in which a user interacts with the system, e.g the time
between login and logout,

• Session Negotiation: agreement on which services are to be provided,
• Authorisation: integration with third party authorisation systems to prevent

users performing unauthorised actions,
• Scheduling: the management of long running and computationally expensive

MT tasks,
• Machine Translation Engines: a representation of an entity capable of provid-

ing only MT, and
• Translators: a conglomeration of, at least one of the following, an MT engine, a

collection of translation memories, and a collection of glossaries.
Figure 1 shows an example of how OMTC could be implemented. The figure

shows two example applications: a client-server and a command line application.
OMTC sits low down in the stack. OMTC’s position gives the application program-
mer much more flexibility and freedom to use technologies and networking protocols
that are available to them. For example, TAUS published their open MT system API
which is designed to work as a RESTful web-service over HTTP (TAUS, 2012). Imple-
menters of this API are tied to using HTTP. Using HTTP may not be desirable in some
customer deployments, for example messages queues may have to be used. OMTC,
on the other hand, is not tied to any technology and is reusable since it concentrates
on one aspect of an MT system: machine translation. Moreover, the TAUS API specifies
which methods are available to consumers of their service. If methods or arguments
are required to be augmented the implemented MT system becomes non-compliant.
OMTC allows the implementer to specify the methods and arguments required for
their MT system.

Below OMTC sit the translation providers. Figure 1 shows the following disparate
MT systems:

• SmartMATE: a self-serve SMT system allows API calls, via its RESTful web-
interface, to build translation engines and start translations (Way et al., 2011).

• Moses: an open-source suite of tools for SMT engine development and transla-
tion. Integrating to an OMTC system would probably take the form of wrapping
the existing command-line tools (Koehn et al., 2007).

• SYSTRAN: A rule-base MT system with an API available in their Enterprise
Server product (SYSTRAN , 2008).

• SDL Trados: A computer-aided translation suite which presents an API called
SDL OpenExchange (http://www.sdl.com/products/sdl-trados-studio/).

92

http://www.sdl.com/products/sdl-trados-studio/


Ian Johnson Open Machine Translation Core (91–100)

Figure 1. Example OMTC compliant applications

OMTC attempts to make these proprietary APIs homogeneous by defining an abstract
interface for machine translation tasks and maintenance.

Further to the abstract specification, a reference implementation has been con-
structed using Java v1.7. It is released under a LGPL v3 license and is available by
cloning the GitHub repository https://github.com/ianj-als/omtc.git. This im-
plementation was written to provide an implementation that could be immediately
used by developers to write OMTC compliant applications. The OMTC reference im-
plementation is being used, at Capita Translation and Interpreting, to re-factor the
SmartMATE application.

There follows a brief description of the common actors that would use an MT sys-
tem. These actors were the central basis on which OMTC was designed.

2. Actors

An actor specifies a role played by a “user” that interacts with a system, but is not
a part of that system. Actors are external to the system and can represent a human,
external software, or an external system etc. (Obj, 2007).

There are three principal actors in an MT system:

93

https://github.com/ianj-als/omtc.git


PBML 100 OCTOBER 2013

• Translator: This actor’s role is to perform translations and is the main end-user
of an MT service. All other actors provide means to provide resources so that
the translator may schedule translation tasks. Since this actor is expected to be
widespread it attracts the fewest number of possible actions in the MT service
and those actions are primarily read-only. Therefore, the scope to which this
actor can intentionally harm the MT service is kept to a minimum. Moreover,
this actor requires very little knowledge of MT in order to complete translation
tasks.

• Engine Manager: This actor is able to mutate MT engines. The primary role
of this actor is to maintain MT engines, e.g., train, re-train, compose or destroy
MT engines. This actor should have a reasonable understanding of MT and the
kinds of MT that the implementation is supporting. For example, if the imple-
mentation supports SMT then this actor would have an understanding of how
to take a tabula rasa system and build an engine for use by the translator actor.
Moreover, this actor is responsible for determining who is able to use the en-
gines which the actor constructs. The use cases available to the engine manager
actor is the union of those use cases for this and the translator actor.

• Administrator: The administrator actor is permitted to manage users for a par-
ticular customer. Customers may have many users which are translators or en-
gine managers. Managing which use cases a customer’s users are permitted to
perform is the administrator actor’s remit. This actor would be authorised to
choose the payment plan, if one is required, and make payments for the use of
the MT service. The administrator actor is permitted to invoke the use cases
available to engine manager and translator actors.

