

Learning Morphological Normalization for Translation from and into Morphologically Rich Languages

Franck Burlot, François Yvon

May 29, 2017

EAMT, Prague, Czech Republic

Introduction

Target morphology difficulties

• Dissymmetry of both languages involved is hard to handle:

English	I will go by car.	Jan loves Hana.
Czech	pojed <mark>u</mark> aut <mark>em</mark> .	Han <mark>u</mark> miluje Jan.

• One English word can translate into several Czech words:

English	Czech
beautiful	krásný krásného krásnému krásném krásným krásná
	krásné krásnou krásní krásných krásnými

- Many sparsity issues (OOVs)
- The translation probability of a Czech word form is hard to estimate when its frequency is low in the training data.
- → Idea: Simplify the translation process by making Czech look like English (beautiful → krásnØ).
 → Assumption: Such a simplification could make translation easier from and into the morphologically rich language (MRL).

A Clustering Algorithm

Clustering the source-side MRL

- Goal: cluster together MRL forms that translate into the same target word(s).
- Words are represented as a lemma and a fine-grained PoS: autem \rightarrow auto+Noun+Neut+Sing+Inst
- We have one lemma and **f**, all the word forms in its paradigm.
- E is the complete English vocabulary.

Conditional entropy of the translation model

$$H(\mathbf{E}|\mathbf{f}) = \sum_{f \in \mathbf{f}} p(f)H(\mathbf{E}|f)$$
$$= \sum_{f \in \mathbf{f}} \frac{p(f)}{\log_2 |\mathbf{E}_{a_f}|} \sum_{e \in \mathbf{E}_{a_f}} p(e|f) \log_2 p(e|f)$$

Information Gain (IG)

- Start with an initial state where each form in ${\bf f}$ is a singleton cluster.
- Repeatedly try to merge cluster pairs (f₁ and f₂) so as to reduce the conditional entropy.
- f' is the resulting cluster from the merge.

Compute IG for every cluster pairs

 $\begin{aligned} \mathsf{IG}(f_1, f_2) &= p(f_1) H(\mathbf{E}|f_1) \\ &+ p(f_2) H(\mathbf{E}|f_2) \\ &- p(f') H(\mathbf{E}|f') \end{aligned}$

- In practice, the algorithm is applied at the level of PoS, rather than individual lemmas.
- For a given PoS, all lemmas have the same number of possible morphological variants (cells in their paradigm).
- Our goal is to cluster the paradigm cells.
- Since we can't set the optimal number of clusters in advance, we opted for an agglomerative clustering procedure.

Initial State

• Input to the algorithm:

Word Form	Unigram	Alignments	Entropy
kočka+Noun+Sing+Nominative	0.01	cat (0.9), kitten (0.1)	0.47
kočka+Noun+Sing+Accusative	0.02	cat (0.8), kitten (0.2)	0.72
pes+Noun+Sing+Nominative	0.05	dog (0.95), puppy (0.05)	0.29
pes+Noun+Sing+Accusative	0.03	dog (0.9), puppy (0.1)	0.47
kočka+Noun+Plur+Nominative	0.09	cats (0.8), kittens (0.15), cat (0.005)	0.56
pes+Noun+Plur+Nominative	0.09	dogs (0.9), puppies (0.08), dog (0.002)	0.28

• Input to the algorithm:

Word Form	Unigram	Alignments	Entropy
kočka+Noun+Sing+Nominative	0.01	cat (0.9), kitten (0.1)	0.47
kočka+Noun+Sing+Accusative	0.02	cat (0.8), kitten (0.2)	0.72
pes+Noun+Sing+Nominative	0.05	dog (0.95), puppy (0.05)	0.29
pes+Noun+Sing+Accusative	0.03	dog (0.9), puppy (0.1)	0.47
kočka+Noun+Plur+Nominative	0.09	cats (0.8), kittens (0.15), cat (0.005)	0.56
${\sf pes+Noun+Plur+Nominative}$	0.09	dogs (0.9), puppies (0.08), dog (0.002)	0.28

• When we start, each cluster contains a singleton word form:

Word Form	Unigram	Alignments	Entropy
kočka+ <mark>Noun+0</mark>	0.01	cat (0.9), kitten (0.1)	0.47
kočka+Noun+1	0.02	cat (0.8), kitten (0.2)	0.72
pes+Noun+0	0.05	dog (0.95), puppy (0.05)	0.29
pes+Noun+1	0.03	dog (0.9), puppy (0.1)	0.47
kočka+Noun+2	0.09	cats (0.8), kittens (0.15), cat (0.005)	0.56
pes+Noun+2	0.09	dogs (0.9), puppies (0.08), dog (0.002)	0.28

• Where Noun+0 = {Sing+Nominative}

Lemma-level IG Matrices

• Compute the IG obtained for merging kočka+Noun+0 and kočka+Noun+1:

