
Getting Started

At Student machines, ÚFAL machines, or your laptop. . .

“Install” eman

I go to ufal.cz/eman

I visit the Download page

I get the automatic installation script

I source it to install eman:

. install-all.sh mtm15

I (This will put everything in the mtm15 directory.)

1 / 25

ufal.cz/eman

Setup Corpora

I Czech→English translation

I Training data: roughly 0.1% of CzEng 1.0
(15k sentence pairs)

I Dev set: 10% of WMT 2012 (300 sentence pairs)

I Test set: 10% WMT 2013 (300 sentence pairs)

Download the data:

http://bit.ly/mtmarathon15

Extract it into a subdirectory your playground, e.g.:

mkdir mtm15/ufal-smt-playground/playground/corpora

2 / 25

Importing the Corpora

I Every corpus has to “enter the world of eman”.

I This can be done using the seed corpus.

“eman init corpus” requires the following variables:

I TAKE FROM COMMAND command which produces the
corpus

I OUTCORP corpus name

I OUTLANG corpus language

I OUTFACTS description of factors

I OUTLINECOUNT number of lines that we are expecting
to get, used as a sanity check

3 / 25

Importing the Corpora
E.g. for training data, the Czech side:

TAKE FROM COMMAND="cat ../corpora/train.cs" \
OUTLINECOUNT=15000 \
OUTCORP=train OUTLANG=cs \
OUTFACTS=lc+lemma+tag \
eman init --start corpus

P Inspect the step directory. Where is the corpus stored?
P Create a bash script/“one-liner” to import all corpora:
train/dev/test, cs/en (loop over sections and languages).

Did it work? Find out:

eman ls --stat
Frequent mistake: wrong OUTLINECOUNT for dev and test.

4 / 25

Listing and Printing Corpora
Corpman links symbolic names with corpus steps:

./corpman ls # show all registered corpora

Corpman ensures uniform pre-processing:

./corpman train/cs+lemma --dump

(Construct and) print the corpus as lemmas.

PBonus: Calculate the OOV (out-of-vocabulary) rate of
the test data given the training data for:

I English vs. Czech and lowercase forms vs. lemmas

Use ufal-smt-playground/scripts/count-oov.pl or
oov.pl from Moses. (Or write your own.)

5 / 25

Compiling Moses
In eman’s philosophy, software is just data.

I Binaries should be compiled in timestamped step dirs.
I . . . so we know the exact code that was used.

Compile moses and GIZA++:

MOSESBRANCH=RELEASE-1.0 \
eman init --start mosesgiza

Warning: This won’t work on local Unix machines. Instead,
import an existing Moses step:

eman addremote \
~tamca7am/ufal-smt-playground/playground tamchyna

eman reindex

6 / 25

Baseline Experiment

cat corpora/baseline.traceback \
| eman clone --start

P While the experiment runs:

I Copy the traceback into your playground.
I Modify it to train word alignment on lemmas instead

of lc. (But preserve the translation lc→lc!)
I Note that ALILABEL is somewhat arbitrary but has to match

between align and tm.

P Bonus: do the required edits using substitution in eman.
Hint: eman --man, look for the “traceback” command.

7 / 25

Looking Inside the Models

I Go to one of your baseline model steps, look at files:

I Language model: lm.1.gz

P What is more probable: “united kingdom” or “united states”?

P Why are longer n-grams more probable than short ones?

I Phrase table: tm.1/model/phrase-table.0-0.gz

P How do you say “hi” in Czech?

P Phrase scores are P(f |e), lex(f |e),P(e|f), lex(e|f).
Given that, what do the counts in the last column mean?

(Let’s look e.g. at the phrase “ahoj ||| hi”.)

8 / 25

Looking Inside the Models

I Go to one of your baseline model steps, look at files:

I Language model: lm.1.gz

P What is more probable: “united kingdom” or “united states”?

P Why are longer n-grams more probable than short ones?

I Phrase table: tm.1/model/phrase-table.0-0.gz

P How do you say “hi” in Czech?

P Phrase scores are P(f |e), lex(f |e),P(e|f), lex(e|f).
Given that, what do the counts in the last column mean?

(Let’s look e.g. at the phrase “ahoj ||| hi”.)

8 / 25

Looking Inside the Models

I Go to one of your baseline model steps, look at files:

I Language model: lm.1.gz

P What is more probable: “united kingdom” or “united states”?

P Why are longer n-grams more probable than short ones?