Considering each of these actors, a number of concerns have been arrived at that
are believed to be common to many MT systems. The concerns are collections of use
cases and are described below.

3. Resource Management

A resource is an object that is provided or constructed by a user action for use in an
MT system. A non-exhaustive list of examples is: document files, translation memo-
ries, glossaries, or MT engines. Resource management is a collection of use cases that
allow all actors to load, construct, catalogue, and remove resources from an MT sys-
tem. For example, if the MT system were a web-service then making a translation
memory available to the MT system would probably be an upload action.

Resources may need some kind of ownership. If an MT system is a standalone
command line driven application this may not be necessary, or the file-system can
provide this feature: read or write permissions on files being used by the running
process will be determined by the user running the process. However, if an MT system
is a multi-user service then ownership of resources would become necessary. Users

94



Ian Johnson Open Machine Translation Core (91–100)

from different customers should not be permitted to access any resource constructed
or made available to the system by other customer users.

OMTC defines two kinds of resource:
1. Primary resources: any resource that has been constructed externally and made

available, in some way, for use in an MT system. Examples of these resources
are: a document, a translation memory (TM), a glossary etc. If these resources
are required for future use it is recommended that these resources be persisted.
Primary resources are immutable, i.e. if a resource’s content is to be altered it is
a distinct resource.

2. Derived resources: these resources are constructed using their primary coun-
terparts either as a conglomeration or a separate entity is created, e.g. creating a
SMT engine using a translation memory (a primary resource) to create a derived
resource: the engine itself.

4. Sessions, Negotiation and Authorisation

In order for users to be able to use an MT service the API needs an idea of a ses-
sion. A session is the period in which a user will interact with an MT service. An
MT application may need to acquire the identity of users, whilst other implemen-
tations may not. Therefore, the OMTC API needs to support both user identity and
anonymity. Moreover, clients to an MT service will support certain exchange formats,
and expect certain features from the application. A session negotiation is defined in the
API in order that both client and server can ascertain if, once the session is set up,
their expectations of each other is correct. If a user’s identity is to be determined then
the application can restrict the actions a user can perform based on their role(s), i.e.
authorisation. OMTC models these aspects.

4.1. Sessions

A session is a period in which a user interacts with an MT system. OMTC places no
restrictions an application’s definition on a session other than this. Sessions could be
defined by the time between login and logout, the lifetime of a console application, or
persisted over many login/logouts. Sessions can be associated with a user where user
identity is necessary, for example in a pay-as-you-go web-application. In applications
where user identity is not required an OMTC session supports not being associated
with a user. An example of this type of application would be a console command line
application where the user is explicit: the user running the program. All actions in
an OMTC application are done on behave of a session.

4.2. Session Negotiation

An optional part of the OMTC specification is session negotiation. Session negotia-
tion is a protocol which allows the provider and consumer of an MT service to come

95



PBML 100 OCTOBER 2013

to some agreement on what can be expected from the provider. If session negotiation
is implemented clients, including other MT systems, can discover which features are
supported, and which requirements are necessary. The features and requirements
are modelled as capabilities. Capabilities come in four flavours:

• API: This capability, today, only specifies the version of the API being used.
• Resources: These capabilities describe the file types that the service can sup-

port. Supporting means that the service will store and use the resource in an
appropriate way.

• Features: The actions that can be expected from an MT service, but may not be
available in every MT service.

• Prerequisites: The prerequisites that client shall ensure are true before some or
all of the MT service’s features become unavailable to a client, e.g. payment.

During negotiation the unsupported capabilities are returned to the consumer. If
provider has determined that the consumer cannot have a meaningful conversation
then the session is closed. However, the consumer can close the session if it receives
unsupported capabilities on which it depends. Session negotiation must be com-
pleted before the consumer completes session initialisation.

4.3. Authorisation

OMTC does not specify any security features. It is the application’s responsibility
to integrate with authentication systems. However, if authorisation is required in an
MT system then some integration with the external authentication provider is nec-
essary to provide user identity, and authorisations. The specification provides two
interfaces to interlock an external authentication provider.

5. Scheduling

Machine translation consists of a number of operations which are computationally
expensive. Constructing an MT service with many users requires that the computa-
tional resources are shared fairly between the demands of the users. The implementer
of an MT service needs to define:

• Which computational resource or resources will be used to execute the compu-
tationally expensive operations,

• The latency of an operation before it is executed, and
• A policy to determine how users’ operations will be scheduled, i.e. priority.
The scheduling API, defined by OMTC, needs to support different kinds of com-

putation resource management: from native threading to distributed resource man-
agement products. The pattern used in the scheduling API is detached execution with
notification on completion, whether successful or not.

