More on Syntax in MT

Ondřej Bojar Institute of Formal and Applied Linguistics Faculty of Mathematics and Physics Charles University, Prague

Thu Sep 12, 2013

Outline

- Refresher: Motivation to go beyond phrases.
- Constituency vs. dependency trees.
- Tree vs. linear context.
- Non-projectivity and why it matters in MT.

Natáhnout bačkory.

Kick the bucket.

Kick the bucket.
✓ Why did he kick the bucket?
✓ Natáhnout bačkory. Proč musel natáhnout bačkory?

Word form variations:

Natáhnout bačkory. Proč musel natáhnout bačkory? Proč natáhl bačkory?

Kick the bucket. Why did he kick the bucket? Why stretched slippers?

Word form variations:

Natáhnout bačkory. Proč musel natáhnout bačkory? Proč natáhl bačkory?

Kick the bucket. Why did he kick the bucket? Why stretched slippers?

Pumping words into phrases:

Jan s Marií se vzali.

John and Mary were married.

Word form variations:

Natáhnout bačkory. Proč musel natáhnout bačkory? Proč natáhl bačkory? Kick the bucket.
Why did he kick the bucket?
Why stretched slippers?

Pumping words into phrases:

Jan s Marií <u>se</u> <u>vzali</u>.

John and Mary were married.

Jan s Marií se včera vzali.

John and Mary married yesterday.

Word form variations:

Natáhnout bačkory. Kick the bucket. V
Proč musel natáhnout bačkory? Why did he kick the bucket? V
Proč natáhl bačkory? Why stretched slippers? ×

Pumping words into phrases:

Jan s Marií <u>se</u> <u>vzali</u>.

John and Mary were married.

Jan s Marií <u>se</u> včera <u>vzali</u>.

John and Mary married yesterday.

Jan s Marií <u>se</u> včera v kostele <u>vzali</u>.

John and Mary <u>are</u> married in church yesterday.

~

Word form variations:

Natáhnout bačkory.	Kick the bucket.	√
Proč musel natáhnout bačkory?	Why did he kick the bucket?	$\sqrt{}$
Proč natáhl bačkory?	Why stretched slippers?	×

Pumping words into phrases:

Jan s Marií se vzali.

John and Mary were married.

Jan s Marií se včera vzali.

John and Mary married yesterday.

Jan s Marií se včera v kostele vzali.

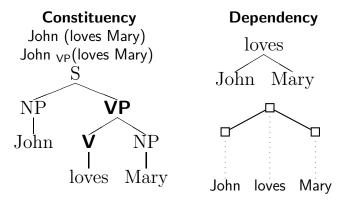
John and Mary are married in church yesterday.

Jan s Marií se včera v kostele svatého Ducha vzali.

John and Mary yesterday in the Church of the Holy Spirit took.

(Prove Systran is not phrase-based.)

Google Imagine that.
Systran Imagine.


	Stell dir das vor.	
Google	Imagine that.	\checkmark
Systran	Imagine.	\checkmark
	Stell dir ein Haus vor.	
Google	Imagine a house before.	×
Systran	Imagine a house.	\checkmark

	Stell dir das vor.	
Google	Imagine that.	\checkmark
Systran	Imagine.	\checkmark
	Stell dir ein Haus <u>vor</u> .	
Google	Imagine a house <u>before</u> .	×
Systran	Imagine a house.	\checkmark
	Stell dir ein kleines Haus vor.	
Google	Imagine a small house in front.	×
Systran	Imagine a small house.	\checkmark

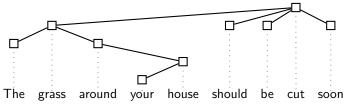
	Stell dir das vor.	
Google	Imagine that.	
Systran	Imagine.	\checkmark
	Stell dir ein Haus <u>vor</u> .	
Google	Imagine a house <u>before</u> .	×
Systran	Imagine a house.	\checkmark
	Stell dir ein kleines Haus vor.	
Google	Imagine a small house in front.	×
Systran	Imagine a small house.	\checkmark
	Stell dir ein kleines Haus mit vierzehn Fenster vor.	
Google	Imagine a small house with fourteen windows in front.	×
Systran	Imagine a small house with fourteen windows.	\checkmark

Constituency vs. Dependency

- Constituency trees (CFG) represent only bracketing:
- = which adjacent constituents are glued together.
- Dependency trees represent which words depend on which.
- + usually, some agreement/conditioning along the edge.