 $\begin{aligned} IG(kočka+Noun+0, kočka+Noun+1) &= p(kočka+Noun+0)H(\mathbf{E}|kočka+Noun+0) \\ &+ p(kočka+Noun+1)H(\mathbf{E}|kočka+Noun+1) \\ &- p(kočka+Noun+0:1)H(\mathbf{E}|kočka+Noun+0:1) \end{aligned}$

Lemma-level IG Matrices

• Compute the IG obtained for merging kočka+Noun+0 and kočka+Noun+1:

 $\begin{aligned} IG(kočka+Noun+0, kočka+Noun+1) &= p(kočka+Noun+0)H(\mathbf{E}|kočka+Noun+0) \\ &+ p(kočka+Noun+1)H(\mathbf{E}|kočka+Noun+1) \\ &- p(kočka+Noun+0:1)H(\mathbf{E}|kočka+Noun+0:1) \end{aligned}$

 Repeat for every pairs of clusters to obtain the lemma-level IG Matrix for *kočka*:

	0	1	2
0		0.0008	-0.022
1	0.0008		-0.027
2	-0.022	-0.027	

- All lemma-level matrices are combined in order to get a PoS-level matrix *M*.
- We introduce two ways to obtain *M*.

PoS-level Matrices: method 1

• Sum over all the lemma-level matrices to obtain the PoS-level matrix *M*:

	0	1	2
0		0.0008	-0.022
1	0.0008		-0.027
2	-0.022	-0.027	

kočka

		0	1	2
r	0		0.0024	-0.085
-	1	0.0024		-0.071
	2	-0.085	-0.071	

•		0.0021	0.000
1	0.0024		-0.071
2	-0.085	-0.071	

pes

Noun

	0	1	2
0		0.0032	-0.107
1	0.0032		-0.098
2	-0.107	-0.098	

M can be treated like a similarity matrix and updated using a procedure reminiscient of the linkage clustering algorithm:

$$M(c_1, c_2) = \frac{\sum_{f_1 \in c_1} \sum_{f_2 \in c_2} M(f_1, f_2)}{|c_1| \times |c_2|}$$

This second method gives a better runtime with nearly no impact on the produced clustering. (see experimental results) Merge

0 1 2 0 0.0032 -0.107 1 0.0032 -0.098 2 -0.107 -0.098

• Get the argmax from PoS-level matrix M:

$$rg\max_{i,j} M(i,j) = 0,1$$

• Does M[0,1] exceed the threshold value m = 0?

	Noun						
	0	1	2				
0		0.0032	-0.107				
1	0.0032		-0.098				
2	-0.107	-0.098					

• Get the argmax from PoS-level matrix M:

$$rg\max_{\substack{i,j}} M(i,j) = 0,1$$

- Does M[0,1] exceed the threshold value m = 0? **YES**
- Merge Noun+0 and Noun+1 in the initial set of clusters.
- New set of clusters for PoS Noun: {Noun+0, Noun+1}

Repeat with the new set of clusters

• As a result, we obtain the new PoS-level matrix M:

• Get the argmax:

$$rg\max_{i,j} M(i,j) = 0,1$$

• Since M[0,1] does not exceed m = 0, the procedure stops.

Result of the procedure

In the end, we obtain the following clustering of noun paradigms, that can be applied to the MRL in different ways:

- Cluster Noun+0: {Sing+Nominative, Sing+Accusative}
- Cluster Noun+1: {Plur+Nominative}

- Alignments used to train normalization are learnt with Fastalign.
- Filter out lemmas appearing less than 100 times and word forms with a frequency lower than 10.
- We set the minimum IG for a merge to 0.

Experiments

Setup

- Moses systems
- 4-gram LMs with KenLM
- Datasets:

	cs2en		en2cs		cs2fr		ru2en	
Setup	parall	mono	parall	mono	parall	mono	parall	mono
Small	190k	150M	190k	8.4M	622k	12.3M	190k	150M
Larger	1M	150M	1M	34.4M				
Largest	7M	250M	7M	54M				

- MRL clustering is performed independently for each dataset (except Larger and Largest Czech systems trained on Larger).
- Czech PoS obtained with Morphodita
- Russian PoS with TreeTagger

Table 1: Czech nominal clusters optimized towards English (Larger)

NOUNS CS-EN							
Cluster 0	Cluster 1	Cluster 13	Cluster 16	Cluster 12			
		Fem+Sing+Nominative	Masc+Sing+Nominative	Neut+Plur+Nominative			
	Fem+Sing+Vocative		Masc+Sing+Vocative				
		Fem+Sing+Accusative	Masc+Sing+Accusative	Neut+Plur+Accusative			
		Fem+Sing+Genitive	Masc+Sing+Genitive	Neut+Plur+Genitive			
		Fem+Sing+Dative	Masc+Sing+Dative	Neut+Plur+Dative			
		Fem+Sing+Prepos	Masc+Sing+Prepos	Neut+Plur+Prepos			
Fem+Dual+Instru		Fem+Sing+Instru	Masc+Sing+Instru	Neut+Plur+Instru			

