
Bootstrapping Quality Estimation in a live production environment 

Joachim Van den Bogaert 
CrossLang 

Gent, Belgium 
joachim@crosslang.com 

Bram Vandewalle 
CrossLang 

Gent, Belgium 
bram.vandewalle@crosslang.com 

Roko Mijic 
CrossLang 

Gent, Belgium 
roko.mijic@crosslang.com 

 Abstract 

In this paper, we discuss how we boot-
strapped Quality Estimation (QE) in a 
constrained industry setting. No post-edits 
were at our disposal and only a limited 
number of annotators was available to 
provide training data in the form of Post-
Edit (PE) effort judgments. We used a 
minimal approach and applied a simpli-
fied annotation procedure. We used as few 
as 17 baseline features for QE training. 

1 Introduction 

In this paper, we discuss how we bootstrapped 
Quality Estimation (QE) – the process of scoring 
Machine Translation (MT) output without access 
to a reference translation – for 9 language pairs 
and 3 domains in a constrained industry setting. 
No post-edits were at our disposal and only a 
limited number of annotators was available to 
provide training data in the form of Post-Edit (PE) 
effort judgments. We used a minimal approach 
(Callison-Burch et al., 2009), by annotating only 
800 segments per language pair and content type, 
and applying a simplified annotation procedure. 
We used as few as 17 baseline features (Specia et 
al., 2009b) for QE training. 

As the project progressed, post-edits became 
available, allowing us to validate our approach 
and further develop the bootstrapped system, 
using off-the-shelf PE distance (TER) as training 
labels. We added syntactic and web-scale 
Language Model (LM) features (Kozlova et al., 
2016), (Andor, et al., 2016) to improve a second 
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iteration of the QE system and trained on 80,000 
PE distance labels to compare our results.  

Finally, we roughly estimated the number of 
sentences needed for training a PE distance-based 
system that performs on par with a PE effort-
based system. 

2 Use case and related work 

2.1 Use case 

In Language Industry, Quality Estimation is used 
to filter out low-quality translations for post-
editors, when they review Machine Translated 
texts (Specia et al., 2009b). This is important, 
because bad translations not only cause extra 
work (it is sometimes easier to translate from 
scratch (Specia, 2011)), they are also a source of 
frustration and negatively impact the image and 
acceptance of MT among translators (Wisniewski 
et al., 2013). 

To alleviate these problems, we investigated 
the use of Quality Estimation for 9 language pairs 
(EN-DE, DE-EN, EN-FR, EN-RU, EN-ZH, EN-PT, 
EN-ES, EN-IT, EN-JP) and 3 domains (referred to 
as DOM1, DOM2 and DOM3). Since the MT 
engines were not cleared for use at the time the 
project began, no post-edits were available and a 
staged approach was required. 

For production use, we are mainly interested in 
best practices (rather than in developing the best 
possible general-purpose QE system) and in 
deploying the system as quickly as possible with 
acceptable costs. This greatly differs from an 
academic setting, in which the exploration of 
Machine Learning algorithms and metrics, as well 
as the discovery of novel features are the main 
focus (see for example (Specia & Soricut, 2013)). 



2.2 Related work 

In industry, QE (also known as “Confidence Esti-
mation (CE)” (Specia, 2011), (Blatz, et al., 2004) 
is most often used in sentence-based tasks, be-
cause all major translation environments use sen-
tences as the basic units of work. For this reason, 
word-based (see for example (Blatz, et al., 2004), 
(Ueffing & Ney, 2005)) or document-based QE 
(see for example (Soricut & Echihabi, 2010)) 
were not considered, although they are useful in, 
respectively, the development of interactive MT 
systems, and document ranking for obtaining con-
sistent high-quality output. The foundations of the 
work performed are described in (Callison-Burch 
et al., 2009), (Callison-Burch, et al., 2012) and 
(Specia et al., 2009b). We use their baseline sys-
tem with the 17 features they describe. 

