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Outline

Statistical Machine Translation:

◮ Word order issues:
◮ of PBMT, RBMT and hierarchical MT.

◮ Morphology issues of PBMT:
◮ Along the whole MT pipeline.
◮ With focus on target-side rich morphology.

Wild Experimenting:

◮ Motivation for experiment management.

◮ Key features of Eman.

2 / 47
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◮ a parallel corpus (Czech sent =
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Warm-Up: Prove Google is Phrase-Based

Natáhnout bačkory. Kick the bucket.
√√√
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Jan s Maríı se včera v kostele svatého Ducha vzali.
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PBMT vs. RBMT
(Prove Systran is not phrase-based.)
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√√√

Systran Imagine.
√√√
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Google Imagine a house before. ×××
Systran Imagine a house.

√√√

Stell dir ein kleines Haus vor.
Google Imagine a small house in front. ×××
Systran Imagine a small house.

√√√

Stell dir ein kleines Haus mit vierzehn Fenster vor.
Google Imagine a small house with fourteen windows in front. ×××
Systran Imagine a small house with fourteen windows.

√√√
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Limitations of RBMT
◮ “Pump” grammatical constructions, not just words.
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, vor.

⇒ Imagine a house, which has a garden.
√√√

Stell dir ein Haus,
das einen Garten,

der berühmt ist
, hat

, vor.

⇒ Place to you a house, which a garden, which has is famous, forwards. ×××

◮ What’s worse: non-grammatical input breaks it.

Stell dir ein Haus, das ⊘ Garten hat, vor.
⇒ Place to you a house, the garden intends. ×××
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Constituency vs. Dependency
Constituency trees (CFG) represent only bracketing:
= which adjacent constituents are glued to each other.
Dependency trees represent which words depend on which.
+ usually, some agreement/conditioning along the edge.

Constituency Dependency
John (loves Mary)
John VP(loves Mary)

loves
b

bb
"

""

John MaryS
a

a
aa

!
!

!!

NP

John

VP
b
bb

"
""

V

loves

NP

Mary John loves Mary
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What Dependency Trees Tell Us
Input: The grass around your house should be cut soon.
Google: Trávu kolem vašeho domu by se měl sńıžit brzy.

◮ Bad lexical choice for cut = sekat/sńıžit/krájet/řezat/. . .
◮ Due to long-distance lexical dependency with grass.
◮ One can “pump” many words in between.
◮ Could be handled by full source-context (e.g. maxent) model.

◮ Bad case of tráva.
◮ Depends on the chosen active/passive form:

active⇒accusative passive⇒nominative
trávu . . . byste //se měl posekat tráva . . . by se měla posekat

tráva . . . by měla být posekána

Examples by Zdeněk Žabokrtský, Karel Oliva and others.
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Tree vs. Linear Context

The grass around your house should be cut soon

◮ Tree context (neighbours in the dependency tree):
◮ is better at predicting lexical choice than n-grams.
◮ often equals linear context:

Czech manual trees: 50% of edges link neighbours,
80% of edges fit in a 4-gram.

◮ Phrase-based MT is a very good approximation.
◮ Hierarchical MT can even capture the dependency in
one phrase:

X →< the grass X should be cut, trávu X byste měl posekat >
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“Crossing Brackets”
◮ Constituent outside its father’s span causes “crossing
brackets.”

◮ Linguists use “traces” ( 1 ) to represent this.
◮ Sometimes, this is not visible in the dependency tree:

◮ There is no “history of bracketing”.
◮ See Holan et al. (1998) for dependency trees including

derivation history.
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Non-Projectivity
= a gap in a subtree span, filled by a node higher in the tree.
Ex. Dutch “cross-serial” dependencies, a non-projective tree
with one gap caused by saw within the span of swim.

. . . dat
. . . that

Jan
John

kinderen
children

zag
saw

zwemmen
swim

. . . that John saw children swim.

◮ 0 gaps = projective tree ⇒ representable in CFG.
◮ ≤ 1 gap & “well-nested” ⇒ mildly context sensitive
(TAG). See Kuhlmann and Möhl (2007) and Holan et al. (1998).
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Why Non-Projectivity Matters?

◮ CFGs cannot handle non-projective constructions:

Imagine John grass saw being cut!