I Phrase table: tm.1/model/phrase-table.0-0.gz

P How do you say “hi” in Czech?

P Phrase scores are P(f |e), lex(f |e),P(e|f), lex(e|f).
Given that, what do the counts in the last column mean?

(Let’s look e.g. at the phrase “ahoj ||| hi”.)

8 / 25

Looking Inside the Models

I Go to one of your baseline model steps, look at files:

I Language model: lm.1.gz

P What is more probable: “united kingdom” or “united states”?

P Why are longer n-grams more probable than short ones?

I Phrase table: tm.1/model/phrase-table.0-0.gz

P How do you say “hi” in Czech?

P Phrase scores are P(f |e), lex(f |e),P(e|f), lex(e|f).
Given that, what do the counts in the last column mean?

(Let’s look e.g. at the phrase “ahoj ||| hi”.)

8 / 25

Tuning

P How many iterations did MERT take?

P How did the BLEU score on the devset change?
P How much disk space did your MERTs need?

I Standard Unix tool:
eman du -sh s.mert.*

I Eman status:
eman eman ls mert --dus --stat

9 / 25

Tuning

P How many iterations did MERT take?
P How did the BLEU score on the devset change?

P How much disk space did your MERTs need?

I Standard Unix tool:
eman du -sh s.mert.*

I Eman status:
eman eman ls mert --dus --stat

9 / 25

Tuning

P How many iterations did MERT take?
P How did the BLEU score on the devset change?
P How much disk space did your MERTs need?

I Standard Unix tool:
eman du -sh s.mert.*

I Eman status:
eman eman ls mert --dus --stat

9 / 25

Tuning

P How many iterations did MERT take?
P How did the BLEU score on the devset change?
P How much disk space did your MERTs need?

I Standard Unix tool:
eman du -sh s.mert.*

I Eman status:
eman eman ls mert --dus --stat

9 / 25

Results

Let’s compare MT quality (BLEU) of 2 systems:

I alignment on lowercase forms

I alignment on lemmas

P Look at evaluator steps. Which one is the baseline?

I Trace back + grep:
eman tb --vars s.evaluator.xyz | grep ALIAUG

I Trace forward from the alignment step:
eman tf $(eman sel t align vre ’SRC.*lc’)

I Or just one select query:
eman sel t evaluator br t align vre ’SRC.*lc’

BLEU is in the “s.evaluator.../scores” file.

10 / 25

Results

Let’s compare MT quality (BLEU) of 2 systems:

I alignment on lowercase forms

I alignment on lemmas

P Look at evaluator steps. Which one is the baseline?

I Trace back + grep:
eman tb --vars s.evaluator.xyz | grep ALIAUG

I Trace forward from the alignment step:
eman tf $(eman sel t align vre ’SRC.*lc’)

I Or just one select query:
eman sel t evaluator br t align vre ’SRC.*lc’

BLEU is in the “s.evaluator.../scores” file.

10 / 25

Results

Let’s compare MT quality (BLEU) of 2 systems:

I alignment on lowercase forms

I alignment on lemmas

P Look at evaluator steps. Which one is the baseline?

I Trace back + grep:
eman tb --vars s.evaluator.xyz | grep ALIAUG

I Trace forward from the alignment step:
eman tf $(eman sel t align vre ’SRC.*lc’)

I Or just one select query:
eman sel t evaluator br t align vre ’SRC.*lc’

BLEU is in the “s.evaluator.../scores” file.

10 / 25

Results

Let’s compare MT quality (BLEU) of 2 systems:

I alignment on lowercase forms

I alignment on lemmas

P Look at evaluator steps. Which one is the baseline?

I Trace back + grep:
eman tb --vars s.evaluator.xyz | grep ALIAUG

I Trace forward from the alignment step:
eman tf $(eman sel t align vre ’SRC.*lc’)

I Or just one select query:
eman sel t evaluator br t align vre ’SRC.*lc’

BLEU is in the “s.evaluator.../scores” file.

10 / 25

Results

Let’s compare MT quality (BLEU) of 2 systems:

I alignment on lowercase forms

I alignment on lemmas

P Look at evaluator steps. Which one is the baseline?

I Trace back + grep:
eman tb --vars s.evaluator.xyz | grep ALIAUG

I Trace forward from the alignment step:
eman tf $(eman sel t align vre ’SRC.*lc’)

I Or just one select query:
eman sel t evaluator br t align vre ’SRC.*lc’

BLEU is in the “s.evaluator.../scores” file.

