Corpus Search Tools

Sandra Kübler
Dept. of Linguistics, Indiana
Types of Information

1. words alone
2. words + lemmata
3. words + morphology
4. words + POS tags
5. words + syntactic structures
6. words + meanings
Types of Information

1. words alone
2. words + lemmata
3. words + morphology
4. words + POS tags
5. words + syntactic structures
6. words + meanings

requirements for text:

- for 1.: raw text
- for 2.-6.: annotated text
Types of Information

1. words alone
2. words + lemmata
3. words + morphology
4. words + POS tags
5. words + syntactic structures
6. words + meanings

requirements for text:
▶ for 1.: raw text
▶ for 2.-6.: annotated text

requirements for search tools:
▶ for 1.: concordancer
▶ for 2.-4.: position based query tool
▶ for 5.: syntactic query tool
Search Tools

- Mark Davies’ online concordancer for BNC and Corpus for American English (coming soon)
 http://corpus.byu.edu/
- Scott Piao’s MLCT (Multi-Lingual Toolkit)
 https://sites.google.com/site/scottpiaosite/software/mlct
 allows user to concordance text and web pages
- Steven Bird’s Treebank Search
 http://nltk.ldc.upenn.edu:8080/ts/
- TIGERSearch
 http://www.ims.uni-stuttgart.de/projekte/TIGER/TIGERSearch/
 requires the import of corpora
- Stephan Kepser’s Finite Structure Query Tool
 http://www.tcl-sfs.uni-tuebingen.de/fsq/
 extremely powerful, hard to use
Where corpus examples cannot help

- no negative examples
 exception: SINBAD (collection of interesting example sentences in German)
- no proof of non-existence
 corpora are limited in size, genre, etc.
- for low-frequency events, no guarantee of grammaticality
TIGERSearch

graphical search interface:

- allows to search in two-dimensional tree structures
- 2 forms of query design:
 - text mode (logical query language):
 #n1:[cat="SIMPX"] >
 [word=("werden"|"wird")]
 & #n1 >*[pos="ADJD"]
 - graphical mode (construct partial trees)

- searchable relations: direct dominance, dominance (transitive closure), direct linear precedence, linear precedence (transitive closure)
- limited negations
Prerequisites

- find annotated corpus – annotated with the phenomenon of interest
- in a format that TIGERSearch knows
- import corpus via TIGERRegistry
- read corpus documentation!
- start TIGERSearch
 on mac in terminal:

  ```bash
  cd /Applications/TIGERSearch/lib
  ./runTS&
  ```
- load corpus: Corpus > open
Searching

- search for the words "es gibt" (there is)
- search for sequence of POS tags: VVFIN PTKVZ
- search for sequence of POS tags: VVFIN PTKVZ but not necessarily adjacent
- search for NX with a PX modifier
- search for ADVX that is a modifier of the direct object (OA)
- search for sentences that have the direct object before the subject (ON)
- search for an initial field that has an NX or a PX as daughter
Searching (2)

- search for sentences with subject in first position
- search for sentences with subject in other positions
- search for coordinations of unlikes involving a noun phrase
- search for coordinations of unlikes where the noun phrase is NOT the first conjunct
- search for fronted verb complex
- search for discontinuous (interrupted) NX
- search for a MF directly dominated by a SIMPX or with an FKOORD in between
Types of Negation

- negated node values (not NX)
- node category is not specific label (cat \(\neq\) NX)
 BUT: the means look for an existing node that is not an NX
- negated edge (VF does not dominate NX)
 BUT: this means, there is a node VF, and a node NX, and they are not mother-daughter
- negated precedence (find occurrences of 'ich' that do not precede 'bin')
Limitations of TIGERSearch

- we can only search for phenomena that are present in the annotation

ex.: the Penn tagset does not distinguish between prepositions and subordinating conjunctions

- we cannot search for phenomena that involve elided or deleted words, phrases, etc.

- we cannot search for subjectless sentences, e.g. Ihm ist kalt. (To him is cold.)

 approximately: find all trees which do not have an NP node that has "subject" as function label

- we cannot search for coordinated sentences with a subject gap in the second conjunct
Limitations of TIGERSearch

- we can only search for phenomena that are present in the annotation
 ex.: the Penn tagset does not distinguish between prepositions and subordinating conjunctions
- we cannot search for phenomena that involve elided or deleted words, phrases, etc.
Limitations of TIGERSearch

▶ we can only search for phenomena that are present in the annotation
 ex.: the Penn tagset does not distinguish between prepositions and subordinating conjunctions
▶ we cannot search for phenomena that involve elided or deleted words, phrases, etc.
 ▶ we cannot search for subjectless sentences, e.g. *Ihm ist kalt.* (To him is cold.)
 approximately: find all trees which do not have an NP node that has ”subject” as function label
Limitations of TIGERSearch

▶ we can only search for phenomena that are present in the annotation
ex.: the Penn tagset does not distinguish between prepositions and subordinating conjunctions

▶ we cannot search for phenomena that involve elided or deleted words, phrases, etc.
 ▶ we cannot search for subjectless sentences, e.g. *Ihm ist kalt.* (To him is cold.)
 approximately: find all trees which do not have an NP node that has ”subject” as function label

▶ we cannot search for coordinated sentences with a subject gap in the second conjunct
Limitations of TIGERSearch

- reason: variables in TIGERSearch are existentially quantified
 i.e. they allow for searches "there exists a node X that ..."

reason: variables in TIGERSearch are existentially quantified
i.e. they allow for searches "there exists a node X that ..."
Limitations of TIGERSearch

