SEARCHING IN THE PRAGUE DEPENDENCY
TREEBANK

Jifi Mirovsky

14
\
I:R
USTAV FORMALNI
A APLIKOVANE LINGVISTIKY

I STUDIES IN COMPUTATIONAL
AND THEORETICAL LINGUISTICS

Jiti Mirovsky

SEARCHING IN THE PRAGUE DEPENDENCY TREEBANK

Published by Institute of Formal and Applied Linguistics
as the 5™ publication in the series
Studies in Computational and Theoretical Linguistics.

Editor in chief: Jan Haji¢

Editorial board: Nicoletta Calzolari, Miriam Fried, Eva Haji¢ova, Frederick Jelinek,
Aravind Joshi, Petr Karlik, Joakim Nivre, Jarmila Panevova,
Patrice Pognan, Pavel Strafidk, and Hans Uszkoreit

Reviewers: RNDr. Roman Ondruska, Ph.D.
Doc. RNDr. Petr Strossa, CSc.

This book has been printed with the support of the project MSM0021620838 of The Ministry
of Education of the Czech Republic.

Copyright © Institute of Formal and Applied Linguistics, 2009

ISBN 978-80-904175-6-4

Acknowledgement

First of all, my thanks belong to Jan Haji¢, the chief of our department, for the support
during my work on the book, and for his openness to my own suggestions and wishes
about the direction of the research.

My great gratitude goes to Jarmila Panevova for her help with searching for inter-
esting queries and for her admirable willingness to learn to use the tool and under-
stand new features of the language.

I very much thank Petr Pajas for his help with the transformation of the data from
PML format to FS format and for his kind readiness to answer my frequent requests
for changes very quickly.

I would also like to thank Marie Mikulova for explaining details of annotation on
the tectogrammatical layer to me, in which she is a great expert.

I am also grateful to Roman Ondruska for creating a good basis of the tool and for
bringing up the first idea of the core of the query language in his Master Thesis.

And I thank Kiril Ribarov, my colleague, who finally persuaded me to start my PhD
studies after a few years of my simple employment at the department.

I very much thank all users who have been using Netgraph for the inspiration from
their feedback. Jifi Havelka helped me with non-projective constructions, Lucie
Mladova turned my attention towards rhematizers, and there were many many oth-
ers. I also thank Otakar Smrz for the Arabic screenshot of Netgraph, Marco Passarotti
for the Latin screenshot, and Pavel Stranak for the Chinese screenshot.

I also want to thank my other colleagues at the Institute of Formal and Applied Lin-
guistics for creating a very friendly atmosphere, and Eva Hajicov4, its former director,
for establishing such a pleasant team of researchers.

And I cannot but express my greatest gratitude to the nearest people of mine, my
Mum and Dad, my late Grandma, and Dana, my girlfriend, for their constant support,
for their firm belief in my abilities, and for their patience with the most undeserving
person.

Jifi Mirovsky

The research and work presented in the book were supported by the Ministry of Edu-
cation, project Center for Computational Linguistics (No. LNO0A063), the Grant Agen-
cy of the Academy of Sciences of the Czech Republic, project IS-REST (No.
1ET101120413), and the Institute of Formal and Applied Linguistics at Charles Univer-
sity in Prague.

BRIEF CONTENTS

Brief Contents

Acknowledgement
Brief Contents v
Contents vii
1 Introduction 13
1.1 MOBIVALION. ...ttt 13
1.2 Outline of the BOOK.........ccoviiiiiiriiiii e 13
1.3 The Prague Dependency Treebank 2.0...........ccooeuoiiiiiiiiiiiiececce 15
2 The Problem Analysis 17
2.1 Related WOTK.......c.ccooiiiiiiiiiiiiicc e 17
2.2 Netgraph 1.0 — The Starting POint..........cccccceeeiiiiniiiieccccceecceeeeeee 22
2.3 Linguistic Phenomena in PDT 2.0.......ccccoooiiiiiiiiiiiceece 23
2.4 Linguistic Requirements...........ccocooovviiiiiiiiiiiiiii s 32
3 The Query Language 35
3.1 THE BASICS...eveuerieuiieieiiieieteictei ettt ettt st sttt s 35
3.2 Alternative Values and NOAES..........cccoviiiiiiiiiiiiiiicciecc e 36
3.3 WL CArdS. e ceeeeeeiirerererese sttt 36
3.4 Regular EXPressions...........oiiiiiiiiiiiiisncscsssesesesse s 37
3.5 Dependencies Between NOdes............ccoeuiiiiiimiiiiiiicc 38
3.6 Arithmetic EXPIeSSIONS........cccccueuririiiiiiiciriiieiccieieieceeeieiee e 39
3.7 Other Relations......c.couetrueirieniriiieiiieiitette ettt ettt st 39
3.8 Meta-AtIDULES. ...cvei e 40
3.9 RELEIEINCES. ...ttt ettt ettt e e 50
3.10 MUlti-TTee QUETIES.....ccveeviereerieteeieeteeete ettt et te et eeveeseeveeseeseetseseeeenreeenreas 52
311 Hidden NOAES......coueieueiriinieiiieiirietrtctrietrteteietei ettt 54
4 The Data 57
4.1 The FOIMAL..c..cuiiiiiiieiniciricre ettt ettt sttt sttt et st s e 57
4.2 Corpus-Specific Features in the Header..........cccccccoeeiiiiiiiiiiiicccccceene 58
4.3 How Data Can Help........cooooiiiiii 59
44 RELEIEIICES. ...ttt 59
4.5 AHTIDULE IN/1OIMIMNA.ccoiiiiiiiieeeeeeeeeeeeeee ettt e e e sae e e saneas 60
4.6 Hidden NOAES......cccuiuimimiiiiiiiicccccceeee e 61

BRIEF CONTENTS

5 Using the Query Language 63
5.1 General ReqUIrements. ... 63
5.2 Using the Query Language for Searching in PDT 2.0........cccccocovvrniiiiiciniiennnne. 65

6 Notes on the Query Language 81
6.1 Netgraph Query Language vs. FS Query Language.........c.cccocoooreveiniiniciencnnnnnn. 81
0.2 TTES OMNY ... s 81
6.3 RedUNdAnCYcoocueiiiiiiiiiic s 81
6.4 Result Trees and Result OCCUITENCES..........ccciuiuimiiiiiiiiiiiiicceee e 83
6.5 Comparison to Other Treebank Query Systems............ccooovrueiiiiceieiiciccicc, 84
6.6 UNIVeTSality....c.couiuiiiiiiiiiiiiiiiiiic s 95
6.7 Feedback From USers..........cccccvviiiiiiiiiiiiiiiiiiiiiiicccccccc s 95