Table 2: Some personal pronoun clusters (larger)

PERSONAL PRONOUNS CS-EN				
Cluster 7 Cluster 32				
Sing+Pers1+Nomin	Sing+Pers1+Accus			
	Sing+Pers1+Dative			
	Sing+Pers1+Prepos			
	Sing+Pers1+Genitive			
	Sing+Pers1+Instru			

From Normalized Czech to English

	Small System		Larger System		Largest System	
System	BLEU	OOV	BLEU	OOV	BLEU	00V
cs2en (ali cs)	21.26	2189	23.85	1878	24.99	1246
cx2en (ali cx)	22.62 (+1.36)	1888	24.57 (+0.72)	1610	24.65 (-0.43)	988
cs2en (ali cx)	22.19 (+0.93)	2152	24.14 (+0.29)	1832	25.35 (+0.36)	1212
cx2en (ali cs)	22.34 (+1.08)	1914	24.36 (+0.51)	1627		
cx2en (100 freq)	22.82 (+1.56)	1893	24.85 (+1.00)	1614		
cx2en (lemma M sum)	22.39 (+1.13)	1860				
$cx2en (m = -10^{-4})$			24.44 (+0.59)	1604		
$cx2en (m = 10^{-4})$			24.05 (+0.20)	1761		
cx2en (manual)			24.46 (+0.61)	1623		

Table 3: Czech-English Systems (newstest2016)

- cs2en: Moses is trained with fully inflected Czech
- cx2en: Moses with normalized Czech
- ali cs: Alignments trained with fully inflected Czech
- ali cx: Alignments trained with normalized Czech
- 100 freq: keep initial word forms for 100 most frequent words
- manual: Manual normalization (introduced earlier)

 Table 4:
 Russian-English systems (Newstest 2016)

System	BLEU	00V
ru-en (ali ru)	19.76	2260
rx-en (ali rx)	21.02 (+1.26)	2033
rx-en (ali ru)	20.92 (+1.16)	2033
ru-en (ali rx)	20.53 (+0.77)	2048
rx-en (100 freq)	20.89 (+1.13)	2026

• We now have two MRL involved.

 Table 5:
 Czech-French systems (Newstest 2013)

System	BLEU	00V	
cs2fr (ali cs)	19.57	1845	
cx2fr (ali cx)	20.19 (+0.62)	1592	

2-step Translation into Czech with Morphological Reinflection

Figure 1: RNN architecture for target-side morphology prediction.

• Given a lemma and a PoS, get the word form (dictionary).

	Small System		ı	Larger System			Largest System		
	BLEU ↑	BEER ↑	$CTER\downarrow$	BLEU ↑	BEER ↑	CTER \downarrow	BLEU ↑	BEER ↑	$CTER\downarrow$
en2cs (ali cs)	15.21	0.512	0.624	17.42	0.531	0.602	19.14	0.543	0.582
en2cs (ali cx)	15.54	0.516	0.617	17.55	0.532	0.597	19.23	0.544	0.578
en2cx (1-best)	16.07	0.520	0.606	18.00	0.535	0.589	19.19	0.545	0.573
en2cx (n-best)	16.37	0.521	0.601	17.41	0.529	0.591	19.48	0.547	0.570
en2cx (nk-best)	16.93	0.525	0.602	18.81	0.540	0.588	19.95	0.548	0.572

Table 6: BLEU scores for English-Czech (Newstest 2016)

- 1-best: 1-best MT hypothesis is reinflected
- n-best: 300-best MT hypothesis reinflected, then rescored using a LM trained with fully inflected Czech
- nk-best: same as above, add 5-best hypothesis from reinflection system.

Conclusion

- Providing more symmetry between analytical and synthetical languages helps to improve machine translation.
- Plain cluster IDs can be used separately and represent the grammatical content of a source word that is relevant to a target word.
- The implementation of the normalization system is available at https://github.com/franckbrl/bilingual_morph_normalizer.

Table 7:LIMSI en2lv systemsTable 8:LIMSI en2cs systemsat WMT'2017at WMT'2017

	newsdev2017	newstest2017		newstest2016	newstest2017
baseline	22.48	15.22	baseline	24.24	19.89
factored	24.19	16.36	factored	24.59	20.54

- nmtpy system enables the prediction of two factors.
- Our system predicts normalized words (BPEs) and PoS.
- Cluster IDs are split from the lemmas (koč@@ ka+N+7 \rightarrow koč@@ ka@@ N+7).
- n-best hypothesis from the factored MT system and k-best hypothesis from the dictionary are then rescored using a words-to-words system.

Thank you for your attention!

Franck Burlot, François Yvon *EAMT*, *Prague*, *Czech Republic*

