Neural Networks - Backpropagation and beyond
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1 A little bit of history: Linear Perceptron
Mark 1 perceptron (Frank Rosenblatt, 1957):

e An image recognition apparatus;

e 400 photo cells

e Weights are potentiometers;

e Weights are changed by electric motors.

The New York Times, 1958: > [...] the embryo of an electronic computer that the Navy expects will be
able to walk, talk, see, write, reproduce itself and be conscious of its existence.
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1.1 Training the perceptron (no human guidance)

Training cycle (2000 “epochs”):

holding an image in front of the digital camera (eg. triangle, circle, square,. .. );
observing which of the two lamps lit up (binary classes);

checking if the lamp is correct (arbitrarily chosen);

sending “reward” or “penalty” signal.

human operator only performs mechanical actions.



2 Multi-layer neural networks - Inference
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e Given a n-layer neural network and its parameters ©',...,0%" oraz 8',..., 5%, we calculate for [ €

{1,...,L}:
al _ gl (@lal—l + Bl) )
e Parameters ©!, weights on connection between neurons of layers a
dim(a'~1).
e Bias vectors 3 replace columns with “1” in feature matrix. The size of 8 is equal to the size of the
corresponding layer dim(a').

=1 and a!, have size dim(a') x

Function ¢' is the so called activation function;

For i = 0 we assume a’ = x (features or input layer) and ¢°(z) = z (identity);

In the case of classifiers, for the last layer L often g*(x) = softmax(x);

Other activation functions are often sigmoids (eg. logistic function or hyperbolic tangens, tanh);

In the case of regression networks, the last layer consists often of a single neuron.

2.1 Training multi-layer networks

e Parameters:

0 =(0',0% 0% 5 5%

e Model:

he(z) = tanh(©3 tanh(©? tanh(0'z + ') + %) + %)



* Cost function (MSE):
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* How do we calculate the gradients?

Ve J(©) =? VBIJ(G)) =? 1€{1,2,3}

3 Backpropagation

A hypothetical change Azé added to the j-th neuron in layer [ propagates through the network and
causes cost change:
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is large, Azé» with an opposite sign can reduce the cost.
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is close to zero, the cost cannot be much improved.

We define the error 55» of neuron j in layer [:

J = azl,

J

§' = V_1J(O) (vectorized)

3.1 The four fundamental equations of Backpropagation (proofs anyone?)

ot = Vad©) o @) () (BPY)
ot = (OHHYTsHY o (¢ () (BP2)
Vald(©) = & (BP3)
Vo J(0) = d~1od (BP4)

3.2 The Backpropagation Algorithm
For one training example (x,y):

1. Input: Set the activations of the input layers a® = z

2. Forward step: for [ = 1,..., L calculate
A =001 4 g and o = g2
3. Output error §%: calculate vector
0F =V () © (g")' (")

4. Error backpropagation: for =L —1,L — 2,...,1 calculate
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5. Gradients:
Veord(0) =a ™! © 6 and V5 J(O) = &
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3.3 SGD with Backpropagation

One iteration: * For all parameters © = (01, ..., ) create zero-valued helper matrices A = (Al,... AL)
of the same size (8 omitted for simplicity). * For m examples in the batch, ¢ = 1,...,m: * Perform

) ) ) 1 .
backpropagation for example (z(,4()) and store the gradients Vo J()(0) * A = A + EV@J(Z)(@) *
Update the weights: © := 0 — aA

3.4 What about more complicated networks?

e Backprogagation is usually formulated in the language of (Feedforward) Neural Networks (layers,
weights, biases, activations, weighted inputs, ...)

e Today’s NNs contain more complicated operation, e.g. concatenation of bidirectional RNN states, ...

e But: what’s the derivation of the “concatenation” operation and where does that fit into the BP
equations?

4 Reverse-mode Autodiff

4.1 Let’s calculate gradients for anything ... automatically!

fx1,m2) = sin(x1) + x122



4.2 An example computation graph
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4.3 Forward propagations of values
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4.4 The idea of reverse-mode auto-differentiation:

e Repeatedly substitute the derivative of the outer functions in the chain rule;
e Sub-expression follow the structure of the computation graph.
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e We calculate the adjoint:
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4.5 Back propagation of adjoints
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4.6 2-layer Neural Network

auto x = input(shape={whatevs, 784});
auto y = input(shape={whatevs, 10});



auto wl = param(shape={784, 100});
auto bl = param(shape={1, 100});
auto 11 = tanh(dot(x, wl) + bl);

auto w2 = param(shape={100, 10});
auto b2 = param(shape={1, 10});
auto 12 = softmax(dot(l1l, w2) + b2, axis=1);

auto graph = -mean(sum(y * log(l2), axis=1), axis=0);

X

y

Tensor ({500, 784}, 1);
Tensor ({500, 10}, 1);

graph.forward() ;
graph.backward () ;

auto dw
auto db

w.grad(Q;
b.grad(;

4.7 Unary node for Tanh operation in Marian

struct TanhNodeOp : public UnaryNodeOp {
template <typename ...Args>
TanhNodeOp (Args ...args)
: UnaryNodeOp(args...) { }

void forward() {
Element(_1 = Tanh(_2),
val_, a_->val());

}

void backward() {
Element(_1 += _2 * (1 - Tanh(_3) * Tanh(_3)),
a_->grad(), adj_, a_->val());
¥
};

4.8 Binary node for Division operation in Marian

struct DivNodeOp : public BroadcastingNodeOp {
template <typename ...Args>
DivNodeOp(Args ...args) : BroadcastingNodeOp(args...) { }

void forward() {
Element(_ 1 = 2 / _3,
val_, a_->val(), b_->val());
}

void backward() {
Element(_1 += _2 * 1.0f / _3,
a_->grad(), adj_, b_->val());
Element(_1 -= 2 x 3/ (_4 *x _4),
b_->grad(), adj_, a_->val(), b_->val());



}
};

4.9 Complex Softmax node defined by other operators

template <typename ...Args>

inline Expr softmax(Expr a, Args ...args) {
Expr e = exp(a);
return e / sum(e, args...);

}
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