7 The Tool 99
7.1 Properties of the TOOL.........ccouiiiiiiiiiinic s 99
7.2 Changes since Version 1.0..........ccccoiiiiiiiiiiiiiiccccecccee s 101

8 Real World 103
8.1 TIE QUETIES. ...uecuvieeeeeiiceieie ettt ettt e e teeae s e eaesre e aesseebesssessseaessseessseeesnsenns 104

9 Conclusion 115
9.1 What Has Been Done...........ccccovviiiiiiiininiiiiiii s 115
9.2 FUtUIe WOTK....ooiiiii 115

10 Appendixes 121
10.1 Appendix A: Publications about Netgraph.........cccccooiiiiii 122
10.2 Appendix B: FS File Format Description............cccccovoiiiiiiinincnicnncniceneene 124
10.3 Appendix C: FS Query Format Description............cccooocueieieiicieininiiiciecc, 128
10.4 Appendix D: List of Attributes in PDT 2.0.......ccccovivvnnnninnnneiiciriciieees 130
10.5 Appendix E: Other Usages of Netgraph...........c.cccooooiiiiiii, 141
10.6 Appendix F: Installation and Usage of Netgraph — A Quick How-To............ 145

Summary 151

Bibliography 153

Index 157

Vi

CONTENTS

Contents

Acknowledgement
Brief Contents v
Contents vii
1 Introduction 13
1.1 MOVAION. ..ottt 13
1.2 Outline of the BOOK........ccociiiiiiiiiniiiiiiiiii e 13
1.3 The Prague Dependency Treebank 2.0...........cccccceueuiiiiiiiiiiiiniiiiiiiciiiiccceccnens 15
1.3.1 The Morphological Layer..........ccoiiiiiiiiiiiiiiiie e 15
1.3.2 The Analytical Layer.........cccoooiiiiiiiiiiiicccccccccc 15
1.3.3 The Tectogrammatical Layer..........cccccoeueiviiiieiiiiiiiieiccecce e 16
2 The Problem Analysis 17
2.1 Related WOTK.......ooviiiiiiiicic s 17
2.1.1 More or Less Theoretical Papers...........ccccovuviviviviniiiniiiiiiiiiceeeeceencnns 17
2.1.2 Existing Search TOOIS.........ccccovuviiiiiiiiiiiiiiiiiiiicc s 18
MaANALEE / BOMNILO.viieveeeteeceee ettt et e e et e e e e e eeteeeeaeeeetaeeereeeeaeeeeteeeeaaraeeeens 18

2.3 Linguistic Phenomena in PDT 2.0........cccccoviiiiiiinniiiniiics 23
2.3.1 The Tectogrammatical Layer.........ccccccoviviiiiiiiiiiniiiiiicccceces 24
Basic Principles.........coiiiiiiiiiiiiiiic s 24
VAlENCY ..ot 24
Coordination and APPOSItiON..........ccciviiiiiiiiiiiiiiii e 25
Tdioms (PRIASEIMES) EIC.....c.cccieieieieieriieteeteeitetetetetestessestesseseeeseessessensessensessseessesnseesnsens 25
Complex Predicates.........ccoooiiiiiiiiiiiiiieicicicecic s 26
Predicative Complement (Dual Dependency)...........cccceeuiiciiiiiiniiiccne, 26
COTEIETEIICES. ...ttt ettt ettt et b e b st sae e nesaeenreenn 27
Topic-Focus Articulation............coeeveveiiiiieieieieiccccccc s 28
2.3.2 Accessing Lower Layers.........ccccocooviiiiiiiiiiiiiiieee 30
2.3.3 The Analytical Layer (and Lower Layers)..........cccocovvivivvnnininninniniiciicinnn, 31
Morphological Tags.........cccveuiiiiiiiiiiiiciiiiii e 31

Vii

CONTENTS

AGIEOIMNENT. ..ottt 32

WWOIA OFAET...uiiiiieieeieeeeeet ettt ettt et e st e et e ste e be e beesseesbeesseessesssesssasseessaaessssasannn 32

2.4 Linguistic Requirements............ccococovviiiiiiiiiiiiiiii 32
2.4.1 Complex Evaluation of a Node..........cccccooviiviiiiiiiiiiiiii 32
2.4.2 Dependencies Between Nodes (Vertical Relations)...........cccccoevviviiiiiiiiiiinnnne. 33
2.4.3 Horizontal REIations..........cccuiiiuiiiiiiiiciieciiee ettt ettt arae e 33
2.4.4 Other FEAtUTES.ocoviiiieetieeteeeteeete ettt ettt e et e s te e aaeeetaeeeseeeeeeensseeaeeaas 33

