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Abstract
We investigate exhaustive enumeration and subsequent language model evaluation (E&E ap-

proach) as an alternative to solving the sequence segmentation problem. We show that, un-
der certain conditions (on string lengths and regarding a possibility to accurately estimate the
number of segments), which are satisfied for important NLP applications, such as phonologi-
cal segmentation, syllabification, and morphological segmentation, the E&E approach is feasi-
ble and promises superior results than the standard sequence labeling approach to sequence
segmentation.

1. Introduction

By sequence segmentation, we mean the splitting of a sequence x = x1 . . . xn consist-
ing of n characters, each from an alphabet Σ, into non-overlapping segments, or parts,
such that the concatenation of the segments, in the ‘original’ order, precisely yields
x. Usually, in applications, we do not seek an arbitrary segmentation of x but the
‘most suitable’, where suitability may be defined, particularly in a supervised setting
as we consider, with respect to a given distribution of data. In NLP, segmentations
of sequences may occur in a variety of contexts such as morphological segmentation,
the breaking of words into morphemes, syllabification, the breaking of words into syl-
lables, phonological segmentation, the breaking of words into ‘phonological units’, or
word segmentation (cf. Goldwater et al., 2009), the breaking of sentences into words.
For example, the sequence x = phoenix may admit suitable segmentations as in

ph-oe-n-i-x phoe-nix phoenix
for phonological segmentation, syllabification, and morphological segmentation, re-
spectively, and where we delineate segments in an intuitive manner.
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In a supervised learning context, sequence segmentation may be considered a se-
quence labeling problem where the labels indicate whether or not a split occurs at a
given character position. For instance, the above segmentations of x = phoenix may
be encoded as

p h o e n i x p h o e n i x p h o e n i x
0 0 1 0 1 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0

where a ‘1’ indicates a split.
Alternatively, we may view sequence segmentation as an ‘evaluation’ problem, in

an apparently intuitive manner. Namely, given a test string x, enumerate all possi-
ble segmentations of x and evaluate, or score, each of them using a language model
trained on the training data. Such an approach is potentially superior because it al-
lows to take a ‘word’ (rather than ‘character’) perspective on the data. Moreover and
most importantly, exhaustive search for evaluation is an exact paradigm for arbitrary
evaluation models, whereas sequence labeling models typically make crucial, e.g.,
independence assumptions on scoring functions (see our discussion in Section 5.4).

The problem with the ‘evaluation viewpoint’, and the exhaustive search it naïvely
relies upon, is that there are 2n−1 possible segmentations of a sequence x of length n,
i.e., the search space is exponential in the number of characters of x, which makes the
approach apparently impractical for all but very short sequences. In the current work,
we challenge this claim. We present a simple model for sequence segmentation that
rests on the evaluation viewpoint outlined above and on exhaustive enumeration, and
that works well, as we demonstrate, under the following two conditions,

• for a given test string x, the number of segments of an optimal segmentation of
x is known (or known to be in a ‘small’ interval) or can easily and accurately be
predicted,

• for a given test string x, the length n of x is not ‘too large’ (e.g., is certainly less
than 50) and/or the possible lengths of segments are not ‘too large’ (e.g., are less
than 10 or so).

As we show in the next sections, when these assumptions are satisfied, exhaustive
enumeration is in fact cheap and can easily be implemented. Consequently, in this
situation, it is unproblematic to apply the evaluation viewpoint to sequence segmen-
tation, which, as we show via experiments, may yield superior results for the se-
quence segmentation problem; we indicate error rate decreases between 5 and 42%
over state-of-the-art sequence labeling approaches across different data sets. In the
current work, we demonstrate, moreover, that our two criteria outlined above appar-
ently hold for a number of ‘string related’ sequence segmentation problems in NLP
such as morphological segmentation, syllabification, and phonological segmentation
(they certainly do not apply to, e.g., word segmentation). In this respect, hence, our
methodology is apparently well suited to a class of important NLP applications.

This work is structured as follows. In Section 2, we more thoroughly investigate the
search space for (naïve) sequence segmentation. We do so by referring to results on
restricted integer compositions, a field in mathematical combinatorics that has recently
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gained increasing interest (Heubach and Mansour, 2004; Bender and Canfield, 2005;
Shapcott, 2012; Eger, 2013). In Section 3, we illustrate our approach in more detail,
before describing our data in Section 4. Then, in Section 5, we detail our experiments
on sequence segmentation. Since our approach may be prone to misinterpretation,
we discuss and summarize the intentions of our approach and the lessons that can be
learned from it in Section 5.4. In Section 6, we discuss related work and in Section 7,
we conclude.