◮ No way to glue these crossing dependencies together:
◮ Lexical choice:

X →< grass X being cut, trávu X sekat >
◮ Agreement in gender:

X →< John X saw, Jan X viděl >
X →< Mary X saw,Marie X viděla >

◮ Phrases can memorize fixed sequences containing:
◮ the non-projective construction
◮ and all the words in between! (⇒ extreme sparseness)

12 / 47



Is Non-Projectivity Severe?
Depends on the language.
In principle unlimited:

◮ Czech allows long gaps as well as many gaps in a tree.

Proti odḿıtnut́ı
Against dismissal

se
aux-refl

źıtra
tomorrow

Petr
Peter

v práci
at work

rozhodl
decided

protestovat
to object

Peter decided to object against the dismissal at work tomorrow.

In treebank data:

⊖ 23% of Czech sentences contain a non-projectivity.

⊕ 99.5% of Czech sentences are well nested with ≤ 1 gap.
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Parallel View
◮ Ignoring formal linguistic grammar, do we have to
reorder beyond swapping constituents?

◮ This is the ITG (Hiero with ≤ 2 nonterminals) limitation.

English-Czech Parallel Sents
Domain Alignment Total Beyond ITG
WSJ manual Sure 515 2.9%
WSJ manual S+P 515 15.9%
News GIZA++, gdfa 126k 10.6%
Mixed GIZA++, gdfa 6.1M 3.5%

◮ searched for (discontinuous) 4-tuples of alignment points in forbidden shapes (3142 and
2413).

◮ additional alignment links were allowed to intervene (and could force different segmentation
to phrases) ⇒ we overestimate.

◮ no larger sequences of tokens were considered as a unit ⇒ we underestimate.
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Don’t Care Approach (cs→en)
Input: Źıtra se v kostele Sv. Trojice budou brát Marie a Honza.
Ref: Mary and John get married in the Holy Trinity church tomorrow.
Goog: Tomorrow is the Holy Trinity church will take Mary and John.

◮ Bad lexical choice:
brát = take vs. brát se = get married

◮ Superfluous is:
◮ se is very often mis-aligned with the auxiliary is.

The straightforward bag-of-source-words model fails here:

◮ se is very frequent and it often means just with.
◮ An informed model would use the source parse tree.

◮ Remember to use a non-projective parser!
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Tentative Conclusion on Reordering

For Indo-European languages, PBMT seems acceptable.

◮ Dependencies are most often local enough.

◮ Distant dependencies can be non-projective
⇒ Hierarchical model does not help much either.

Other languages?

◮ We will try Tamil (Dravidian language, SOV) in the lab.

◮ ...but you’ll see we will first hit another issue:
rich morphology.
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Rich Morphology in PBMT Pipeline

◮ Word Alignment.

◮ Extraction of Translation Units.

◮ Translation of New Text.

◮ (Reordering.)

◮ Language Modelling.

◮ MT Evaluation.

◮ Model Optimization.
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Rich Morphology in PBMT Pipeline
◮ Word Alignment. ⇒ Lab: Stem, chop (or lemmatize or LEAF).

◮ Extraction of Translation Units.

◮ Translation of New Text.

◮ New forms of known words. ⇒ Here: Two-Step; Lab: Split+Join.

◮ Unknown words. ⇒ Word derivations in Treex.

◮ (Reordering.)
◮ Language Modelling.

◮ Sparser unigrams and higher-grams (reordering).

◮ MT Evaluation. ⇒ Here: Problems of BLEU.
◮ Fewer matches with the reference.

◮ Model Optimization. ⇒ Here: SemPOS+BLEU.

. . . rich morphology makes everything harder.
17 / 47



Morphological Explosion in Czech
(In)flective lang.: suffix encodes many categories:

◮ Czech nouns and adjs: 7 cases, 4 genders, 3 nums, . . .
◮ Czech verbs: gender, num, aspect (im/perfective), . . .