3 The Query Language 35
3.1 THE BASICS...uicuvietieeiietecie ettt ettt ettt ettt ettt e eve et s reeaeereeaeeteeeabeesabaeeearaeennnas 35
3.2 Alternative Values and INOAES........cceeverieiirieeiesecieceeeeeereeeeie s ere e 36
3.2.1 AREINative ValUes.......coviciiiiiiiiiiecee ettt et ve e e v e s 36
3.2.2 AIErnative INOAES........oouviiuieiiceiecteeie ettt ettt ettt e ts e teeeateeeeaaee s 36
3.3 WILA CArds...occvieceeeeeeeeee ettt ettt ettt eve e tt e e te e teeeaaeeteeeseeteestreeraeean 36
3.4 Regular EXPIreSSiOns.........cccovvviviririririiiiiriiriciceereesteee e 37
3.5 Dependencies Between NOdes............ccoeueiiiiiiiioiiiicicc 38
3.6 Arithmetic EXPIeSSions..........ccccceuvuriiiiiiiiiniiiiiciceecceeeeeieee e 39
3.7 Other RelatiONsS.......coveeiiiiiiieiieeciieetee ettt ettt et e e ere e teeeeaeeeteeeaeeeseeebeeeeeenaneeeeeens 39
3.8 Meta- AtTIDULES.......oovieieceeeeeceeeeeeeeeec ettt et ettt ettt et et neas 40
381 A ANSITIVE. ceiiiieieeeiiieiee ettt e e eeet e e e e e et r e e e e ee e abaaaaae e e e e naraaaaeeereae 40
3.8.2 _0PHONAL...oiiiiiii s 42
R TG =10 o - PP UUPSRSRR 45
R I 4 T=10) V=T PR 45
B.8.5 _dePth. s 46
3.8.60 _HACSCONAANES. ..coieviiiiiiiieeeee ettt e et e et e e s st e e s eabe e s s abeeessnaaaaas 46
RS IR 1 o) Vo 114 1<) o< TR U RSO RORRRPRRRY 47
RS R TR 34 o) X0)1 41<) 4= TSRO RRUOURRRROY 47
3.8.9 HOCCUITEOIICES. ... oeeeiteeeeeeeeeeeeeteee e e e eeeett et e e e e e eeetaaeeeeeeeeesssasereeeeeeeessssseeeeeeeessssereeeees 47
2t I L T=Y o 1 T U USROS RSP PSRN 50
s 1<) 01 1< L < T U U SURR S PPN 50
3.9 REFEIOIICES.....vecvvieieeeeeteeeeeeteeeeete et ettt et e et eete et e eae et eeteeasesteessesssenseeteenseeteenseesseesnreas 50
3.10 MUlti-Tree QUETIES.ccveeveerietiereeieete ettt ettt et e eveebeereebe s e erseseeeeaseesareas 52
311 Hidden INOAES.......oooueieiieiieeeeeetee ettt ettt et eeve et e eeaseeas e tseeaneereeeens 54
4 The Data 57
4.1 THE FOIINAT...ctiiiieiiciecteeeeeeeccee ettt ettt ettt et v e et te et e ereeasesaeenteeenseesareeeeareeennas 57
4.2 Corpus-Specific Features in the Header...........ccoooooi, 58
4.3 How Data Can Help.......ccccceiuiiiiiiiiiiiiiiccccccecceeeeeeee e 59
4.4 REEEIEICES. ..ccuveeveeeeeieetee ettt ettt eete et e eae et e eaeeeteeeeveeeteeeaveeesseeassesteessseenteeesseeenrenens 59
4.5 Atribute M /IEIMIMA.ceioiieieereeieeteceeete ettt ettt re et et e enae 60
4.6 Hidden NOAES.......couvieeieiieiteeeteecee ettt ettt ettt eeve et easeeteeeaneeeteeeseereesaraeens 61

viii

CONTENTS

5 Using the Query Language 63
5.1 General REQUITEMENTS.......c.ccuiuiuiimiiiiiiiiiiicccccc e 63
5.1.1 Complex Evaluation of a Node..........cccccvuiiiinininininiiicccecea 63
5.1.2 Dependencies Between Nodes (Vertical Relations)...........cccocevvvvviviiiininiiinininnnne. 63
5.1.3 Horizontal Relations..........c.cooviiiiiiiiiiiiii 64
5.1.4 Other FEatUres..........ccouiiiiiiiiiiiiiiiiiciciccccccccce e 65
5.2 Using the Query Language for Searching in PDT 2.0.........ccccocovvirniiiciiniennne. 65
5.2.1 The Tectogrammatical Layer..........cccccooeiiiiiiiiiiiii 65
Basic PriNCIPLES........ccovviiiiiiiiiiiiiiccc s 65
ValONCY .ttt 65
Coordination and APPOSItioN.........cccovviiiiiiiiiiiiniiiii 66
Idioms (PRIASEIMES) EIC.....c.cciiieieieieriietieteetteeeerteteaestesseesesteseeeseeseessessessensensseessesnseesnsens 67
Complex PrediCates. ..o 67
Predicative Complement (Dual Dependency)...........cccccviiiiiiiininininninns 68
COTEfEIENCES. ..ot s 69
Topic-Focus Articulation............coeveveieiiiiiiiiieinicccc s 70

5.2.2 Accessing LOwWer Layers.........cccoviiiiiiiiiiiiiiiiiiiciceccseennes 77
5.2.3 The Analytical Layer........ccccoiiiiiiiiiiiiiiiiiccciiccccc e 79
Morphological Tags........cccoeiiiiiiiiiiiiiiii s 79
AGIEEIMNENTviviiiiiieiie s 79

WOTA OFAET......oiiiiiiiii s 80

6 Notes on the Query Language 81
6.1 Netgraph Query Language vs. FS Query Language.........ccccocoooveininiineeicccnnn. 81
6.2 Trees ONY...ooviiiiiiiiiiiiii s 81
6.3 RedUNdanCy..........cccccciuiiiiiiiiiiiii s 81
6.3.1 Two Types of RedUndancy............ccccoueeeririiininininnnerrsssressseee s 82
6.4 Result Trees and Result OCCUITENCES........ccceveviviririemeiriniereirreeirrceee e 83
6.5 Comparison to Other Treebank Query Systems...........cccooovrueiiiiiieieiiiiniciec 84
6.5.1 A Biased Table........cccociiiiiiiiiiicee e e 84
6.5.2 Comparison t0 TGIeP. ..o 86
6.5.3 Comparison t0 TGIep2........cccceuiuiiriiiiiiiiiiiii s 88
6.5.4 Comparison to TigerSearch..........ccoooeeeiiiiieiiii 90
INOde DeSCIiption........c.cuiieviuiiciiictctcctc s 90

Node Relations..........ccciiiiiiiiiiiiiiiiic e s 91
INEZATIONL....vitiiiiiietictec e 92
Graph Description.........cccoviiiiiiiiiiiiiiii s 93
Variables.........coiiiiiiiiiii s 93
Graph Predicates............ccocoiiiiiiiiiiiiiiiiiii s 93

6.5.5 Why Is It So Complex in Netgraph?.........cccccceviiiniiiiiiiiicn 94
6.6 UNIVETSality.....cociviviiiiiiiiiiiiccc s 95
6.7 Feedback From USETS.........cccovuiuiiniiiiiciiiiiiciiniiectreceiee e 95

CONTENTS

7 The Tool 99
7.1 Properties of the TOOL.........cccoiiininiiir s 99
7.2 Changes since Version 1.0. ..o 101

7.2.1 Main Extensions to the Query Language.............cccococevvvvviininiiieiiiiiiicenne 101
7.2.2 Main Extensions t0 the TOOL.......cccccereriirininenieeeeeeee et e eve e es 102