2. Search Space for Sequence Segmentation

We first define integer compositions and then show their relationship to sequence
segmentations.

Let n, k ∈ N = {0, 1, 2 . . . }. An integer composition of n with k parts is a k-tuple
(π1, . . . , πk) ∈ Nk such that π1 + · · ·+ πk = n. Denote by C(n, k) the set of all integer
compositions of n with k parts. Obviously, there exists a ‘natural’ bijection between
segmentations of a sequence x = x1 . . . xn of length n with k segments and integer
compositions of n with k parts in which the sizes of parts correspond to the lengths
of the respective segments as in

ph oe n i x
7 = 2 + 2 + 1 + 1 + 1

Thus, the number of sequence segmentations of x = x1 . . . xn with k segments equals
the number of integer compositions of n with k parts, |C(n, k)| = |S(n, k)|, where
S(n, k) denotes the set of all segmentations of x1 . . . xn with k segments. There are
several well-known combinatorial results regarding the number of integer composi-
tions of n with k parts. For example,

|C(n, k)| =
(
n− 1

k− 1

)
,

where
(
n
k

)
denotes the respective binomial coefficient. Moreover, less well-known,

the number of restricted integer compositions, that is, where each part is restricted to lie
within an interval A = {ξmin, ξmin + 1, . . . , ξmax}, ξmin, ξmax ∈ N, with ξmin ≤ ξmax, is
given by the extended binomial coefficient (Fahssi, 2012; Eger, 2013)1

|CA(n, k)| =
(

k

n− ξmink

)
ξmax−ξmin+1

, (1)

where
(
k
n

)
l+1

arises as the coefficient of Xn of the polynomial (1+X+X2 + . . .+Xl)k

and where we denote by CA(n, k) the set of all compositions of n with k parts, each

1Extended binomial coefficients share many interesting properties with ordinary binomial coefficients;
see the discussions in the cited works.
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within the interval A. As above, it obviously holds that |CA(n, k)| = |SA(n, k)|, where
SA(n, k) is the set of all segmentations of a sequence of length n with k segments
where segment lengths are restricted to lie within A. Restrictions on segment lengths
may be useful and justified in NLP applications; for instance, in phonological seg-
mentation, we would hardly expect a segment to exceed, say, length 4,2 and in syl-
labification, syllables that exceed, say, length 9 or 10, are presumably very rare across
different languages.

As concerns the total number of sequence segmentations of a sequence of length
n, we have

|S(n)| = |C(n)| =
∑
k≥1

(
n− 1

k− 1

)
= 2n−1,

where we use analogous notation as above. For restricted sequence segmentations,
closed form formulas are more difficult to obtain. For A = {1, . . . , b}, |SA(n)| is a
generalized Fibonacci number satisfying the recurrence

∣∣S{1,...,b}(n)
∣∣ = b∑

i=1

∣∣S{1,...,b}(n− i)
∣∣ .

Asymptotic formulas are given, e.g., by Malandro (2011) as

∣∣S{1,...,b}(n)
∣∣ ∼ ϕn+1

G ′(1/ϕ)
, (2)

where ϕ is the unique positive real solution to
∑b

i=1 X
−i = 1 and where G(X) =∑b

i=1 X
i and G ′ denotes its first derivative. For instance, there are 5 restricted seg-

mentations of x = x1x2x3x4 where A = {1, 2} — namely, x1x2 − x3x4; x1x2 − x3 − x4;
x1−x2x3−x4; x1−x2−x3x4; and x1−x2−x3−x4 — while the approximation formula
gives the (very close) value 4.96 for

∣∣S{1,2}(4)
∣∣, since ϕ = (1+

√
5)/2 in this case. For-

mula (2) also indicates that the number of segmentations of a sequence x asymptoti-
cally grows exponentially in the length n of x, even under restrictions on segment sizes,
although, for any given n, there might be much fewer restricted segmentations than
in the unrestricted case. For example,

∣∣S{1,2}(15)
∣∣ = 987, while |S(15)| = 214 = 16384.

Efficient algorithms for generating restricted integer compositions have recently
been suggested in Opdyke (2010); Page (2012) and a Matlab implementation of the
algorithm designed in Opdyke (2010) is available from http://www.mathworks.com/
matlabcentral/fileexchange/27110-restricted-integer-composition.

2See Table 1 for examples.