10 / 25

Team Work

I MERT is unstable ⇒ multiple runs needed for a better
estimate of “true” system performance.

I We do have multiple runs! ...among us.

I We will use eman addremote to share experiments.

Caveat: Your home directory is not accessible to other users.
Let’s fix that first:

cd ~ ; fs setacl -dir . -acl system:authuser rl ;

find ufal-smt-playground -type d \
-exec fs setacl -dir {} -acl system:authuser rl \;

11 / 25

Team Work

I Import your colleague’s experiments, e.g.:

eman addremote \
~mtm999/ufal-smt-playground/playground fred

I Also add Aleš’s playground for pre-compiled multeval:

~mtm003/multeval/playground
I Reindex (your playground):

eman reindex && ./corpman reindex

. . . from now on, eman ls is better than plain ls.

12 / 25

Team Work

P Use eman select --remote to find evaluator steps.

P Bonus: import evaluator steps from more
playgrounds to get more reliable statistics (2 runs is too few).

P Run multeval (Clark et al. 2011):

MEVALBIN=s.mevalbin.f6750437.20130906-1727 \
BASELINE EVALSTEPS="s.evaluator.XYZ,s.evaluator.WXY" \
IMPROVED EVALSTEPS="s.evaluator.ABC,s.evaluator.DEF" \
eman init --start multeval

Results are written to scores file.

13 / 25

Wild Experimenting

P Run word alignment on lcstem4, lcstem5.

P Try different orders of the language model (3, 4, 6).

P Translate from Czech lemmas into English forms (lc).

P Try the opposite translation direction: English→Czech.

P Set up a factored system:

I lc→lc (baseline path), and

I lemma→lc (alternative path).

14 / 25

Wild Experimenting

P Run word alignment on lcstem4, lcstem5.

P Try different orders of the language model (3, 4, 6).

P Translate from Czech lemmas into English forms (lc).

P Try the opposite translation direction: English→Czech.

P Set up a factored system:

I lc→lc (baseline path), and

I lemma→lc (alternative path).

14 / 25

Wild Experimenting

P Run word alignment on lcstem4, lcstem5.

P Try different orders of the language model (3, 4, 6).

P Translate from Czech lemmas into English forms (lc).

P Try the opposite translation direction: English→Czech.

P Set up a factored system:

I lc→lc (baseline path), and

I lemma→lc (alternative path).

14 / 25

Wild Experimenting

P Run word alignment on lcstem4, lcstem5.

P Try different orders of the language model (3, 4, 6).

P Translate from Czech lemmas into English forms (lc).

P Try the opposite translation direction: English→Czech.

P Set up a factored system:

I lc→lc (baseline path), and

I lemma→lc (alternative path).

14 / 25

Wild Experimenting

P Run word alignment on lcstem4, lcstem5.

P Try different orders of the language model (3, 4, 6).

P Translate from Czech lemmas into English forms (lc).

P Try the opposite translation direction: English→Czech.

P Set up a factored system:

I lc→lc (baseline path), and

I lemma→lc (alternative path).

14 / 25

Summary

Hopefully, you now understand:

I within (PB)MT:
I the structure of a (PB)MT experiment,
I what is the language model and the translation model,

I meta-level:
I eman’s organization of the experimentation playground,
I the idea of cloning of experiments.

If you want to help:

I use eman,

I contribute to the “Commonspector” project.

15 / 25

Extra Slides

16 / 25

Eman is Versatile

What types of steps should I have?

I Any, depending on your application.

What language do I write steps in?

I Any, e.g. bash.

What are the input and output files of the steps?

I Any, just make depending steps understand each other.

I Steps can have many output files and serve as
prerequisites to different types of other steps.

What are measured values of my experiments?

I Anything from any of the files any step produces.

17 / 25

What the User Implements: Just Seeds
Technically, a seed is any program that:

I responds to arbitrary environment variables,

I runs eman defvar to register step variables with eman,

I produces another program, ./eman.command that
does the real job.

The seed is actually run twice:

I At “init”: to check validity of input variables and
register them with eman.

I At “prepare”: to produce eman.command.

The user puts all seeds in playground/eman.seeds.

I Eman runs a local copy of the seed in a fresh step dir.

18 / 25

eman redo

On cluster, jobs can fail nondeterminically.

I Bad luck when scheduled to a swamped machine.