I saw two green striped cats .
já pila dva zelený pruhovaný kočky .

pily dvě zelená pruhovaná koček
. . . dvou zelené pruhované kočkám
viděl dvěma zeleńı pruhovańı kočkách
viděla dvěmi zeleného pruhovaného kočkami
. . . zelených pruhovaných

uviděl zelenému pruhovanému
uviděla zeleným pruhovaným
. . . zelenou pruhovanou

viděl jsem zelenými pruhovanými
viděla jsem . . . . . .
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Result: Out-of-Vocabulary Rates
Dataset n-grams Out of: Corpus Voc. Phrase-Table Voc.
(# Sents) Language 1 2 1 2

Czech 2.2% 30.5% 3.9% 44.1%
7.5M English 1.5% 13.7% 2.1% 22.4%

Czech + English input sent 1.5% 29.4% 3.1% 42.8%
Czech 6.7% 48.1% 12.5% 65.4%

126k English 3.6% 28.1% 6.3% 45.4%
Czech + English input sent 5.2% 46.6% 10.6% 63.7%
Czech lemmas 4.1% 36.3% 5.8% 52.6%

126k English lemmas 3.4% 24.6% 6.9% 53.2%
Czech + English input lemmas 3.1% 35.7% 5.1% 38.1%
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◮ Significant vocabulary loss during phrase extraction:
◮ e.g. 2.2%→3.9% for 7.5M Czech.

◮ OOV of Czech forms ∼twice as bad as in English.
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Two-Step Moses 1/2
◮ English → lemmatized Czech

◮ meaning-bearing morphology preserved
◮ max phrase len 10, distortion limit 6
◮ large target-side (lemmatized LM)

◮ Lemmatized Czech → Czech
◮ max phrase len 1, monotone

0 Src after a sharp drop

1
Mid po+6 ASA1.prudký NSA-.pokles
Gloss after+voc adj+sg...sharp noun+sg...drop

2 Out po prudkém poklesu

◮ Only 1-best output passed, lattices on our todo list.
◮ See also works by Alex Fraser for targetting German.
◮ Alternative: Exponential models (Subotin, 2011).
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Two-Step Moses 2/2
Data Size Simple Two-Step Diff

Parallel Mono BLEU SemPOS BLEU SemPOS B.S.
126k 126k 10.28±0.40 29.92 10.38±0.38 30.01 րր
126k 13M 12.50±0.44 31.01 12.29±0.47 31.40 ցր
7.5M 13M 14.17±0.51 33.07 14.06±0.49 32.57 ցց

Manual micro-evaluation of ցր, i.e. 12.50±0.44 vs. 12.29±0.47:

Two- Both Both
-Step Fine Wrong Simple Total

Two-Step 23 4 8 - 35
Both Fine 7 14 17 5 43
Both Wrong 8 1 28 2 39
Simple - 3 7 23 33
Total 38 22 60 30 150

◮ Each annotator weakly prefers Two-step
◮ but they don’t agree on individual sentences.

21 / 47



Effect of Rich Morphology on BLEU

◮ Large vocabulary impedes the performance of BLEU.

En→Cs Systems Various Language Pairs
WMT08, WMT09 WMT08, WMT09, MetricsMATR
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⇒ BLEU does not correlate with human rank if below ∼20.
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Reason 1: Focus on Forms

SRC Prague Stock Market falls to minus by the end of the trading day
REF pražská burza se ke konci obchodováńı propadla do minusu
cu-bojar praha stock market klesne k minus na konci obchodńıho dne

pctrans praha trh cenných paṕır̊u padá minus do konce obchodńıho dne

◮ Only a single unigram in each hyp. confirmed by the
reference.

◮ Large chunks of hypotheses are not compared at all.

Confirmed by Reference Yes Yes No No
Contains Errors Yes No Yes No
Running words 6.34% 36.93% 22.33% 34.40%
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Reason 2: Sequences Overvalued

BLEU overly sensitive to sequences:

◮ Gives credit for 1, 3, 5 and 8 four-, three-, bi- and
unigrams,

◮ Two of three serious errors not noticed,

⇒ Quality of cu-bojar overestimated.

SRC Congress yields: US government can pump 700 billion dollars into banks
REF kongres ustoupil : vláda usa může do bank napumpovat 700 miliard dolar̊u

cu-bojar kongres výnosy : vláda usa může čerpadlo 700 miliard dolar̊u v bankách

pctrans kongres vynáš́ı : us vláda může čerpat 700 miliardu dolar̊u do bank

⇒ Bojar et al. (2010) use SemPOS, a coarse metric that
correlates better with humans for Czech and English.
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Optimizing Towards SemPOS
SemPOS compares bags of lemmas, not sequences of forms.

◮ Sequences not overvalued
⇒ better correlation with human ranking.