3 Approach 

Our approach differs in the way data collection is 
set up, and in the fact that we use PE effort judg-
ments, although PE distance has been favored 
since the WMT 2013 campaign (Bojar, et al., 
2013). 

PE effort judgments were expressed according 
to the scores of (Callison-Burch, et al., 2012): 

1. The MT output is incomprehensible, with 
little or no information transferred accu-
rately. It cannot be edited, needs to be 
translated from scratch. 

2. About 50-70% of the MT output needs to 
be edited. It requires a significant editing 
effort in order to reach publishable level. 

3. About 25-50% of the MT output needs to 
be edited. It contains different errors and 
mistranslations that need to be corrected. 

4. About 10-25% of the MT output needs to 
be edited. It is generally clear and intelli-
gible. 

5. The MT output is perfectly clear and in-
telligible. It is not necessarily a perfect 
translation but requires little or no editing. 

The collection procedure outlined in WMT 
2009 (Callison-Burch et al., 2009) was simplified 
as follows: 

• By lack of post-edit data, neither high-
quality targeted or hTER-optimized 
(Snover et al., 2006) post-edits were pre-
sented during annotation.  

• No reference translation was presented – 
only the source sentence and MT output 
were displayed during annotation. Initial 

experiments showed that scores were as-
signed in too narrow a band when refer-
ence translations were provided. This po-
tentially hurts QE performance, so we de-
cided not to show them. 

• We did not measure intra-annotator 
agreement, since we were dealing with 
professional translators, who are expected 
to perform similar tasks on a regular ba-
sis. Note that we intend not to discard any 
data. 

• The obtained data was weighted accord-
ing to the scheme in (Callison-Burch, et 
al., 2012): more weight was given to 
judges with higher standard deviation 
from their own mean score to obtain a 
more even spread in the range [1, 5]. 

We used the following metrics to evaluate our 
data sets and QE systems: 

• Fleiss’ coefficient (Fleiss, 1971), a gener-
alization of Cohen’s kappa to multi-raters 
(Wisniewski et al., 2013) to measure the 
degree of agreement between annotators. 

• Mean Absolute Error (MAE) and Root 
Mean Squared Error (RMSE), standard 
metrics for regression, quantifying the 
amount by which the estimator differs 
from the true score (Specia et al., 2009a) 
(Wisniewski et al., 2013)  

• Pearson’s correlation, to express the lin-
ear correlation between predicted PE ef-
fort/PE distance and reference PE ef-
fort/PE distance. 

• TER (Snover et al., 2006), to calculate the 
number of edits required to change a hy-
pothesis translation into a reference trans-
lation. 

Furthermore, we use our own proprietary soft-
ware for feature extraction (based on (Eckart de 
Castilho & Gurevych, 2014)), and a LIBSVM ep-
silon-SVR with a Radial Basis Function Kernel, 
based on (Bethard et al., 2014). 

Subsequent development of web-scale LM fea-
tures is based on (Kozlova et al., 2016), the use of 
syntactic features is based on (Kozlova et al., 
2016) and (Andor, et al., 2016). 

4 Development of the baselines 

4.1 MT Systems 

The Machine Translation systems for which we 
develop QE, are based on Moses SMT (Koehn, et 
al., 2007), and on the work of (Neubig, 2013), and 



(Bisazza et al., 2011). The systems use extensive 
normalization, segmentation and classification 
routines, as well as some syntactic features. Since 
the focus is on QE, we will not go into further de-
tail, but we list the data set sizes (number of 
unique sentence pairs) to give a general idea of the 
MT systems’ potential output quality (see Table 
1). 

The domains consist of software-related mate-
rials, written in three distinctive styles. We will 
refer to them as DOM1, DOM2 and DOM3. DOM1 
consists of solution descriptions, written by devel-
opment and/or support staff, DOM2 relates to pub-
lished documentation, DOM3 is intended for soft-
ware training. 