116

http://www.mathworks.com/matlabcentral/fileexchange/27110-restricted-integer-composition
http://www.mathworks.com/matlabcentral/fileexchange/27110-restricted-integer-composition


S. Eger Segmentation by Enumeration (113–131)

3. Method

As we have indicated, our approach for (supervised) sequence segmentation is as
follows. Given labeled data (i.e., with ‘gold standard’ segmentations), at training time,
we simply train a language model LM on the training data set. At test time, we predict
the segmentation of a test string x by exhaustively enumerating all possible segmen-
tations of x and evaluating each of them via LM. The best scoring segmentation is then
our prediction for x. We refer to this approach as E&E (for ‘enumerate and evaluate’).
As mentioned, since enumerating (really) all possible segmentations of x is generally
impracticable (even for restricted segmentations), we crucially rely on a ‘number of
parts’ prediction model PM; predicting the number of parts of the correct segmenta-
tion of x is a simpler problem than actually providing the correct segmentation. We
outline a possible strategy for specifying PM below.

We consider both a word level, LM-W, and a character level, LM-C, language model for
our E&E approach. The character level model views (training) strings as a sequence
of ‘characters’ as in ph-oe-n-ix (including the split information) while the word level
model views the same strings as a sequence of ‘words’ as in ph oe n i x (which also
includes the split information). Intuitively, we would expect both models to perform
differently in different situations. For example, in syllabification, segmentations cru-
cially depend on character information (e.g., whether or not the current character is a
vowel or a consonant) while in word segmentation or morphological segmentation, a
word level view may be a ‘superior’ perspective.

4. Data and Its Statistical Properties

We use CELEX (Baayen et al., 1996) as our lexical database. CELEX provides
information on orthographical (syllabification) and morphological segmentation for
German, English, and Dutch. Moreover, it provides phonological transcriptions for
the three languages. To generate phonological segmentations from these, we first
align words with their phonological representations via a monotone many-to-many
aligner (cf. Eger, 2012) and then retrieve the phonologically segmented words. For the
phonology data, we use random subsets of data from the Pascal challenge (Van den
Bosch et al., 2006), which, in the case of German and Dutch, is directly based on
CELEX but already provides a filtering; here, we also include data on French from
the Pascal challenge, which is based on the Brulex database (Content et al., 1990). In
the case of orthographical and morphological segmentation, we remove all duplicates
and multi-word entries from CELEX and focus on random subsets of given sizes, as
indicated in Table 2. In Table 1, we give examples of gold standard segmented data,
across the different languages and segmentation domains.

Table 2 summarizes statistical properties of our data sets. The first three columns
refer to the minimum, maximum, and average number of parts of segmentations in
the various gold standard alignments. The next three columns refer to the minimum,
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G-P b-e-r-ei-t, sch-uh, sch-n-ee-m-a-tsch, s-ä-tt-i-g-u-ng
E-P ear-th-en, th-r-ough, o-ff-sh-oo-t, a-gg-r-e-ss-i-ve
D-P sj-o-tt-en, w-ij-n-h-ui-s, i-mm-uu-n, p-r-ui-s-i-sch
F-P s-aint, e-rr-an-ce, r-a-b-a-tt-eu-r, b-u-r-eau-c-r-a-te
G-S a-so-zi-a-le-re, e-be-ne, schnee-sturms, schnupft
E-S bo-liv-i-a, id-i-ot, ring-side, scrunched
D-S i-ni-ti-a-le, maan-zie-ke-re, kerst-staaf, traagst
G-M er-barm-ung-s-los-ig-keit, titel-schrift, kinkerlitzchen
E-M un-profess-ion-al-ly, im-patient-ly, un-do, quincentenary

Table 1. Examples of gold standard segmentations from different data sets. In the first
column, G,E,F, and D stand for German, English, French, and Dutch, respectively. P, S,

and M stand for phonology, syllabification, and morphology data, respectively.

maximum, and average sizes of the parts and the subsequent three columns to the
minimum, maximum, and average string lengths. The last three columns give num-
bers relating to the size of the search space for full enumeration, which we determine
via relationship (1). As concerns the size of the search space, i.e., the number of possi-
ble segmentations of strings x under these parameter values, we find that the number
SA([n̄], [k̄]), which gives the number of segmentations of the average string with an
average number of parts, is usually quite small, ranging from 7 to 120 across the differ-
ent data sets. Also, the 95 percent quantiles show that 95 percent of all strings, across
the different datasets, admit at most a few hundred or a few thousand segmentations.
The expected values are also moderate in size but the large standard deviations indi-
cate that the distributions of the number of segmentations per string is very skewed,
where a few strings allow very many segmentations. For example, the German noun
wahrscheinlichkeitsrechnung, with length n = 27, admits 2, 653, 292 segmentations with
k∗ = 18 parts, each between ξmin = 1 and ξmax = 4.