◮ Not fit for selecting best output from n-best list.
⇒ Need to combine with e.g. BLEU.

WMT11 Tunable Metrics Task, manual ranking:
System ≥others >others
bleu• 0.79 0.28
bleu-single• 0.77 0.27
cmu-meteor• 0.76 0.27
rwth-cder 0.76 0.26
cu-sempos-bleu• 0.74 0.29
stanford-dcp• 0.73 0.27
nus-tesla-f 0.68 0.28
sheffield-rose 0.05 0.00

◮ Among the many
“winners” (•).

◮ Best in “>others”, i.e.
when ties are not
rewarded.
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⇒ better correlation with human ranking.

◮ Not fit for selecting best output from n-best list.
⇒ Need to combine with e.g. BLEU.

WMT11 Tunable Metrics Task, manual ranking:
System ≥others >others
bleu• 0.79 0.28
bleu-single• 0.77 0.27
cmu-meteor• 0.76 0.27
rwth-cder 0.76 0.26
cu-sempos-bleu• 0.74 0.29
stanford-dcp• 0.73 0.27
nus-tesla-f 0.68 0.28
sheffield-rose 0.05 0.00

◮ Among the many
“winners” (•).

◮ Best in “>others”, i.e.
when ties are not
rewarded.

◮ Generally hard to
interpret the ranking.
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Motivation for Experiment Mgmt (1/2)

Research needs reproducibility.

◮ Console-based environment alone helps a lot:
◮ Bash history of past commands.
◮ Log files.

◮ Complications:
◮ Experiments carried out in parallel.

Experiments can take days.
⇒ Easy to lose track.

◮ Should reuse large intermediate files.
◮ Different versions of the research software.

(Both daily updates as well as yearly updates.)
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Motivation for Experiment Mgmt (2/2)

Research is search.
(for the best procedure, the best configuration, . . . )

You can think of research in AI/machine-learning terms.
◮ Heuristics:

◮ Run quick probes (small data) first, then replicate on full.

◮ Beam Search: Increase your beam size:
◮ Run ˜10 variations of each experiment.

◮ Genetic Algorithms:
◮ Clone and modify most successful experiments.

◮ (“The best” varies based on the metric chosen.)
◮ So look at more metrics at once.

27 / 47



Features of Eman
◮ Console-based ⇒ easily scriptable (e.g. in bash).
◮ Versatile: “seeds” are up to the user, any language.

◮ Support for the manual search through the space of
experiment configurations.

◮ Support for finding and marking (“tagging”)
experiments of interest.

◮ Support for organizing the results in 2D tables.

◮ Integrated with SGE
⇒ easy to run on common academic clusters.

eman --man will tell you some details.
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Eman’s View
◮ Experiments consist of processing steps.
◮ Steps are:

◮ of a given type, e.g. align, tm, lm, mert,
◮ defined by immutable variables, e.g. ALISYM=gdfa,
◮ all located in one directory, the “playground”,
◮ timestamped unique directories, e.g.

s.mert.a123.20120215-1632
◮ self-contained in the dir as much as reasonable.
◮ dependent on other steps, e.g. first align, then build tm,

then mert.

Lifetime of a step:

s e e d INITED PREPARED

RUNNING

PREPFAILED

DONE

FAILED
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Eman is Versatile

What types of steps should I have?

◮ Any, depending on your application.

What language do I write steps in?

◮ Any, e.g. bash.

What are the input and output files of the steps?

◮ Any, just make depending steps understand each other.

◮ Steps can have many output files and serve as
prerequisites to different types of other steps.

What are measured values of my experiments?

◮ Anything from any of the files any step produces.
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What the User Implements: Just Seeds

Technically, a seed is any program that:

◮ responds to arbitrary environment variables,

◮ runs eman defvar to register step variables with eman,

◮ produces another program, ./eman.command that
does the real job.

The seed is actually run twice:

◮ At “init”: to check validity of input variables and
register them with eman.

◮ At “prepare”: to produce eman.command.

The user puts all seeds in playground/eman.seeds.

◮ Eman runs a local copy of the seed in a fresh step dir.

31 / 47



Why INITED→PREPARED→RUNNING?
The call to eman init seed:

◮ Should be quick, it is used interactively.

◮ Should only check and set vars, “turn a blank directory
to valid eman step”.

The call to eman prepare s.step.123.20120215:
◮ May check for various input files.