DOMAIN DOM1 DOM2 DOM3 
DE-EN 2,613,489 22,375,900 - 
EN-DE 2,971,501 13,838,326 1,154,653 
EN-ZH - 2,557,042 439,980 
EN-ES - 3,456,275 366,423 
EN-PT - 2,942,499 298,687 
EN-FR - 4,944,361 343,352 
EN-RU - 2,108,723 455,203 
EN-IT - 3,198,050 - 
EN-JP 878,036 4,915,823 533,053 

Table 1: training set sizes MT systems 

4.2 Data collection 

The number of segments selected for each lan-
guage pair is listed in Table 2. For DOM1 we only 
have 3 data sets and MT systems, but it is the only 
domain for which Post-Edits were available at the 
time of writing (see validation in section 5).  

For each cell in the table, annotations from 3 
translators were collected. Average inter-annota-
tor agreement was at a level of 0.44 (Fleiss’ coef-
ficient) and can be considered fair according to 
(Landis & Koch, 1977). 

DOMAIN DOM1 DOM2 DOM3 TOTAL 
DE-EN 800 800 - 1,600 
EN-DE 800 800	 800	 2,400 
EN-ZH - 800	 800	 1,600 
EN-ES - 800	 800	 1,600 
EN-PT - 800	 800	 1,600 
EN-FR - 800	 800	 1,600 
EN-RU - 800	 800	 1,600 
EN-IT - 800	 - 800 
EN-JP 800 800	 800 2,400 

Table 2: training set sizes (PE Effort) QE sys-
tems 

4.3 Results 

The MAE and MRSE for the resulting systems are 
listed in Table 3. We tried several combinations of 
the data to find the optimum set of models: 

• for each data set, language + domain-
specific models were trained (listed in the 
white columns) 

• language-specific models (LANG row) 
were trained by combining all data avail-
able for each language pair. 

• language agnostic domain-specific mod-
els were trained by aggregating all data 
for each domain separately (ALL column 
in grey). 

• finally, a language-agnostic BULK model 
(BULK row in grey), with all available 
data was trained. 

The BULK model and the domain-specific 
models perform roughly on par, but in almost all 
cases, they are outperformed by the language-
specific and language + domain-specific models. 
Which is what we expected, but we wanted to 
know whether it would be operationally feasible 
to train one single model or one model per do-
main.  

In terms of performance, it is not clear which 
strategy, language-specific or language + do-
main-specific, to select. From a systems manage-
ment perspective though, having one language-
specific system for each language pair reduces de-
ployment complexity immensely, with only a mi-
nor decrease in performance as trade-off (except 
for the EN-DE language pair). 

5 Validation of the approach 

As stated in section 1, we fell back to the 2009 
WMT protocol (Callison-Burch et al., 2009) by 
lack of PE data. We surmised that a prohibitive 
number of Post-Edits would be required to obtain 
acceptable QE performance, so only 800 seg-
ments (per domain and language-pair) were sent 
out for PE effort judgment (to 3 annotators) to  
remain within budget. If we assume – for the sake 
of simplicity – that annotating a sentence with a 
PE effort judgment and post-editing a sentence are 

Table 3: QE test results 

DOMAIN DE-EN 
MAE/MRSE 

EN-DE 
MAE/MRSE 

EN-ZH 
MAE/MRSE 

EN-ES 
MAE/MRSE 

EN-PT 
MAE/MRSE 

EN-FR 
MAE/MRSE 

EN-IT 
MAE/MRSE 

ALL  
MAE/MRSE 

DOM1 0.65 0.88 0.68 0.88 - - - - - 0.73 0.97 
DOM2 0.54 0.86 0.94 1.16 0.79 1.06 0.63 0.98 0.77 0.99 0.54 0.76 0.62 0.87 0.76 1.03 
DOM3 - 0.80 1.05 0.68 0.95 0.54 0.85 0.86 1.10 0.63 0.95 - 0.79 1.03 
LANG 0.63 0.90 0.80 1.03 0.70 0.97 0.52 0.83 0.76 1.02 0.55 0.80 0.62 0.87 0.77 1.04 
BULK 0.77 1.04 



equally expensive, then we expect our boot-
strapped language + domain-specific systems to 
outperform QE systems trained on three times as 
many PE distance labels (2,400 data points). 