8 Real World 103

8.1 The QUETIES.....eocuvieieeereetee et ettt ettt e e e a e e be e taeebeesaseebeeseseesnsssaeeesensresaennns 104
8.1.1 ONe-NOAE QUETIES.......ccovieiieeieirieiieeieeieete et ettt eteeae et e steeseessesasesseessseeesssseeennnes 104
8.1.2 Structured Queries without Meta-Attributes..........ccccovvvieeeieviieiieeeeeeeeenee. 105
8.1.3 Queries with Meta-AttriDUtes.........c.eeveviieiiieieeieeeeeeeee s 107

_sentence
8.1.4 Queries With REfEreNCES.......cccivirieiieieieieieeeteeet ettt ste e se st e st sbesseeae e 111
8.1.5 Queries with Hidden NOAES..........cocuveeeiieieierieeiteeeeteeetecereeeteeere et 111
9 Conclusion 115
9.1 What Has BEEN DIONE.......cc.oooouieetiieeieeeeeeeeeee ettt eveeeaee e e aneaaeeeaens 115
9.2 FULUIE WOTK....ceiiieiieieeeeeeeeeee ettt sttt et esaesseesseeenneeesnneens 115
9.2.1 The Query Language............ccoeiiiiiiiiniiiiiiiiee e 115
SIMPIICATION. ...ttt 116
FUIther EXTENSIONS. ..c.vviiviiiiciieiecieeieete sttt ettt b e e ta et eae e sreesae e seenbeenseenseeenneas 117
Corpus-Wide Comparing and Statistics.........ccoevereeiciciiiciiice 118
9.2.2 SPEE...uiiiicii s 119
9.2.3 Further IMProvements.............ccocoveueiniiiinininiicieicee s 119
10 Appendixes 121
10.1 Appendix A: Publications about Netgraph............cccccecevvivninnniniiininns 122
10.2 Appendix B: FS File Format Description...........ccocooviviiivininiiiiiiiciiciiens 124
10.2.1 Notes on MetasyntaX........cocoeeeeeveiiiiiiiciiiici 124
10.2.2 The FS File SEUCHUTE......ccvieiiiieiieieceeeteee ettt ettt et e s 124
10.2.3 Identifiers, Attribute Names and Values...........cooveevieveiiveeiveeiieeeeeeiireeeeeenns 124
10.2.4 Node Attributes Definition.........ccoeeveeeeereeeeeeeeeeeeeete et 125
PrOperties......coov v 125
T0.2.5 A TTCO oottt e et s e et e e bee e be e eateessbeeesaeeeentbaaeeeeanraneaeaan 126

CONTENTS

10.2.6 ANOE. ..ottt ettt st be e ee 127
10.3 Appendix C: FS Query Format Description............ccoooeeieiiiinieininiiiiccce, 128
10.3.1 The FS Query Structure.........ccoevvieurieiniicicieiccieccce e 128
10.3.2 A NOE. ...ttt sttt ettt 128
10.3.3 Attribute ValUes......c.cocieuinieiriiieiiicinieceeeceeeet ettt 129
10.4 Appendix D: List of Attributes in PDT 2.0.......ccccouvvvvnnnininnneiieiniciicees 130
10.4.1 The WOrd Layer........ccooiiimieiiicieieiccie e 130
w/token (w/token at hidden NOAES).......cceeverieriiriieiieieieieieee e 130
w/no_space_after (w/no_space_after at hidden nodes)...........ccccceoeveveviiireciiincnnnnnn. 130
W /At e bbbttt ettt et enten 130
10.4.2 The Morphological Layer..........cccccoeiiiiniiiiiiiiiiiiiicicccccecence 130
m/form (m/form at hidden NOdes).........ccccvueueirreerniiieernieicrrecreccee e 130
M/ fOrmM_ChaNGE.........coviiiiiiiiiiiiii 130
TN/ Bttt 130
m/lemma (m/lemma at hidden NOdes).........cccceeererrireininieincnie e 131
L) Lol & SRRSO 131
m/tag (m/tag at hidden nodes)..........cccoovvviviiiiiiiiiiiiiii 131
10.4.3 The Analytical Layer.......ccccooiiiiiiiiiiiiiicciiccec e 132
afun (a/afun at hidden NOAES).........c.cceviiiieieiiieieeeee et 132
eparents (a/eparents at hidden nodes)...........ccccccciiiiiiiiiiiiie, 133
eparents_diff (a/eparents_diff at hidden nodes)...........ccccceeviiiiiiiiiiiiiin, 133
id (a/id at hidden NOAES).......coverieriirrieiirieieieietee ettt ereese e eseensee s 133
is_member (a/is_member at hidden Nodes)..........ceceerieierierininirieieee e 134
iS_parenthesis_TOOL.......ccooviiiiiiiiiiiiiiiiccc 134
ord (a/ord at hidden NOAES).......c.ccurerieiniiiiinieicieceeec e 134
Sl bbb a e sheeneeane 134
- (a/parent at hidden NoOdes)...........cccccvuiiiiiiiiiiiiiiiii 134
- (a/ref_type at hidden nodes)...........ccoeiiiiiiiiniiiii e 134
10.4.4 The Tectogrammatical Layer........ccccoooviiriiiiiiicnieiniicceccecc 134
AETEE.IT ..ttt ettt b bt b ettt b et e et 134
COMPLITe i 135
COTef _GramlIfi ..o 135
COTEf_SPECIAL ... 135
COTEE EOXE I oottt ettt e e e te e e ete e e eteeeetaeeeateeeteeeeteeeeaeeeeareeeennes 135
AEEPOTIT....oiiiiiiii 135
EPATENES. ...ttt bbb 135
eparents_diff..........cccooiiiiiii s 135
FUNICEOT ettt ettt ettt b ettt b et b st e enne e
Grammatemes (attributes gram/*)
It
is_dsp_root
is_generated.......ocoviiiiiiiii s
IS_IMEINDET . .cciiiiiiiittctc ettt

is_name_of_person

CONTENTS

iS_PaAreNtESIS.cucviiiiiiiiiiii e 138

FETE] v 1 £ <JOO USSP TP U URRRRUUUR PR 138

NOAELYPE..oeetetctt e 139
QUOL/SEE_d. vttt 139
QUOL/EYPC. i 139

SEIEEIICE. ...ttt ettt et n 139

SENEMOM. ... 139
SUDFUNCEOT ...t 139

ELLEIMINIA. e e e 139
et e 140

A2 15 1 0 (TSI o SO USROS PPN 140
I e 140

10.5 Appendix E: Other Usages of Netgraph..........cccccccecvuvvviinnnnnniinciiincs 141
10.5.1 Morphological “Trees” of the Czech Academic Corpus 1.0......ccccvvvevvnenenee. 141