◮ Less useful with heavy experiments where even corpus
preparation needs cluster.

◮ Has to produce eman.command.
⇒ A chance to check it: are all file paths correct etc.?

The call to eman start s.step.123.20120215:

◮ Sends the job to the cluster.
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Bells and Whistles
Experiment management:

◮ ls, vars, stat for simple listing,

◮ select for finding steps,

◮ traceback for full info on experiments,

◮ redo failed experiments,

◮ clone individual steps as well as whole experiments.

Meta-information on steps:

◮ status,

◮ tags, autotags,

◮ collecting results,

◮ tabulate for putting results into 2D tables.
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eman select

◮ Step dirs don’t have nice names.

◮ You need to locate steps of given properties.

What all language models do I have?

◮ eman ls lm

◮ eman select t lm

If we need just the finished ones:

◮ eman stat lm | grep DONE

◮ eman select t lm d

And just 5-gram ones for English:

◮ eman select t lm d vre ORDER=5 vre
CORPAUG=en
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eman traceback
eman traceback s.evaluator.8102edfc.20120207-1611

+- s.evaluator.8102edfc.20120207-1611

| +- s.mosesgiza.b6073a00.20120202-0037

| +- s.translate.b17f203d.20120207-1604

| | +- s.mert.272f2f67.20120207-0013

| | | +- s.model.3e28def7.20120207-0013

| | | | +- s.lm.608df574.20120207-0004

| | | | | +- s.srilm.117f0cfe.20120202-0037

| | | | +- s.mosesgiza.b6073a00.20120202-0037

| | | | +- s.tm.527c9342.20120207-0012

| | | | | +- s.align.dec45f74.20120206-0111

| | | | | | +- s.mosesgiza.b6073a00.20120202-0037

| | | | | +- s.mosesgiza.b6073a00.20120202-0037

| | +- s.mosesgiza.b6073a00.20120202-0037

Options: --vars --stat --log ... --ignore=steptype
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eman redo

On cluster, jobs can fail nondeterminically.

◮ Bad luck when scheduled to a swamped machine.

◮ Bad estimate of hard resource limits (RAM exceeds the
limit ⇒ job killed).

Eman to the rescue:

◮ eman redo step creates a new instance of each failed
step, preserving the experiment structure.

◮ eman redo step --start starts the steps right away.

To make sure eman will do what you expect, first try:

◮ eman redo step --dry-run
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eman clone
Cloning is initing a new step using vars of an existing one.
Cloning of individual steps is useful:

◮ when a step failed (used in eman redo),

◮ when the seed has changed,

◮ when we want to redefine some vars:
ORDER=4 eman clone s.lm.1d6f791c...

Cloning of whole tracebacks:

◮ The text of a traceback gets instantiated as steps.

◮ Existing steps are reused if OK and with identical vars.

◮ eman traceback step | eman clone

◮ eman traceback step | mail bojar@ufal
followed by eman clone < the-received-mail.
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Deriving Experiments using clone

The text form of traceback allows to tweak the experiment:

◮ eman tb step | sed ’s/cs/de/’ | eman clone
replicates our experiment on German instead of Czech.

The derivation is now available in eman itself:

◮ eman tb step -s ’/cs/de/’ -s ’/form/lc/’
shows the traceback with the substitutions highlighted.

◮ A good chance to check if the derivation does the intended.

◮ eman tb step -s ’/cs/de/’ -s ’/form/lc/’ \\
| eman clone --dry-run

◮ Last chance to check if existing steps get reused and what
vars will new steps be based on.

◮ Drop --dry-run to actually init the new steps.
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eman tag or eman ls --tag shows tags
Tags and autotags are:

◮ arbitrary keywords assigned to individual steps,

◮ inherited from dependencies.

Tags are:

◮ added using eman add-tag the-tag steps,

◮ stored in s.stepdir.123/eman.tag.

⇒ Use them to manually mark exceptions.

Autotags are:

◮ specified in playground/eman.autotags as regexes
over step vars, e.g.: /ORDER=(.*)/$1gr/ for LM,

◮ (re-)observed at eman retag.