5. Experiments

For our experiments, we use as language model LM standard Ngram models, with
modified Kneser-Ney smoothing, as implemented in the kylm language modeling
toolkit.3 We emphasize that we choose (discrete) Ngram models as language models
merely for the sake of convenience and because Ngram models have a very strong
tradition in NLP; other language models such as log-linear language models (Berger
et al., 1996) or neural network language models (Bengio et al., 2001) might have been
equally good (or better) alternatives. To contrast our methodology with the sequence
labeling approach to sequence segmentation, we use conditional random fields (CRFs)

3Available at http://www.phontron.com/kylm/.
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kmin kmax k̄ ξmin ξmax ξ̄ nmin nmax n̄

G-P-25K 1 27 8.66± 2.7 1 4 1.15± 0.4 1 31 9.97± 3.1

E-P-25K 1 20 7.18± 2.3 1 4 1.17± 0.4 1 22 8.37± 2.5

D-P-25K 1 25 9.09± 3.1 1 4 1.16± 0.4 1 29 10.53± 3.5

F-P-25K 1 18 6.69± 2.3 1 4 1.27± 0.5 1 20 8.50± 2.6

G-S-55K 1 10 3.62± 1.2 1 10 3.08± 1.1 1 31 11.15± 3.2

E-S-15K 1 7 2.43± 1.1 1 9 3.20± 1.3 1 19 7.80± 2.5

D-S-55K 1 11 3.51± 1.3 1 9 3.07± 1.0 1 30 10.78± 3.3

G-M-36K 1 9 2.40± 0.9 1 21 4.17± 2.1 1 31 10.01± 3.2

E-M-22K 1 5 1.68± 0.7 1 16 4.60± 2.1 1 21 7.73± 2.6∣∣SA([n̄], [k̄])∣∣ Q0.95
|SA(n,k)| E [|SA(n, k)|]

G-P-25K 9 364 465.52± 28, 058.0

E-P-25K 7 105 27.55± 98.7

D-P-25K 45 364 238.06± 4, 853.2

F-P-25K 28 286 78.08± 504.8

G-S-55K 120 2, 710 1, 547.04± 56, 553.2

E-S-15K 7 210 59.99± 318.2

D-S-55K 120 2, 430 2, 848.16± 75, 541.1

G-M-36K 9 364 365.17± 31, 063.1

E-M-22K 7 45 10.43± 30.6

Table 2. Data sets (rows) and statistical properties. The set A is
{ξmin, ξmin + 1, . . . , ξmax}. Description in text.

(Lafferty et al., 2001) as a sequence labeling model SL, as implemented in the CRF++
toolkit.4 Again, alternatives such as structured SVMs (Tsochantaridis et al., 2004)
might have been equally well (or better) suited but we choose CRFs because of their
reputation as yielding state-of-the art results on structured prediction problems in
NLP. For all subsequent experiments, we use linear-chain conditional random fields
with window size w (we include as features all character Ngrams that fit inside a
window of ±w around the current character).

In our sequence labeling approach, we additionally consider another encoding
scheme as the one indicated in Section 1. Namely, we also experiment on encoding
the length of the segment directly in the labeling. For example, for the syllabic seg-
mentation of phoenix as given in Section 1, this labeling would read as 0102030410102
to represent the segmentation phoen-ix. Bartlett et al. (2008) have claimed that this
numbered encoding scheme leads to better performance for the syllabification problem

4Available at http://crfpp.googlecode.com/svn/trunk/doc/index.html
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because it biases the model to favor shorter segments. We refer to this labeling scheme
as SL-NUM and to the (unnumbered) labeling scheme outlined in Section 1 as, simply,
SL.

Generally, for all subsequent experiments, when indicating a dataset of size M, we
perform ten-fold cross-validation to assess performance results, that is, our training
data has size 0.9M for each of the ten folds. Throughout, as a performance measure,
we use word error rate, the fraction of wrongly segmented sequences.

5.1. Phonological Segmentation

For phonological segmentation, we generate random samples of size M = 25, 000

for German, English, Dutch, and French in the manner indicated in Section 4. We first
assess, in Table 3, how well our SL modeling performs as a part prediction model PM.
We see that k∗, the true number of parts of a given sequence, on average coincides
with k̂, the predicted number of parts, in about 97% of the cases for German, Dutch,
and French, and in about 91% of the cases for English. Thus, if we used our LMmodels
with k̂, we would have error rates of at least 3% for German, Dutch, and French, and at
least 9% for English. Higher upper bounds on performance can be reached by instead
considering the intervals B1(k̂) =

{
k̂− 1, k̂, k̂+ 1

}
wherein to search for k∗. In fact,

as shown in the table, the probability that k∗ is in B1(k̂) is considerably above 99% for
all four datasets. These findings encourage us to use our sequence labeling models SL as
prediction models PM.