10.5.2 Latin IT Treebank........c.ccoeiiieiiiieieieeeeceieeeeeeeeeeeee et 142

10.5.3 ATADIC TTEES...c.eeivenieiiieiiceteeee ettt e e 142

10.5.4 Chinese Treebank..........ccccoovviiiiiiiiiiiiiiiiii e 143

10.5.5 ValleXu.oiiiiiiiiiiiiiiiiicii s 144

10.6 Appendix F: Installation and Usage of Netgraph — A Quick How-To............ 145
10.6.1 Installation........ccciiiiiiiiiiii s 145

Java 2 INStallation......ccveoverieriieiieiieieietetet ettt ettt be st sae e seenseneensesenseenns 145

Netgraph Client/Server Installation............ccccccceiiiiiiiiiiiiic 145

10.6.2 Connection to the Public Netgraph Server for PDT 2.0........ccccccoveviiiinnnnen. 146

10.6.3 Connection to the Local Netgraph Server for PDT 2.0 Sample Data.............. 146

10.6.4 Selection of Files for SEarching...........cccoceeueueueueueueueieieeeceeeeeeeeeeeeeenenees 147

10.6.5 Creation of a Simple QUETY.........covvuriiviiiirieiicce 148
Summary 151
Bibliography 153
Index 157

Xii

1 INTRODUCTION

1 Introduction

1.1 Motivation

Linguistically annotated treebanks play an essential part in modern computational
linguistics. The more complex the treebanks become, the more sophisticated tools are
required for using them, namely for searching in the data. A search tool helps extract
useful information from the treebank, in order to study the language, the annotation
system or even to search for errors in the annotation.

Three sides existed whose connection is solved in this book. First, it was the Prague
Dependency Treebank 2.0 (Haji¢ et al. 2006), one of the most advanced manually an-
notated treebanks in the linguistic world. Second, there existed a very limited but ex-
tremely intuitive search tool — Netgraph 1.0. Third, there were users longing for such a
simple and intuitive tool that would be powerful enough to search in the Prague De-
pendency Treebank.

Our aim is to propose and implement a query system for this treebank that would
not require programming skills from its users. A system that could be used by lin-
guists without a knowledge of any programming language. A system that would fit
the Prague Dependency Treebank 2.0 — it means to be powerful enough to search for
all linguistic phenomena annotated in the data.

In the book, we study the annotation of the Prague Dependency Treebank 2.0, espe-
cially on the tectogrammatical layer, which is by far the most complex layer of the
treebank, and assemble a list of requirements on a query language that would allow
searching for and studying all phenomena annotated in the treebank. We propose an
extension to the query language of the existing search tool Netgraph 1.0 and show that
the extended query language satisfies the list of requirements. We also show how all
principal linguistic phenomena annotated in the treebank can be searched for with the
query language.

The proposed query language has also been implemented — we present the search
tool as well and talk about the data format for the tool. The tool is freely available and
can be downloaded from the internet, as described in the Appendix.

1.2 Outline of the Book

In the rest of this introductory chapter, we present very shortly the Prague Depen-
dency Treebank 2.0, only for those who are not at all familiar with the treebank.

In Chapter “2 - The Problem Analysis”, we first mention some related work and
present several existing search tools for treebanks, including Netgraph 1.0 — a basis for
our own work. Afterwards, in Section “2.3 - Linguistic Phenomena in PDT 2.0”, we

13

1 INTRODUCTION

study annotation manuals for the Prague Dependency Treebank 2.0 and present
linguistic phenomena that require our attention in creating a query language. We
focus mainly on the tectogrammatical layer — the most complex layer of the treebank.
In the subsequent section (“2.4 - Linguistic Requirements”), we summarize a list of
requirements on a query language for the Prague Dependency Treebank 2.0.

In Chapter “3 - The Query Language”, we propose a query language that meets all
requirements gathered in the previous chapter. It is an extension to the existing query
language of Netgraph 1.0.

Chapter “4 - The Data” is dedicated to the description of the data used in Netgraph.
The chapter not only describes the format of the data, but also shows that the query
language is not independent of the data — it has some requirements on the data and
the data can also help with some pre-computed information. Hidden nodes are pre-
sented in Section 4.6 as a way of accessing lower layers of annotation with non-1:1 re-
lation among nodes of the layers.

In Chapter “5 - Using the Query Language”, we show that Netgraph Query Lan-
guage, described in Chapter 3, fulfils the requirements stated in Chapter 2. We show
that it meets the general requirements on a query language for the Prague Dependen-
cy Treebank 2.0, listed in Section 2.4, and how it can be used for searching for all lin-
guistic phenomena from the treebank, gathered from the annotation manuals.

Chapter “6 - Notes on the Query Language” discusses some features of the query
language. A comparison to several other query languages is also offered here (Section
6.5). Section 6.7 gives an example of how feedback from users influenced the develop-
ment of the query language.

Chapter “7 - The Tool” introduces Netgraph — the tool that implements the query
language.

Chapter “8 - Real World” shows to what extent the features of the query language
are put to use by the users and what the users really do search for, by studying log
files of the Netgraph server. Representative examples of real queries set by users are
presented.

We conclude in Chapter “9 - Conclusion” by summarizing what has been done and
proposing some future work on the query language and the tool.

Much additional information can be found in Appendixes. “Appendix A:
Publications about Netgraph” enlists publications about Netgraph written or co-
written by the author of this book. “Appendix B: FS File Format Description”
describes formally the data format used in Netgraph. “Appendix C: FS Query Format
Description” describes formally the syntax of the query language implemented in
Netgraph. “Appendix D: List of Attributes in PDT 2.0” gives a list of all attributes of
the Prague Dependency Treebank 2.0 used in Netgraph. “Appendix E: Other Usages
of Netgraph” shows usages of Netgraph for some other treebanks. “Appendix F:

14

1.2 OUTLINE OF THE BOOK

Installation and Usage of Netgraph — A Quick How-To” describes shortly how to
install and use the Netgraph client.

