A Discriminative Lexicon for Translating to Morphologically Rich Languages

Alex Fraser and Kristina Toutanova

MTM

Sept 14th, 2013 - Charles University MTM
Leaders: Kristina Toutanova, Alex Fraser, Ondrej Bojar

- Decoding Team: Fabienne Braune and Ales Tamchyna
- Word Translation Extraction: Alexey Borisov and Sergey Gubanov
- Linguistic Feature Engineering: Marion Weller and Fran Tyers
- Experiment Pipeline and Stealth Project: Philipp Koehn
Discriminative Word Lexicon

The goal is to modify a discriminative phrase lexicon (phrase-sense-disambiguation) to predict words.

- A phrase lexicon is a substitute for phrase-based $p(e|f)$
- A discriminative word lexicon is a substitute for “lexical smoothing” $p(e|f)$
- We are targeting English to Czech
- A Czech word is predicted using its alignment links to English (each Czech word is predicted more or less independently)
We also implemented Minimal Translation Unit (MTU) extraction in the standard phrase-based framework.

The idea was to compare this with word prediction and phrase-sense-disambiguation.

We trained the standard phrase-sense-disambiguation pipeline on minimal units (so, a subset of the usual phrases).

A short summary of the result: it is a possibly promising result showing issues that are conducive to further consideration.

Baseline is interesting (French-to-English science set from the DAMT project, training size is 139K sentences).

BLEU using phrases (score on tune): 29.70

BLEU using MTUs (score on tune): 28.92
Main Steps

- English to Czech baseline
- Defined lexicon lookup
 - A Czech word is predicted based on its aligned English words
 - Czech words can also be NULL-aligned
- Extract aligned English words for each Czech word in the parallel training data
 → We call this the "Aligned Group"
- Convert 15 position Czech tags to human readable form
- Convert feature extraction for classification from phrases to words
Pipeline

1. Create annotated extraction file
2. Create translation table (with "Aligned Groups")
3. Run feature extraction
 - Baseline: source group, target word, absolute frequencies
 - Contrastive: morphologically rich annotation
4. Train classifier
5. Evaluate accuracy
Used features in contrastive system

- **source side features**:
 - word, lemma, pos, tag, number
 - features extracted from dependency trees:
 - parent and grandparent nodes: lemma, pos, tag
 - leftmost child, rightmost child: lemma, pos, dependency relation
 - left sister, right sister: lemma, pos

- **target side features**:
 - word, lemma
 - 15 features:
 - part of speech
 - number
 - gender
 - case, person, case, grade, negation,...
Modifications to phrase-based setting I

- modified annotated extract files to handle "Aligned Groups"
 - sentence id
 - list of source spans
 - target span
 - annotated source group string
 - annotated target word string

- created a cept table to replace phrase-table
 - source cept
 - target cept
 - counts
Modifications to phrase-based setting II

- modified feature extraction code to handle concepts instead of phrases
 - Extract from rich annotations from source group
 - Extract features from annotated target word
 - Extract word pairs from all alignment links
 - Extract features to count gaps in aligned group
Reference sentence results on English-Czech

- Baseline
 - Source features - lexical identity of the aligned source group: `the_actions`
 - Target features – identity of the target word together with its lemma and morphological tags: `akční\akční\AAIS4----1A----`

- Local context
 - Source features - source group, left word, right word
 - Target features - target

<table>
<thead>
<tr>
<th>Feature set</th>
<th>Training Accuracy</th>
<th>Test Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Word+Factors</td>
<td>Word</td>
</tr>
<tr>
<td>Baseline</td>
<td>51.9</td>
<td>56.2</td>
</tr>
<tr>
<td>Local context</td>
<td>76.1</td>
<td>78.1</td>
</tr>
</tbody>
</table>
Next steps

- Train VW for more iterations (we seem to be undertraining)
- Rename the discriminative word lexicon to something cooler (dwl is taken in Moses)
- Compare word-level, MTU-level and phrase-level prediction
 - Figure out how to compare these better (and run them on the same data)
 - Classification setup already works for word, MTU, phrase
 - Decoder for word-level is very close (MTU and phrase already implemented)
- ADD TARGET CONTEXT (to the left from the LM and phrase, to the right from the phrase)!
 - This requires moving classification into hypothesis extension (efficiency!!!)