PSL[k
∗ = k̂] PSL

[
k∗ ∈

{
k̂− 1, k̂, k̂+ 1

}]
German-25K 97.5± 0.25 99.8± 0.13

English-25K 90.9± 0.44 99.3± 0.27

Dutch-25K 96.5± 0.29 99.9± 0.08

French-25K 97.1± 0.26 99.9± 0.08

Table 3. Probability that k∗ is identical to k̂ as predicted by SL model or is in B1(k̂)
in %. Phonology data.

Next, in Figure 1, we plot error rates in terms of N (for the LM Ngram models; we
use k̂ from the SL models). We see that for the LM-C models, performance levels off at
about N = 10 or N = 11, while for the LM-W models, performance levels off already at
N = 6 or N = 7. This is understandable as the word level models operate on entities
of a larger size, namely, segments. We also usually see a convergence of both error
rates as N gets larger. We omit similar graphs for window sizes w in the SL models,
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Figure 1. Performance of LM-C (top left) and LM-W (top right) as a function of N in the
Ngrams. Bottom: Character and word model in a single plot, exemplarily shown for

German. Phonology data.

but remark that a leveling off of performance occurs usually at w = 4 (note that this
means that a context of 2w+ 1 = 9 characters is considered) or w = 5.

Now, based on these insights, we fix N at 10 for the LM-W models and at 11 for
the LM-C models and use w = 5 for the SL models. We report results in Table 4.
Throughout, we see that on our four datasets, the models SL-NUM and SL have no sta-
tistically significant different error rates, that is, on this data and for our CRF learning
models, we cannot confirm that using the numbered coding scheme implies better
performance results. Moreover, the two LM models have no statistically significant
better performance than the SL models, too, when using as prediction for the num-
ber of parts the variables k̂ from the SL models. In contrast, when enumerating all
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German-25K French-25K Dutch-25K English-25K

SL-NUMw=5 2.65± 0.27 3.64± 0.31 3.91± 0.32 10.10± 0.45

SLw=5 2.68± 0.26 3.56± 0.27 3.86± 0.29 10.07± 0.45

LM-Ck=k̂
N=11 2.73± 0.28 3.55± 0.27 3.87± 0.30 10.05± 0.49

LM-Wk=k̂
N=10 2.74± 0.31 3.56± 0.25 3.88± 0.29 10.06± 0.40

LM-C
k∈{k̂−1,k̂,k̂+1}
N=11 2.41± 0.32 4.09± 0.26 3.42± 0.32 9.78± 0.35

LM-C
k∈{k̂−1,k̂,k̂+1},β=1.1

N=11 2.29± 0.27 3.39± 0.24 3.34± 0.31 9.15± 0.41

LM-W
k∈{k̂−1,k̂,k̂+1}
N=10 2.06± 0.37 4.83± 0.33 3.74± 0.30 9.70± 0.48

LM-W
k∈{k̂−1,k̂,k̂+1},β=1.1

N=10 2.09± 0.26 3.65± 0.31 3.44± 0.34 9.03± 0.49

LM-Ck=k∗

N=11 0.63± 0.25 1.22± 0.21 1.21± 0.09 3.01± 0.39

LM-Wk=k∗

N=10 0.60± 0.21 1.22± 0.19 1.23± 0.16 3.04± 0.35

Table 4. Error rates in % across different data sets and model specifications. Sub- and
superscripts denote various parameterizations. Phonology data.

segmentations with number of parts k in B1(k̂) and selecting the highest scoring as
predicted segmentation, performance results are, except for the French Brulex data,
significantly better. For example, for the German, English and Dutch data, we find,
for LM-C, error rate improvements of about 10%, 3%, and 11%, with regard to the SL
models. Still larger improvements can be achieved by putting a prior on k. Note that,
since the SL models are quite accurate PM models, it is more likely that k̂ is correct
than either k̂− 1 or k̂+ 1. We experiment with a very simple heuristic that discounts
the language model likelihood of segmentations with k̂± 1 parts by a factor β. While
selecting β by optimizing on a development set might lead to best results, we simply
let β = 1.1 for all our data sets. This implies error rate improvements of about, for our
best LM-C or LM-W models, 22%, 10%, 13%, and 5% for German, English, Dutch, and
French, respectively, with respect to the SLmodels, where all improvements are statis-
tically significant (paired two-tailed t-test, 5% significance level). Finally, as a kind of
‘oracle model’, we give performance results of our LM models under the assumption
that the true number of parts k∗ were known, for each given string to segment. We
see, in this case, very large error rate improvements, of about 77%, 68%, 69%, and 65%
for German, English, Dutch, and French, respectively, with respect to the SL models.