Figure 1 summarizes and extrapolates the num-
ber of data points it takes to obtain comparable 
correlations. The graphs clearly indicate that more 
than triple the data is required to get comparable 
QE performance. For EN-DE, we were able to ob-
tain around 80.000 post-edits. Even with this rel-
atively large data set, the baseline PE distance-
based QE system does not achieve the quality we 
get from a PE effort-based system.  

This corroborates our intuition that – starting 
with almost no data – it pays off to consider PE 
effort-based solutions when developing a base-
line. Obviously, it would go too far to state that 
using PE effort should be the preferred, authorita-
tive (Callison-Burch et al., 2009) approach, be-
cause there are too many intrinsic shortcomings to 
adopt it as a best practice. For example, the Pear-
son correlation we used to compare PE effort-
based and PE-distance based QE, expresses the 
extent to which a predicted entity (PE effort or PE 
distance) has a linear relationship with some hid-
den variable. For all we know, this hidden variable 
may be sentence length, instead of Post-Edit qual-
ity. There is also the issue of subjectivity at the an-
notator side. PE distance eliminates subjectivity, 
and can thus be expected to yield more consistent 
results. We believe however, that the use of pro-
fessional translators filtered out a lot of the noise 
that can be observed in the WMT campaigns. 

Conversely, the extrapolation gives us an idea 
about how many sentence pairs are needed to 
build a system that performs on par with PE effort-
based QE, using Post-Edits exclusively. This 
opens possibilities when training MT and QE sys-
tems in a data-rich (MT training data > 1M sen-
tence pairs) environment. It would be interesting 
to investigate whether an optimum split can be 
achieved to divide the data into a larger part that 

is used to train MT systems with, and a smaller 
part that can be used to generate pseudo post-edits 
(the PE distance between reference and MT-gen-
erated hypothesis would be measured). The aim 
would be to maximize QE quality while minimiz-
ing MT quality loss. With the available data set, 
the use of real Post-Edits versus pseudo Post-Ed-
its could be compared to validate such approach. 

 SYSTEM MAE PEARSON  
CORRELATION 

EN-IT BASELINE 0.628+/-0.029 0.460+/-0.050 
 +OOVS+WLM 0.631+/-0.026 0.463+/-0.027 

EN-FR BASELINE 0.543+/-0.024 0.367+/-0.028 
 +OOVS+WLM 0.549+/-0.017 0.354+/-0.009 

EN-PT BASELINE 0.766+/-0.012 0.416+/-0.010 
 +OOVS+WLM 0.763+/-0.010 0.422+/-0.021 

DE-EN BASELINE 0.597+/-0.014 0.486+/-0.015 
 +OOVS+WLM 0.597+/-0.012 0.484+/-0.032 

EN-RU BASELINE 0.624+/-0.015 0.335+/-0.030 
 +OOVS+WLM 0.624+/-0.006 0.336+/-0.018 

EN-ES BASELINE 0.525+/-0.018 0.293+/-0.022 
 +OOVS+WLM 0.522+/-0.018 0.304+/-0.012 

EN-JP BASELINE 0.699+/-0.012 0.526+/-0.013 
 +OOVS+WLM 0.719+/-0.012 0.499+/-0.014 

EN-DE BASELINE 0.800+/-0.013 0.514+/-0.019 
 +OOVS+WLM 0.794+/-0.009 0.520+/-0.006 

EN-ZH BASELINE 0.655+/-0.008 0.586+/-0.013 
 +OOVS+WLM 0.657+/-0.007 0.586+/-0.003 

AVG. BASELINE 0.649+/-0.006 0.442+/-0.008 
 +OOVS+WLM 0.651+/-0.005 0.441+/-0.006 
    

Table 4: comparison with and without OOVs and 
Web-scale LM 

6 Additional features 

Having obtained acceptable performance with a 
basic feature set, we added three features/feature 
sets to improve our models: technical OOVs, web-
scale Language Models (WLMs) and SyntaxNet 
features. 