1.3 The Prague Dependency Treebank 2.0

We very briefly describe the Prague Dependency Treebank 2.0, its properties and
major attributes of the annotation. We focus on features that are important for basic
understanding of the annotation of the treebank.

A more detailed description of all attributes of the Prague Dependency Treebank 2.0
is available in “Appendix D: List of Attributes in PDT 2.0”.

The Prague Dependency Treebank 2.0 (PDT 2.0, see Haji¢ et al. 2006, Haji¢ 2004) is a
manually annotated corpus of Czech. It is a sequel to the Prague Dependency Tree-
bank 1.0 (PDT 1.0, see Hajic¢ et al. 2001a, Hajic¢ et al. 2001b).

The texts in PDT 2.0 are annotated on three layers - the morphological layer, the
analytical layer and the tectogrammatical layer. The corpus size is almost 2 million
tokens (115 thousand sentences), although “only” 0.8 million tokens (49 thousand
sentences) are annotated on all three layers. By “tokens” we mean word forms,
including numbers and punctuation marks.

1.3.1 The Morphological Layer

On the morphological layer (Hana et al. 2005), each token of every sentence is anno-
tated with a lemma (attribute m/lemma), keeping the base form of the token, and a tag
(attribute m/tag), keeping its morphological information. Sentence boundaries are an-
notated here, too. Attribute m/form keeps the form of the token from the sentence,
with some possible corrections (like misprints in the source text).

1.3.2 The Analytical Layer

The analytical layer roughly corresponds to the surface syntax of the sentence; the
annotation is a single-rooted dependency tree with labelled nodes (Haji¢ et al. 1997,
Haji¢ 1998). The nodes on the analytical layer (except for technical roots of the trees)
correspond 1:1 to the tokens of the sentences (more precisely about this in Section 2.3).
The order of the nodes from left to right corresponds exactly to the surface order of to-
kens in the sentence. Non-projective constructions (that are quite frequent in Czech
(Haji¢ova et al. 2004) and also in some other languages (Havelka 2007)) are allowed.
Analytical functions are kept at nodes (attribute a/afun), but in fact they are names of
the dependency relations between a dependent (son) node and its governor (father)
node.

15

1 INTRODUCTION

1.3.3 The Tectogrammatical Layer

The tectogrammatical layer captures the linguistic meaning of the sentence in its
context. Again, the annotation is a rooted dependency tree with labelled nodes. The
correspondence of the nodes to the lower layers is more complex here. It is often not
1:1, it can be both 1:N and N:1 (actually, even N:0, or M:N). It was shown in Mirovsky
(2006) how Netgraph deals with this issue. It is also discussed here in Section 4.6.

Many nodes found on the analytical layer disappear on the tectogrammatical layer
(such as function words, e.g. prepositions, subordinating conjunctions, etc.). The infor-
mation carried by these nodes is stored in attributes of the remaining (auto-semantic)
nodes and can be reconstructed. On the other hand, some nodes representing for ex-
ample obligatory positions of verb frames, deleted on the surface, and some other
deletions, are regenerated on this layer (for a full list of deletions, see Mikulova et al.
2006).

The tectogrammatical layer goes beyond the surface structure and corresponds to
the semantic structure of the sentence, replacing notions such as Subject and Object by
functors like Actor, Patient, Addressee etc. (see Hajicova 1998, for a full list of func-
tors, see Mikulova et al. (2006) and also “Appendix D: List of Attributes in PDT 2.0”).

The attribute functor describes the dependency between a dependent node and its
governor and is stored at the son-nodes. A tectogrammatical lemma (attribute t_lem-
ma) is assigned to every node. Grammatemes are rendered as a set of 16 attributes
grouped by the “prefix” gram (e.g. gram/verbmod for verbal modality).

The total of 39 attributes are assigned to every non-root node of the tectogrammati-
cal tree, although (based on the node type) only a certain subset of the attributes is
necessarily filled in.

Topic and focus (Hajicova et al. 1998) are marked (attribute tfa), together with so-
called deep word order reflected by the horizontal order of nodes in the annotation
(attribute deepord). It is in general different from the surface word order.

Coreference relations between nodes of certain category types are captured (Kucova
et al. 2003), distinguishing also the type of the relation (textual or grammatical). Each
node has an identifier (attribute id) that is unique throughout the whole corpus. At-
tributes coref text.rf and coref gram.rf contain ids of the coreferential nodes of
the respective types.

16

3 THE QUERY LANGUAGE

3 The Query Language

We introduce a query language that satisfies linguistic requirements stated in the pre-
vious section. We present the language informally on a series of examples. A formal
definition of the textual form of the query language can be found in “Appendix C: FS
Query Format Description”. The query language is an extension of the existing query
language of Netgraph 1.0, as presented in Section 2.2.

The proposed query language has two forms — a graphical form, which we call Net-
graph Query Language, and a textual form, which we call FS Query Language. Net-
graph Query Language is a graphical representation of FS Query Language. The
query languages are equivalent. Each query in the textual form has its graphical coun-
terpart and vice versa.

Users usually work with the graphical form of the query. It follows the idea “what
you see is what you get”, or rather “what you want to see in the result is what you
draw in the query”. The textual form cannot contain any formatting white characters.
In this chapter, we always show both the graphical and the textual version of the
query. In the subsequent chapters, we usually use only one of the versions, to save
space. We present examples both from the analytical and the tectogrammatical layer;
the attributes used in the query always show which of the layers is used (see “Appen-
dix D: List of Attributes in PDT 2.0”). In the result analytical trees, usually the at-
tributes m/lemma and afun are displayed, while in the tectogrammatical trees, usually
the attributes t_lemma and functor are displayed.

The query in Netgraph is always a tree (or a multi-tree, see below) that forms a sub-
tree in the result trees. The treebank is searched tree by tree and whenever the query is
found as a subtree of a tree, the tree becomes a part of the result.

3.1 The Basics

The simplest possible query is a simple node without any evaluation:
o

In the textual form, a node is enclosed in square brackets:
[]

This query matches all nodes of all trees in the treebank, each tree as many times as
how many nodes there are in the tree.
Values of attributes of the node can be specified in the form of attribute=value
pairs:
@]

afun=5bh
m/lemma=Klaus

35

3 THE QUERY LANGUAGE

In the textual form, the attribute=value pairs are separated by a comma (", "):
[m/1lemma=Klaus,afun=Sb]

The query searches for all trees containing a node evaluated as Subject (”Sb”) with
lemma Klaus.