To say a word on the difference between the LM-C and LM-W models, we find that,
a bit surprisingly, both models apparently perform, more or less, equally well (we
would have expected the word level models to outdo the character level models, at
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least on the phonological segmentation task). In our case, the word level models per-
form better for German and slightly better for English, while this ordering is reversed
for French and Dutch.

As concerns running times, on a 3.1 GHz processor, it takes around 18 min, over all
10 folds, for the CRFs to train, both for English (smallest string lengths, on average)
and Dutch (largest string lengths, on average). Testing (decoding) takes about 2.39s
for English and 3.69s for Dutch. In contrast, training the LM models takes around
42s for English and around 52s for Dutch. Generating all segmentations and evalu-
ating them takes around 22s + 2min for English and 14min + 25min for Dutch when
choosing B1(k̂) as search space. Thus, all in all, running times are quite moderate;
also note that our segmentation and evaluation module are in Matlab (resp. Python)
and Java, whereas the CRF is in C++. We also find that we search about 0.77% of
the full search space (2n−1 segmentations per string of length n) and that if we ex-
plored the full search space, running times would be inflated by a factor of about 130
(hence, segmenting and evaluating 25, 000 strings would take about 3 1/2 days for
the Dutch data), with no (or almost no) increase in accuracy because B1(k̂) contains
all (or almost all) correct segmentations (in fact, switching to, e.g., B2(k̂) implies no
statistically distinguishable performance results, as we find).

We are not aware of any other study that would evaluate phonological sequence
segmentation (but see also the related work section) and thus cannot compare our
results here with those of others.

5.2. Syllabification

For syllabification, we use data set sizes as reported in Bartlett et al. (2008). In
Table 5, we see that our SL model performs better here in predicting the correct num-
ber of parts of segmentations than in the phonological segmentation task, where the
probability that the true k∗ is inB1(k̂) is very close to 100% across the three languages.

PSL[k
∗ = k̂] PSL

[
k∗ ∈

{
k̂− 1, k̂, k̂+ 1

}]
German-55K 99.6± 0.09 100.0± 0.00

English-15K 96.7± 0.52 99.9± 0.03

Dutch-55K 99.4± 0.07 99.9± 0.01

Table 5. Probability that k∗ is identical to k̂ as predicted by SL model or is in B1(k̂)
in %. Syllabification data.

While we omit an investigation of varying N in the Ngram models because of sim-
ilarity of graphics with those previously shown, we mention that increasing N above
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2 or 3 has no impact in the LM-W models since the average number of parts is much
smaller here than in the phonological segmentation case (see Table 2); the same holds
true for the morphological segmentation task below.

Thus, we fix N at 3 in the LM-W models and at 11, as before, in the LM-C models,
giving results in Table 6. Again, we see performance increases of about, for German,
English, and Dutch, respectively, 30%, 7%, and 42% for the best performing LM mod-
els over the SL models. Knowing the true k∗ would, as before, yield still considerably
better results. We report on an evaluation of the word level model only in the situa-
tion of a closed language model where the vocabulary stems from the training data
(this excludes on the order of 5–10% of all test strings because some of their syllable
parts never occurred in the training data, no matter the possible segmentation); in
fact, the open vocabulary situation is uninformative since the LM-W model has huge
error rates here, as our language model reserves so much probability mass for unseen
words that segmentations with segments that do not occur in the training data are
favored over those whose segment parts do occur there.5 As we have expected, under
the same conditions, the character level model still performs significantly better than
the word level model in the case of syllabification. We omit an investigation of the
numbered coding scheme, except for the English data, because of the huge increase
in training time and since we find that this model actually never performs better than
its unnumbered alternative.

Our results compare favorably with those reported by Bartlett et al. (2008), who
claim to improve on competitors by a wide margin. Using an SL approach with a
structured SVM as a labeling model, they obtain error rates of 1.19%, 10.55% (they give
a result of 15.03% for SbA (Marchand et al., 2007)), and 1.80% for German, English,
and Dutch, while we obtain 1.07%, 11.24%, and 1.49% here, with our best models.
Thus, except for the English data, our results appear better, using the same training
set sizes.6 Concerning other results, Bartlett et al. (2008) cite error rates of Bouma
(2003), using finite state techniques, of 3.50% for Dutch on 50K training instances, as
we use, and 1.80% on 250K. For German, Demberg (2006)’s HMM approach achieves
2.13% on the whole of CELEX, which is double of our error rate. To our knowledge,
our results are the best reported on the syllabification task for German and Dutch on
the CELEX data and for our training set size of 50K.