⇒ Use them to systematically mark experiment branches.
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eman collect
Based on rules in eman.results.conf, e.g.:

BLEU */BLEU.opt BLEU\s*=\s*([^\s,]+)

Snts s.eval*/corpus.translation CMD: wc -l

eman collects results from all steps into eman.results:

# Step Name Status Score Value Tags and Autotags

s.evaluator.11ccf590.20120208-1554 DONE TER 31.04 5gr DEVwmt10 LMc-news towards-CDER

s.evaluator.11ccf590.20120208-1554 DONE PER 44.61 5gr DEVwmt10 LMc-news towards-CDER

s.evaluator.11ccf590.20120208-1554 DONE CDER 33.97 5gr DEVwmt10 LMc-news towards-CDER

s.evaluator.11ccf590.20120208-1554 DONE BLEU 12.28 5gr DEVwmt10 LMc-news towards-CDER

s.evaluator.11ccf590.20120208-1554 DONE Snts 3003 5gr DEVwmt10 LMc-news towards-CDER

s.evaluator.29fa5679.20120207-1357 OUTDATED TER 17.66 5gr DEVwmt10 LMc-news

... ... ... ...

s.evaluator.473687bb.20120214-1509 FAILED Snts 3003

◮ Perhaps hard to read.
◮ Easy to grep, sort, whatever, or tabulate.
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eman tabulate to Organize Results
The user specifies in the file eman.tabulate:

◮ which results to ignore, which to select,

◮ which tags contribute to col labels, e.g. TER, BLEU,

◮ which tags contribute to row labels, e.g. [0-9]gr,
towards-[A-Z]+, PRO.

Eman tabulates the results, output in eman.niceresults:
PER CDER TER BLEU

5gr towards-CDER 44.61 33.97 31.04 12.28

5gr 44.19 33.76 31.02 12.18

5gr PRO 43.91 33.87 31.49 12.09

5gr towards-PER 44.44 33.52 30.74 11.95
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Hacking Welcome
Eman is designed to be hacking-friendly:

◮ Selfcontained steps are easy to inspect:
◮ all logs are there,
◮ all (or most of) input files are there,
◮ the main code (eman.command) is there,
◮ often, even the binaries are there, or at least clearly

identifiable.

◮ Step halfway failed?
⇒ Hack its eman.command and use eman continue.

◮ Seed not quite fit for your current needs?
⇒ Just init the step and hack eman.seed.
⇒ Or also prepare and hack eman.command.

Remember to eman add-tag tag step for further reference.
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Fit for Cell-Phone SSH ,

◮ Experiments run long but fail often.

◮ You don’t want to be chained to a computer.

Most eman commands have a short nickname.

◮ How are my last 10 merts?
eman sel t mert l 10 --stat

Specify steps using any part of their name/hash or result:

◮ s.foobar.a0f3b123.20120215-1011 failed, retry it:
eman redo a0f3 --start

◮ How did I achieve this great BLEU score of 25.10?
eman tb 25.10 --vars | less
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Related Experiment Mgmt Systems
Eman is just one of many, consider also:

◮ LoonyBin (Clark et al., 2010)
⊖ Clickable Java tool.
⊕ Support for multiple clusters and scheduler types.

◮ Moses EMS (Koehn, 2010)
◮ Experiment Management System primarily for Moses.
◮ Centered around a single experiment which consists of steps.

◮ Pure Makefiles
Yes, you can easily live with fancy Makefiles.

◮ You will use commands like make init.mert
or cp -r exp.mert.1 exp.mert.1b

◮ You need to learn to use $*, $@ etc.
◮ You are likely to implement your own eman soon. ,

There are also the following workflow management systems: DAGMan, Pegasus, Dryad.
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Work in Progress

◮ Eman is being heavily used by a rather few people.
◮ Eman is still evolving

⇒ not everything well documented (read the source code).
⇒ not everything well tested.

Halfway finished: eman teamwork!

◮ eman add remote /home/fred/playground freds-exps

◮ You can re-interpret Fred’s results.

◮ You can clone Fred’s experiments.

◮ You can make your steps depend on Fred’s steps.
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Summary

◮ Word order issues of PBMT, RBMT and hierarchical
MT.

◮ Rich morphology issues in PBMT:
◮ Producing target forms never seen in parallel data.
◮ Evaluating MT to morphologically rich languages.
◮ Model optimization.

◮ General motivation for experiment management.

◮ Introduced eman.
◮ Highlighted useful tricks in experimenting.

◮ Experiment cloning or deriving.
◮ Tabulating results.
? Team experimenting.
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