3.2 Alternative Values and Nodes

3.2.1 Alternative Values

Alternative values of attributes are separated by a vertical bar (" |"):
o
afun=5b|0ODbj

m/lemma=Klaus

with the textual form:
[m/lemma=Klaus,afun=Sb|0bj]

This time, the node with lemma Klaus can either be a Subject ("Sb”) or an Object
(I’Obj I’)‘

3.2.2 Alternative Nodes

It is possible to define an entire alternative set of values of attributes, like in the fol-

lowing example:
@

afun=5h
m,’lemma_:KIaus

afun=0bj
m/lemma=Zeman

In the textual form, the alternative set of attributes, actually an alternative node, is
separated by a vertical bar (" |"):

[m/lemma=Klaus,afun=Sb]| [m/lemma=Zeman,afun=0bj]

This query matches trees containing a node that is either a Subject with lemma
Klaus, or an Object with lemma Zeman.

3.3 Wild Cards

Two wild cards can be used in values of attributes:

® "7?” stands for any one character

® "*" stands for a sequence of characters (of length zero or greater)

36

3.3 WILD CARDS

The special meaning of these wild cards can be suppressed with a backslash (”\").
(To suppress the special meaning of a backslash, it can itself be escaped with another
backslash.)

The following query searches for all trees containing a node that is a noun in the da-
tive (the first position of the tag denotes part of speech, the fifth position denotes
case)™:

O
m/tag=N7??3*

with the textual form:
[m/tag=N?773*]

To suppress the special meaning of these wild cards in the textual form of the
query, two backslashes ("\\") must be used.

3.4 Regular Expressions

Beside the wild cards in values of attributes, a Perl-like regular expression (Hazel
2007) can be used as a whole value of an attribute. If a value of an attribute is enclosed
in quotation marks, the value is considered an anchored’ regular expression. The fol-
lowing query searches for all trees containing a node that is an Object, also a noun but

not in the dative:

O
afun=0bj
m/tag="N...[~3].*"

non

In the textual version, some characters (namely ”[”, ”1”, "(”,)", =", ”,” and
"|") have to be escaped with a backslash (”\"):

[afun=0bj,m/tag="N...\["3\].*"]

Although regular expressions can fully replace wild cards introduced above, for
backward compatibility and maybe for simplicity, the wild cards remain in the lan-
guage. Moreover, references (see Section 3.9 below) cannot be a part of a regular ex-
pression’ but they can be combined with the wild cards.

2 See “Appendix D: List of Attributes in PDT 2.0” for a description of positions of the attribute
m/tag.

3 “Anchored” means that it must match the whole value of the attribute in the result tree (not
only its substring).

4 Aregular expression has to be compiled before it can be matched with a string. The
compilation is only made once for each regular expression in the query. If it could contain
references, it would have to be compiled each time a value is substituted for the reference,
i.e. many times for each searched tree.

37

3 THE QUERY LANGUAGE

3.5 Dependencies Between Nodes

Dependencies between nodes are expressed directly in the syntax of the query lan-
guage. Since the result is always a tree, the query also is a tree (or a multi-tree, see Sec-
tion 3.10 below) and the syntax does not allow non-tree constructions. The following
query searches for Predicates ("PRED") that directly govern an Actor ("ACT”), a Patient
("PAT"”) and an Addressee (”"ADDR"):

functorCN@

functor=ACT functor=PAT functor=ADDR

non

In the textual version, sons of a node are separated by a comma (", "), together they
are enclosed in parentheses (" (”,) ") and follow directly their father:

[functor=PRED] ([functor=ACT], [functor=PAT], [functor=ADDR])

The following tree is a possible result for this query:

#Gen #GCen mozZna dnes hodina pfimo stadidn
ACT ADDR MOD TWHEN T3IN RHEM LOC

16
RSTR

vstupenka pét
MAT RSTR

In Czech: Rezerva; péti tisic vstupenek se_mozni_bude_proddvat, dnes od 16 hod. piimo na
stadionu.
In English: A_reserve; of five thousand tickets may_be_sold, today from 4 pm. directly at the
stadium.

The subtree matching the query is highlighted with green, the node matching the
root of the query is highlighted with the yellow colour and slightly enlarged.

It is important to note that the query does not prevent other nodes in the result be-
ing sons of the Predicate and that the order of the sons as they appear in the query can
differ from their order in the result tree.

To make quite clear how to stack dependencies in the textual form of the query, let
us give another example. The following query searches for a Patient (”PAT") that gov-
erns a Restriction ("RSTR”) that governs a Material ("MAT”) and another Restriction
("RSTR”).

38

3.5 DEPENDENCIES BETWEEN NODES

The result tree given above matches this query too:

functor=PA
functor=R5
functor=MAT functor=RSTR

With the textual version:
[functor=PAT] ([functor=RSTR] ([functor=MAT], [functor=RSTR]))

3.6 Arithmetic Expressions

Some attributes contain numeric values. Simple arithmetic expressions can be used
). Since it is

n-n

in values of these attributes, namely addition ("+"”) and subtraction (
impossible to give a meaningful example now, we postpone giving an example until
after references are introduced in Section 3.9.

3.7 Other Relations

In setting values of attributes, the following relations can be used:

n_n

® equalto ("=
not equal to (
less than ("<")

less than or equal to ("<=")
greater than (">")

my_n

® greater than or equal to (">=")

For numeric values, the relations are understood in their mathematical meaning.
For textual values, alphabetical ordering is used. For each attribute, the relation can
only be set once. It is therefore common for all alternative values of the attribute. If
alternative values are used with relation “not equal to”, the meaning is “the value is
neither of these values”.

The following query searches for all nodes that are neither Subjects, nor Objects:

@]
afun!=5b|0bj

With the textual form:
[afun!=Sb|0bj]

39

3 THE QUERY LANGUAGE

3.8 Meta-Attributes

The query language presented so far offers no possibility to set more complex nega-
tion, restrict the position of the query tree in the result tree or the size of the result
tree. Nor the order of nodes can be controlled. Meta-attributes bring additional power
to the query system.