5.3. Morphological Segmentation

Performance results for morphological segmentation are listed in Tables 7 and 8
(the Dutch data was unfortunately not available to us here). Again, our best perform-

5The same does not hold true for phonological segmentation, where parts are shorter and strings have
more segments such that more reliable statistics can be computed.

6 The better performance of Bartlett et al. (2008) on English may be due to the advantage of SVMs over
standard Ngrams (and CRFs) at the small training set size for English; see He and Wang (2012) and our
discussion below.
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German-55K English-15K Dutch-55K

SL-NUMw=5 na 12.88± 0.70 na
SLw=5 1.54± 0.21 12.14± 0.59 2.57± 0.16

LM-Ck=k̂
N=11 1.20± 0.17 11.73± 0.69 1.63± 0.14

LM-Wk=k̂
N=3 na na na

LM-C
k∈{k̂−1,k̂,k̂+1}
N=11 1.41± 0.17 12.21± 0.72 1.77± 0.12

LM-C
k∈{k̂−1,k̂,k̂+1},β=1.1

N=11 1.07± 0.15 11.24± 0.62 1.49± 0.06

LM-Ck=k∗

N=11 0.82± 0.11 9.40± 0.58 1.14± 0.08

LM-Cvocab,k=k̂
N=11 1.49± 0.13 14.95± 0.92 1.71± 0.16

LM-Wvocab,k=k̂
N=3 3.53± 0.22 18.82± 1.59 3.49± 0.23

Table 6. Error rates in % across different data sets and model specifications. Sub- and
superscripts denote various parametrizations. Syllabification data.

German-36K English-22K

SL-NUMw=5 na 13.45± 0.31

SLw=5 16.34± 0.43 11.68± 0.50

LM-Ck=k̂
N=11 15.15± 0.60 11.18± 0.47

LM-Wk=k̂
N=3 na na

LM-C
k∈{k̂−1,k̂,k̂+1}
N=11 11.08± 0.49 9.50± 0.72

LM-C
k∈{k̂−1,k̂,k̂+1},β=1.1

N=11 11.86± 0.60 9.31± 0.69

LM-Ck=k∗

N=11 2.31± 0.34 0.98± 0.13

LM-Cvocab,k=k̂
N=11 6.85± 0.68 3.60± 0.38

LM-Wvocab,k=k̂
N=3 6.88± 0.70 3.62± 0.40

Table 7. Error rates in % across different data sets and model specifications. Sub- and
superscripts denote various parametrizations. Morphology data.

ing LM models are about 32% and 20% better, for German and English, respectively,
than the SL approach. Concerning error rates, we omit a comparison with other work
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because most approaches in morphological segmentation are unsupervised, and we
in fact are not aware of supervised performance results for the data we consider.

PSL[k
∗ = k̂] PSL

[
k∗ ∈

{
k̂− 1, k̂, k̂+ 1

}]
German-36K 85.6± 0.44 98.9± 0.17

English-22K 89.1± 0.49 99.7± 0.05

Table 8. Probability that k∗ is identical to k̂ as predicted by SL model or is in B1(k̂)
in %. Morphology data.

5.4. Discussion

To say a word on exhaustive enumeration as a solution technique to optimization
problems, beginner’s courses to combinatorial optimization usually emphasize that
exhaustive search is the simplest and most straightforward approach to any optimization
problem that admits only finitely many possible solution candidates; and that it is, if
feasible at all (i.e., from a complexity perspective), also guaranteed to lead to optimal
solutions (Nievergelt, 2000). Hence, if the segmentation problem in NLP was framed
as the problem of finding the segmentation sn of sequence x = x1 . . . xn that solves

arg max
sn∈S(n)

fθ(sn),

i.e., for model fθ and model parameter vector θ given (if one wants so, this is the decod-
ing problem for sequence segmentation), then our approach to sequence segmentation
would surely be optimal, provided that our search space restrictions are not criti-
cal. The problem in natural language processing (NLP) is, of course, that we neither
know the most appropriate (or ‘true’) model fθ for our task nor, in statistical NLP,
do we know the true parameter vector θ. The scope of this work is neither model
selection nor feature engineering (determination of a good model fθ), however, nor
is it the estimation of the parameter vector θ. What we intend to show, instead, is
that, for our problem tasks, efficient enumeration is generally feasible such that, for fθ
given, our approach is optimal. Thus, to summarize, if a technique performed better
than the approach sketched in this work, it must be due to a superior model fθ (e.g.,
than our standard Ngrams),7 and not due to search, as we focus on. Here, we content
ourselves, however, with the fact that standard Ngrams in conjunction with (almost)
exact search can, as shown, outperform state-of-the-art approaches to sequence seg-
mentation (this includes, at least on two out of the three data sets on the syllabifica-
tion task, structured SVMs, which appear to be the primus inter pares among current

7Or due to ‘better’ estimation of θ.
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sequence labeling methods; see the discussion below), rendering the investigation of
better models fθ momentarily superfluous.