96



Ian Johnson Open Machine Translation Core (91–100)

5.1. Tickets

The scheduling API issues tickets when an operation is submitted to the underlying
detached execution implementation. A ticket is a receipt for, and uniquely identifies
an operation. When the operation is submitted an observer will be provided which
observes the progress of the computation. On completion, the observer is invoked
with the appropriate ticket to identify which operation has completed. This is the
observer design pattern (see Gamma et al., 1994). The observer is application defined
and is used to update any data that relies on the computation.

Operation priorities are defined using the scheduling API. This allows an applica-
tion defined priority to be used to prioritise operations into the particular detached
execution environment. For example, a priority could, say, for a paid-for MT service
prioritise operations, invoked by users, which are on a higher tariff. So, say, a user on
a Freemium tariff would have their operations prioritised lower than a user who pays
for the service. Depending on the detached execution environment a priority might
determine, not only, the latency of an operation, but also how much processor time a
certain operation can expect when being execute.

6. Machine Translation Engines

A machine translation engine is defined as an entity that will solely perform ma-
chine translation. This may be a decoding pipeline in an SMT system or software that
implements a rule based system. MT engines are built using primary resources and
generally use computationally expensive operations to produce translations. Engines
shall have operations available that, depending on their nature, shall read or mutate
engine state, e.g.

• Evaluating an engine,
• Composing engines,
• Testing engines, and
• Training SMT engines.
Mixin interfaces are used to add optional functionality to an MT engine. This al-

lows the application programmer to choose mixins useful to the kind of MT engine
being implemented. Using mixins in this way prevents the application programmer
from being tied to this API; it does not mandate that any class inheritance is used. This
is particularly useful when using languages that do not support multiple inheritance
and can be used alongside existing frameworks and class hierarchies.

The mixins provided define the following operations:
• Composition: compose one MT engine with another,
• Evaluation: score an MT engine,
• Update parameters: mutate runtime options/parameters,
• Querying: invoking translations one sentence at a time,

97



PBML 100 OCTOBER 2013

• Training and retraining: specifically for SMT engines to build appropriate mod-
els,

• Testing: provide resources to test a constructed MT engine, and
• Updating: mutation of an existing engine to adapt to new data or rules.
The operations, in the mixins, that could represent computationally expensive op-

erations and use an asynchronous invocation pattern. In order to track the operation
the caller of these methods receives a ticket. The ticket is used to represent an “in
flight” operation and, once complete, will be used in a notification. Notifications are
used to inform the application of the state of a completed operation: submitted, start-
ing, or completed successfully or failed.

7. Translators

Translators are a conglomeration of an MT engine, translation memories and glos-
saries. A translator will specify at least one of these resources. This allows translators
to support translations using any combination of MT, TM or glossaries. It is the re-
sponsibility of application programmers to handle these resources in an appropriate
way for the flavour of translation required.

Translations are typically computationally expensive and can take a considerable
amount of time to complete. In an MT system that is multi-user computation re-
sources should be shared fairly between the demands of the submitted translations.
As with MT engine operations, translations shall be ticketed and a ticket observer is
required to receive notifications of the progress of a translation task.

There are two methods of performing a translation:
• Primary Resource Translation: A primary resource made available to an MT

system can be translated. It is application defined as to which kind of primary
resources are supported for translation. If supported, it is implementation de-
fined as to whether any pre- or port-processing is required, e.g. file filtering.

• Sentence-by-sentence Translation: Translations can be supported that consist
of a single sentence. MT engines can be queried sentence-by-sentence to per-
form a translation using only the engine. However here, TM and glossaries can
be mixed into a richer translation that uses any translation pipeline that may be
implemented.

8. Language Bindings

The OMTC specification is documented using UML which is a language-agnostic
representation. It is expected that any modern computing language is capable of im-
plementing the OMTC specification. OMTC defines some generalised classes. Gener-
alised classes are classes which require types arguments to construct the class. Con-
crete implementations of this is are Java and C# generics, and C++ templates. Many, if
not all, of the extant non-object oriented computing languages are not capable of im-

98



Ian Johnson Open Machine Translation Core (91–100)

plementing these classes. However, the solution is to design an OMTC implementa-
tion that builds concrete representations of the OMTC generalised classes. Functional
programming languages are also candidates for use in implementations. Haskell’s
typeclass language feature would be particularly suited to an OMTC implementation.