I Bad estimate of hard resource limits (RAM exceeds the
limit ⇒ job killed).

Eman to the rescue:

I eman redo step creates a new instance of each failed
step, preserving the experiment structure.

I eman redo step --start starts the steps right away.

To make sure eman will do what you expect, first try:

I eman redo step --dry-run

19 / 25

eman clone
Cloning is initing a new step using vars of an existing one.
Cloning of individual steps is useful:

I when a step failed (used in eman redo),

I when the seed has changed,

I when we want to redefine some vars:
ORDER=4 eman clone s.lm.1d6f791c...

Cloning of whole tracebacks:

I The text of a traceback gets instantiated as steps.

I Existing steps are reused if OK and with identical vars.

I eman traceback step | eman clone

I eman traceback step | mail bojar@ufal
followed by eman clone < the-received-mail.

20 / 25

eman tag or eman ls --tag shows tags
Tags and autotags are:

I arbitrary keywords assigned to individual steps,
I inherited from dependencies.

Tags are:
I added using eman add-tag the-tag steps,
I stored in s.stepdir.123/eman.tag.

⇒ Use them to manually mark exceptions.

Autotags are:
I specified in playground/eman.autotags as regexes

over step vars, e.g.: /ORDER=(.*)/$1gr/ for LM,
I (re-)observed at eman retag.

⇒ Use them to systematically mark experiment branches.
21 / 25

eman collect
Based on rules in eman.results.conf, e.g.:

BLEU */BLEU.opt BLEU\s*=\s*([^\s,]+)

Snts s.eval*/corpus.translation CMD: wc -l

eman collects results from all steps into eman.results:

Step Name Status Score Value Tags and Autotags

s.evaluator.11ccf590.20120208-1554 DONE TER 31.04 5gr DEVwmt10 LMc-news towards-CDER

s.evaluator.11ccf590.20120208-1554 DONE PER 44.61 5gr DEVwmt10 LMc-news towards-CDER

s.evaluator.11ccf590.20120208-1554 DONE CDER 33.97 5gr DEVwmt10 LMc-news towards-CDER

s.evaluator.11ccf590.20120208-1554 DONE BLEU 12.28 5gr DEVwmt10 LMc-news towards-CDER

s.evaluator.11ccf590.20120208-1554 DONE Snts 3003 5gr DEVwmt10 LMc-news towards-CDER

s.evaluator.29fa5679.20120207-1357 OUTDATED TER 17.66 5gr DEVwmt10 LMc-news

...

s.evaluator.473687bb.20120214-1509 FAILED Snts 3003

I Perhaps hard to read.
I Easy to grep, sort, whatever, or tabulate.

22 / 25

eman tabulate to Organize Results
The user specifies in the file eman.tabulate:

I which results to ignore, which to select,

I which tags contribute to col labels, e.g. TER, BLEU,

I which tags contribute to row labels, e.g. [0-9]gr,
towards-[A-Z]+, PRO.

Eman tabulates the results, output in eman.niceresults:
PER CDER TER BLEU

5gr towards-CDER 44.61 33.97 31.04 12.28

5gr 44.19 33.76 31.02 12.18

5gr PRO 43.91 33.87 31.49 12.09

5gr towards-PER 44.44 33.52 30.74 11.95

23 / 25

Related Experiment Mgmt Systems
Eman is just one of many, consider also:

I LoonyBin (Clark et al., 2010)
	 Clickable Java tool.
⊕ Support for multiple clusters and scheduler types.

I Moses EMS (Koehn, 2010)
I Experiment Management System primarily for Moses.
I Centered around a single experiment which consists of steps.

I Pure Makefiles
Yes, you can easily live with fancy Makefiles.

I You will use commands like make init.mert
or cp -r exp.mert.1 exp.mert.1b

I You need to learn to use $*, $@ etc.
I You are likely to implement your own eman soon. ,

There are also the following workflow management systems: DAGMan, Pegasus, Dryad.

24 / 25

References

Jonathan H. Clark, Jonathan Weese, Byung Gyu Ahn, Andreas Zollmann, Qin Gao, Kenneth
Heafield, and Alon Lavie. 2010. The Machine Translation Toolpack for LoonyBin: Automated
Management of Experimental Machine Translation HyperWorkflows. Prague Bulletin of
Mathematical Linguistics, 93:117–126.
Philipp Koehn. 2010. An Experimental Management System. Prague Bulletin of Mathematical
Linguistics, 94:87–96, September.

25 / 25