To contrast our approach with other methods, many sequence labeling algorithms,
for example, rely on crucial restrictions with regard to allowable scoring functions fθ, as
mentioned. For example, most graphical models assume Markov-type independence
assumptions for the label sequences. In contrast, with our approach, fθ may be arbi-
trary, and arbitrarily complex. To make this feasible, we instead restrict search space, as
outlined. Moreover, as Tables 3, 5, and 8 demonstrate, the search space we prune away
has very little probability of actually containing the correct segmentations (we could
easily lower this probability to zero by, e.g., considering the search spaces B2(k̂)) such
that our restrictions may not affect accuracy at all, while pruning model complexity
may be more expected to yield sub-optimal performance. Our approach may also be
seen in the context of coarse-to-fine decoding procedures: first, we use a sub-optimal
model f1θ to restrict search space, and then use any arbitrary, ‘superior’ models f2θ in
conjunction with full enumeration on the restricted search space to improve on f1θ; we
have shown how and that such a procedure can be made effective within the field of
sequence segmentation for selected NLP applications.

We also note that for specific fθ, e.g., when fθ is decomposable (Terzi, 2006), full
enumeration may not be necessary because efficient dynamic programming (DP) so-
lutions apply. For example, for word level Ngrams, a simple DP solution whose run-
ning time is quadratic in n, sequence length, can be given when N = 1. In contrast,
our approach works for any fθ, not only for decomposable models.

6. Related Work

Phonological segmentation may be a crucial step in, e.g., grapheme-to-phoneme
conversion (G2P) models based on many-to-many alignment approaches (Jiampo-
jamarn et al., 2007, 2008; Bisani and Ney, 2008; Eger, 2012), where, for decoding,
grapheme strings need to be segmented. Jiampojamarn et al. (2007) employ instance-
based learning for this ‘letter chunking task’, without, however, evaluating their mo-
del’s performance (they solely evaluate G2P performance); the same holds true for the
three other papers cited. Of course, sequence segmentation similar to phonological
segmentation may play a key role in string transduction problems, including lemma-
tization, stemming, etc., in general (Dreyer et al., 2008). As concerns syllabification,
besides ‘rule-based approaches’ (see the discussion and references in Marchand et al.,
2007), in the statistical context, we are aware of Bartlett et al. (2008)’s sequence label-
ing approach and a lazy learning segmentation-by-analogy framework due to Marc-
hand et al. (2007); older approaches include neural network backpropagation learn-
ing (Daelemans and van den Bosch, 1992) or finite-state techniques (Bouma, 2003).
Intriguingly, syllabification may prove beneficial for solving the G2P task, as Bartlett
et al. (2008) demonstrate; its most obvious application is, of course, to provide can-
didates for hyphenation. There is a huge literature on morphological segmentation,
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e.g., Creutz and Lagus (2007); Poon et al. (2009), but most approaches are unsuper-
vised here. As concerns applications of morphological segmentation, besides serving
for quantitative analyses such as morpheme counts in texts, it may serve as a prepro-
cessing step for phonological segmentation and/or syllabification.

The literature on CRFs, as we have used as a SL model, is vastly expanding, too;
among the most interesting developments in our context are probably semi-Markov
CRFs (Sarawagi and Cohen, 2004), which explicitly segment the input sequence. An
analysis within our context would be scope for future research. Stoyanov and Eisner
(2012) discuss approximate inference and decoding for higher-treewidth graphical
models underlying CRFs. A recent comparison of state-of-the-art sequence labeling
approaches is given in He and Wang (2012) where it is shown that structured SVMs
outperform competitors on tagging and OCR; performance differences decrease, how-
ever, in data set size.

7. Concluding Remarks

Our contribution to the mathematics of linguistics is to relate the sequence segmen-
tation problem to restricted integer compositions, which have attracted increasing in-
terest in mathematical combinatorics recently — not the least because of their rela-
tionship to extended binomial coefficients. Our contribution to computational linguistics
is to show that exhaustive enumeration of sequence segmentations is, for an array
of interesting segmentation problems in NLP, cheap, given adequate restriction of
search space, such that exact search for the optimal segmentations can easily be con-
ducted, for arbitrary evaluation models fθ. We also show that for the simple choice
of fθ as standard Ngram models, performance results on par or better than current
state-of-the-art sequence labeling approaches can be achieved.

In future work, different language models fθ, possibly including global features, are
worthwhile investigating, among other things, as well as interpolating of character
and word level language models.
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