The OMTC specification comes with a Java v1.7 reference implementation. This
implementation was constructed to allow people to view the specification in code to
gain deeper understanding, and, if they wish, to build their own OMTC compliant
MT system with Java.

Implementations in other languages are encouraged. With the popularity of web-
frameworks, such as Spring MVC (Yates et al., 2013), Rails (Hart, 2012) and Django
(Alchin, 2013), Ruby and Python implementations are welcome since they’ll provide
an easy way to build web-hosted MT services.

9. Summary

A proposed open API for MT systems, called Open Machine Translation Core, has
been presented. It attempts to standardise common aspects and concerns to all MT
systems. It is believed that this abstract interface will underpin and ease the develop-
ment of any MT system being developed. Whilst this is only a high level view of the
proposed API it is recommended that the reader view the full and entire specification.
The full specification and a Java reference implementation is freely available, under a
LGPL v3 license, from GitHub by cloning https://github.com/ianj-als/omtc.git.

Acknowledgements

This work was done as part of the MosesCore project sponsored by the European
Commission’s Seventh Framework Programme (Grant Number 288487).

Bibliography

Alchin, Marty. Pro Django. Apress, 2nd edition, 2013.
Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Elements of

Reusable Object-Oriented Software. Addison Wesley, 1st edition, 1994.
Hart, Michael. Ruby on Rails Tutorial: Learn Web Development with Rails. Addison Wesley, 2nd

edition, 2012.
Johnson, Ian. OMTC: Open Machine Translation Core, Version 0.6.1-DRAFT edition,

2013. URL https://github.com/ianj-als/omtc/blob/master/documentation/omtc.v0.
6.1-DRAFT.pdf.

Koehn, Philipp, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello Federico, Nicola
Bertoldi, Brooke Cowan, Wade Shen, Christine Moran, Richard Zens, Chris Dyer, Ondřej
Bojar, Alexandra Constantin, and Evan Herbst. Moses: Open source toolkit for statistical

99

https://github.com/ianj-als/omtc.git
https://github.com/ianj-als/omtc/blob/master/documentation/omtc.v0.6.1-DRAFT.pdf
https://github.com/ianj-als/omtc/blob/master/documentation/omtc.v0.6.1-DRAFT.pdf


PBML 100 OCTOBER 2013

machine translation. In Proceedings of the 45th Annual Meeting of the ACL on Interactive Poster
and Demonstration Sessions, ACL ’07, pages 177–180, Stroudsburg, PA, USA, 2007. Associa-
tion for Computational Linguistics.

OMG Unified Modeling Language (OMG UML), Superstructure, V2.1.2. Object Management
Group, Inc., 2007. URL http://www.omg.org/spec/UML/2.1.2/Superstructure/PDF.

SYSTRAN (2008). SYSTRAN Enterprise Server 6: API Reference Guide. SYSTRAN,
2008. URL http://www.systransoft.com/download/user-guides/SYSTRAN.
ses6-api-reference-guide.pdf.

TAUS(2012). A Common Translation Services API. TAUS, September 2012. URL https://labs.
taus.net/interoperability/taus-translation-api.

Way, Andy, Kenny Holden, Lee Ball, and Gavin Wheeldon. SmartMATE: Online self-serve
access to state-of-the-art SMT. In Proceedings of the Third Joint EM+/CNGL Workshop “Bringing
MT to the User: Research Meets Translators”, pages 43–52, 2011.

Yates, Colin, Seth Ladd, Marten Deinum, Koen Serneels, and Christophe Vanfleteren. Pro
Spring MVC: With Web Flow. Apress, 2nd edition, 2013.

Address for correspondence:
Ian Johnson
ian.johnson@capita-ti.com
Capita Translation and Interpreting
Riverside Court, Huddersfield Road
Delph, Lancashire
OL3 5FZ, United Kingdom

100

http://www.omg.org/spec/UML/2.1.2/Superstructure/PDF
http://www.systransoft.com/download/user-guides/SYSTRAN.ses6-api-reference-guide.pdf
http://www.systransoft.com/download/user-guides/SYSTRAN.ses6-api-reference-guide.pdf
https://labs.taus.net/interoperability/taus-translation-api
https://labs.taus.net/interoperability/taus-translation-api

	Introduction
	Actors
	Resource Management
	Sessions, Negotiation and Authorisation
	Sessions
	Session Negotiation
	Authorisation

	Scheduling
	Tickets

	Machine Translation Engines
	Translators
	Language Bindings
	Summary