What Dependency Trees Tell Us

Input: The **grass** around your house should be **cut** soon.

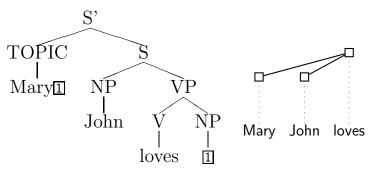

Google: **Trávu** kolem vašeho domu by se měl **snížit** brzy.

- Bad lexical choice for cut = sekat/snížit/krájet/řezat/...
 - ▶ Due to long-distance lexical dependency with *grass*.
 - One can "pump" many words in between.
 - Could be handled by full source-context (e.g. maxent) model.
- Bad case of tráva.
 - Depends on the chosen active/passive form:

active⇒accusative	passive⇒nominative
trávu by ste 🎉 měl posekat	tráva by <mark>se</mark> měl <mark>a</mark> posekat
	tráva by měl <mark>a být</mark> posek <mark>ána</mark>

Examples by Zdeněk Žabokrtský, Karel Oliva and others.

Tree vs. Linear Context



- Tree context (neighbours in the dependency tree):
 - ▶ is better at predicting lexical choice than *n*-grams.
 - often equals linear context:
 Czech manual trees: 50% of edges link neighbours,
 80% of edges fit in a 4-gram.
- Phrase-based MT is a very good approximation.
- Hierarchical MT can even capture the dependency in one phrase:

 $X \rightarrow <$ the grass X should be cut, trávu X byste měl posekat >

"Crossing Brackets"

- Constituent outside its father's span causes "crossing brackets."
 - ▶ Linguists use "traces" (□) to represent this.
- Sometimes, this is not visible in the dependency tree:
 - ▶ There is no "history of bracketing".
 - ► See Holan et al. (1998) for dependency trees including derivation history.

Non-Projectivity

= a gap in a subtree span, filled by a node higher in the tree. Ex. Dutch "cross-serial" dependencies, a non-projective tree with one gap caused by saw within the span of swim.

- ▶ 0 gaps = projective tree \Rightarrow representable in CFG.
- $ightharpoonup \leq 1$ gap & "well-nested" \Rightarrow mildly context sensitive (TAG). See Kuhlmann and Möhl (2007) and Holan et al. (1998).

Why Non-Projectivity Matters?

CFGs cannot handle non-projective constructions:

Imagine John grass saw being cut!

- No way to glue these crossing dependencies together:
 - Lexical choice:

$$X \rightarrow < \text{grass } X \text{ being cut, trávu } X \text{ sekat } >$$

Agreement in gender:

$$X \rightarrow <$$
 John X saw, Jan X viděl $>$ $X \rightarrow <$ Mary X saw, Marie X viděl $a >$

- Phrases can memorize fixed sequences containing:
 - the non-projective construction
 - ▶ and all the words in between! (⇒ extreme sparseness)

Is Non-Projectivity Severe?

Depends on the language.

In principle unlimited:

▶ Czech allows long gaps as well as many gaps in a tree.

Peter decided to object against the dismissal at work tomorrow.

In treebank data:

- → 23% of Czech sentences contain a non-projectivity.
- $\oplus~99.5\%$ of Czech sentences are well nested with ≤ 1 gap.

In parallel data:

~3–15% English-Czech sents beyond ITG reordering.

Summary

- ▶ Limitations of phrase-based MT:
 - Little or no dependencies across phrases.
 - Practice: dependencies are often local enough.
- Limitations of hierarchical/constituency-based MT:
 - Non-projective constructions are bound to fail.
- → deep-syntactic (dependency) translation as a solution.

References

Tomáš Holan, Vladislav Kuboň, Karel Oliva, and Martin Plátek. 1998. Two Useful Measures of Word Order Complexity. In A. Polguere and S. Kahane, editors, Proceedings of the Coling '98 Workshop: Processing of Dependency-Based Grammars, Montreal. University of Montreal. Marco Kuhlmann and Mathias Möhl. 2007. Mildly context-sensitive dependency languages. In Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics, pages 160–167, Prague, Czech Republic, June. Association for Computational Linguistics.