6.1  Technical OOVs 

When applying QE to real-life data, we expect the 
presence of technical OOVs (Fishel & Sennrich, 
2014) to hurt performance for the following rea-
sons: (1) usually, technical OOVs are not mod-
elled in the MT system’s translation and language 
model, instead they are normalized or treated as 
OOVs to be copied verbatim into the target. If this 

Figure 1: extrapolation of required PE distance labels for comparable performance 
	 	



behaviour is not compensated for by the QE sys-
tem, sentences with technical OOVs will unright-
fully receive a penalty at lookup time; (2) in addi-
tion, technical OOVs, require a simple copy oper-
ation (if not resolved by the MT system), which 
makes the task of sentences containing OOVs eas-
ier, instead of more difficult 

We use a custom-made classifier learnt from 
manually annotated data, and pre-processed with 
manually constructed rules (Kluegl et al., 2016), 
to annotate the training data. 

6.2 Web-scale Language Models 

We further experimented with Web-scale Lan-
guage Models, as described in (Kozlova et al., 
2016). We use public data (mostly Wikipedia) and 
collect around 48M sentences for English. The ob-
tained gains are rather poor, probably because our 
language models are already quite big, and the ex-
tra out-of-domain data only adds little infor-
mation.  

6.3 SyntaxNet features 

As a final experiment, we parsed our data with 
SyntaxNet (Andor, et al., 2016) and followed the 
approach outlined by (Kozlova et al., 2016). We 
use their tree-based features, as well as their fea-
tures derived from Part-Of-Speech (POS) tags and 
dependency roles. Experiments were run on the 
EN-DE PE distance data set, because it was the 
only data set we had available at that time. 

Our final results are listed in Table 5. The qual-
ity jump obtained (7,000 vs. 70,000), and the in-
creasing difference between baseline (technical 
OOVs included for source and target) and best 
system, indicate that – in the long run – PE dis-
tance based QE remains worthwhile pursuing. 

SAMPLE 
SIZE 

FEATURES SET # MAE PEARSON  
CORRELATION 

700 BASELINE 19 0.269 +/ 0.003 0.258 +/- 0.017 
 + SYNTAX 43 0.264 +/ 0.001 0.318 +/- 0.005 
 + SYNTAX + WLM 45 0.267 +/- 0.002 0.309 +/- 0.012 

7,000 BASELINE 19 0.241 +/ -0.001 0.432 +/- 0.005 
 + SYNTAX 43 0.237 +/- 0.001 0.459 +/- 0.002 
 + SYNTAX + WLM 45 0.236 +/- 0.001 0.460 +/- 0.004 

70,000 BASELINE 19 0.229 +/- 0.001 0.504 +/- 0.002 
 + SYNTAX 43 0.219 +/- 0.001 0.548 +/- 0.002 
 + SYNTAX +WLM 45 0.217 +/- 0.001 0.556 +/- 0.002 

Table 5: final results on the EN-DE PE distance 
data set 

7 Discussion and future work 

We have described the development of QE sys-
tems with no access to post-edit data. While 
mainly building on the work previously done in 
the QE field, our contribution consists of the de-

velopment of a method to quickly build QE sys-
tems with minimal resources and a simplified an-
notation scheme. We observed that using around 
100k PE distance labels can produce a QE system 
that correlates equally strong with PE quality as a 
PE effort-based system trained on 800 sentence 
pairs. This is valuable information, as it allows for 
budget planning and opens opportunities to use 
pseudo Post-Edits instead of real Post-Edits. 

In the future, we plan to investigate the use of 
such pseudo Post-Edits and describe a method to 
obtain an optimum trade-off between MT quality 
and PE quality when operating in data-rich envi-
ronments. We will also further develop the syn-
tax-based features, using the +40 parsers that are 
made available through the SyntaxNet project. 
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