- reason: variables in TIGERSearch are existentially quantified
 i.e. they allow for searches "there exists a node X that ..."
- but: negation can only be attached to existing nodes:
 find all trees that have a node before the main verb
 which is not an NP with function label subject
Limitations of TIGERSearch

- reason: variables in TIGERSearch are existentially quantified
 i.e. they allow for searches "there exists a node X that ..."
- but: negation can only be attached to existing nodes:
 find all trees that have a node before the main verb which is not an NP with function label subject
- why this restriction?
 search complexity
Steven Bird’s Treebank Search

- online search tool
- restricted to corpora that are provided
- powerful search language
- extremely fast
Query Language

<expr> ::= <term> [<term>]*
<term> ::= <axis-operator><label> [<filter-expr>]
<filter-expr> ::= "[" <filter-element> [(AND|OR) <filter-element>]]* "]"
<filter-element> ::= [NOT] (<term> | <expr>)
<label> ::= PennTreebankLabel | word | punctuation
Query Language

Axis Operators
\ Ancestor
// Descendant
\ Parent
/ Child
-- > Following
– > Immediate Following
===> Following Sibling
=> Immediate Following Sibling
< -- Preceding
< – Immediate Preceding Sibling
<=== Preceding Sibling
<== Immediate Preceding Sibling
Query examples

- search for the words "as soon as"
- search for the POS sequence PDT DT
- search for the POS sequence PDT DT, not necessarily adjacent
- search for the word "can" not used as a noun
- search for sentences that have a VP as the root
- search for a VP that has a PP modifier
- search for an NP that does not have an NN inside
- search for temporal NPs
Searching

- search for sentences with a fronted PP
- search for a coordinated VP
- search for coordinations of unlikes involving a noun phrase
- search for coordinations of unlikes not involving an NP but a PP
- search for a UCP that dominates an NP and a PP so that the NP precedes the PP
- search for an NP that is dominated either directly by a VP or with a UCP in between
Searching

- search for sentences with a fronted PP /S/PP==NP-SBJ
- search for a coordinated VP
- search for coordinations of unlikes involving a noun phrase
- search for coordinations of unlikes not involving an NP but a PP
- search for a UCP that dominates an NP and a PP so that the NP precedes the PP
- search for an NP that is dominated either directly by a VP or with a UCP in between
Searching

- search for sentences with a fronted PP
 \[S/PP \Rightarrow NP\text{-}SBJ\]
- search for a coordinated VP
 \[//VP[CC\text{ OR }$,]//\]
- search for coordinations of unlikes involving a noun phrase
- search for coordinations of unlikes not involving an NP but a PP
- search for a UCP that dominates an NP and a PP so that the NP precedes the PP
- search for an NP that is dominated either directly by a VP or with a UCP in between
Searching

› search for sentences with a fronted PP
 /S/PP===>NP-SBJ

› search for a coordinated VP
 //VP/[CC OR /$,]

› search for coordinations of unlikes involving a noun phrase
 //UCP/NP

› search for coordinations of unlikes not involving an NP but a PP

› search for a UCP that dominates an NP and a PP so that the NP precedes the PP

› search for an NP that is dominated either directly by a VP or with a UCP in between
Searching

- search for sentences with a fronted PP
 \[S/PP\rightarrow NP\text{-}SBJ\]
- search for a coordinated VP
 \[VP/\text{CC OR }/\$,\]
- search for coordinations of unlikes involving a noun phrase
 \[UCP/NP\]
- search for coordinations of unlikes not involving an NP but a PP
 \[UCP[PP AND NOT/NP]\]
- search for a UCP that dominates an NP and a PP so that the NP precedes the PP
- search for an NP that is dominated either directly by a VP or with a UCP in between
Searching

- search for sentences with a fronted PP
 \(/S/PP===>NP-SBJ\)
- search for a coordinated VP
 \(/VP[/CC OR /$,]\)
- search for coordinations of unlikes involving a noun phrase
 \(/UCP/NP\)
- search for coordinations of unlikes not involving an NP but a PP
 \(/UCP/[PP AND NOT/NP]\)
- search for a UCP that dominates an NP and a PP so that the NP precedes the PP
 \(/UCP/NP===>PP\)
- search for an NP that is dominated either directly by a VP or with a UCP in between
Searching

- search for sentences with a fronted PP
 /S/PP==>NP-SBJ
- search for a coordinated VP
 //VP[/CC OR /$[,]]
- search for coordinations of unlikes involving a noun phrase
 //UCP/NP
- search for coordinations of unlikes not involving an NP but a PP
 //UCP[/PP AND NOT/NP]
- search for a UCP that dominates an NP and a PP so that the NP precedes the PP
 //UCP/NP==>PP
- search for an NP that is dominated either directly by a VP or with a UCP in between
 //NP[\VP OR \UCP\VP]
Differences between TIGERSearch and TS

- You can load new corpora into TIGERSearch but not into TS
- TIGERSearch has a relative loose definition of tree
 TS only works on real trees (no insertions, no crossing branches)
- TS can look for phrases that do NOT have a certain daughter
 TIGERSearch can only look for phrases that have a node that is not a certain phrase
 e.g. search for a VP without a PP
- TIGERSearch can have “underspecified” nodes
 TS cannot
 e.g. search for a UCP in which the NP daughter is followed by something (not an NP)
Differences betw. TIGERSearch and TS (2)

- TS makes a difference between precedence and precedence among siblings. TIGERSearch does only in the textual search.
- TIGERSearch has variables, TS does not. ⇒ TS cannot formulate two restrictions between two nodes.
- TIGERSearch can refer to the first/last terminal daughter of a node. TS cannot.
- TIGERSearch can define the arity of a node. TS cannot.