Meta-attributes are attributes that are not present in the corpus, yet they pretend to
be ordinary attributes and users can treat them the same way like normal attributes.
To be easily recognized, names of the meta-attributes start with an underscore ("_").
There are eleven meta-attributes, each adding some power to the query language, en-
hancing its semantics, while keeping the syntax of the language on the same simple
level:

_transitive — defines a transitive edge

_optional - defines an optional node

_#sons — defines number of sons of a node

_#hsons — defines number of hidden sons of a node
_depth — defines a depth of a node

_#descendants — defines number of descendants of a node
_#lbrothers — defines number of left brothers of a node
_#rbrothers — defines number of right brothers of a node
_#occurrences — defines number of occurrences of a node
_name — names a node for a later reference

® sentence - contains the linear form of the sentence

The following subsections offer a detailed description of the individual meta-at-
tributes.

3.8.1 _transitive

This meta-attribute defines a transitive edge. It has two possible values: the value
true means that a node may appear anywhere in the subtree of a node matching its
query-father, the value exclusive means, in addition, that the transitive edge cannot
share nodes in the result tree with other exclusively transitive edges’.

A truly transitive edge merely expresses the fact that a node belongs to the subtree
of another node. The following query searches for a tree containing two Patients any-
where in the tree:

functor=PAT functor=PAT
_transitive=true _transitive=true

5 In Netgraph, alternative values cannot be defined for meta-attribute _transitive.

40

3.8 META-ATTRIBUTES

With the textual version:

[1([functor=PAT, transitive=true], [functor=PAT, transitive=truel)

The following tree is a possible result for this query:

@]

#0blfm Moskva simlouva
DIR3 DIR1 PAT

Vaclav premiér ochrana

RSTR RSTR PAT
investice
PAT

In Czech: Premiér Viclav Klaus pfivezl z Moskvy smlouvu; o_ochrané, investic.
In English: Prime minister Viclav Klaus has brought an_agreement; about_a_protection, of
investments from Moscow.

The root of the result tree matches the root of the query. Please note that both Pa-
tients matching the query, although in this particular result one depends on the other,
are in the subtree of the root (in the result tree), which is exactly what the query re-
quires.

To prevent the possibility of the Patients to depend on one another, the exclusive
transitivity can be used in the query:

O e

B ¢ I ¢

functor=PAT functor=PAT
_transitive=exclusive _transitive=exclusive

With the textual version:

[1([functor=PAT, transitive=exclusive],[functor=PAT, transitive=exclu-
sive])

Exclusively transitive edges cannot share nodes in the result tree and therefore
make sure that neither of the Patients in the example query can belong to the subtree
of the other Patient.

41

3 THE QUERY LANGUAGE

The following result tree matches this query:

prilakat
PRED

mnohy #Oblfm ultraliberalizmus
PAT DIR3 ALT

-
#PersPron aus acovat
DIR1 ARP

Vaclav jiz
RSTR TWHEN ACGT
ktery cesky
R5TR R5TR
In Czech: Mnozi; z nich byli_p¥ildkini, ultraliberalismem Viclava Klause, kterys jiZ nékteri
odbornici oznacuji jako ,,Ceskij model”.
In English: Many, of them were_attracted, by the ultra-liberalism of Viclav Klaus, which;
some experts already term as “Czech model”.

While both result trees match the first query (the query with two truly transitive
edges), only the second result tree matches the second query (the query with two ex-
clusively transitive edges).

3.8.2 _optional

The meta-attribute optional defines an optional node’. It may but does not have
to be in the result tree at a given position. Its father and its son (in the query) can be
the direct father and son in the result. Only the specified node can appear (once or
more times as a chain) between them in the result tree. Possible values are:

® true - There may be a chain of unlimited length (even zero) of nodes match-
ing the optional node in the result tree between nodes matching the query-fa-
ther and the query-son of the optional node.

® g positive integer - There may be a chain of length from zero up to the given
number of nodes matching the optional node in the result tree between nodes
matching the query-parent and the query-son of the optional node.

6 In Netgraph, the meta-attribute _optional can only be defined once at a node. If there are
alternative nodes defined, it can be used in any of the sets of attributes. It can only be used
with the relation equal (”="). It cannot use alternative values. It cannot be used at the root of

the query.

42

3.8 META-ATTRIBUTES

The following query searches for trees containing a Predicate that either directly
governs an Actor, or there is a Conjunction or a Disjunction node between the Predi-
cate and the Actor:

_optional=1
functor=ACT

With the textual version:
[functor=PRED] ([functor=CONJ|DISJ, optional=1]([functor=ACT]))
There are two possible types of result trees for this query (with or without the op-

tional coordinating node). The following tree represents results with the optional coor-
dinating node:

Kritizovat

@

Lux biskup Klaus cirkev
ACT ACT ACT PAT

In Czech: Lux; a, biskupové kritizovalis Klausovy vyjroky o cirkvi.
In English: Lux; and, bishops criticized; Klaus's statements about the Church.

The next tree represents results without the optional coordinating node:

b
PRE
prognéza pry realny
ACT MOD PAT
Klaus
APP

In Czech: Klausovy prognozy; jsou, pry redlné.
In English: Klaus's forecasts; are, allegedly realistic.

43

3 THE QUERY LANGUAGE

The following query demonstrates the usage of the meta-attribute _optional with
the value true. It searches for Attributes ("Atr”) anywhere in the subtree of a Predi-
cate ("Pred”) but does not allow a subordinating conjunction (”AuxC”) appear on the
path from the Predicate to the Attribute:

afun=Atr
With the textual version:
[afun=Pred] ([afun!=AuxC, optional=true]([afun=Atr]))

The following tree is a possible result for this query:

o

plenéni nadale
S5b Adv

polevit dedictvi
Adv AuxX Atr
le)

milj kulturnf
Atr Atr

In Czech: I kdyz proud téchto kamionii polevil, plenéni naseho, kulturniho dédictvi naddle pokra-
Cujes.

In English: Even though the stream of these lorries slackened, the plundering of our; cultural her-
itage still continues,.

In this particular result, the nodes plenéni(Sb) and dédictvi(Atr) match the op-
tional node from the query, and the node mij (Atr) matches the Atr node from the
query. The three Attributes ("Atr”) on the right side of the tree can match the At-
tribute from the query, while the two Attributes on the left side of the tree cannot, be-
cause of the AuxC node lying on the path from the Attributes to the Predicate
("Pred”).”

7 The node dédictvi(Atr) can also match the Atr node from the query; Together with pokracovat(Pred)
and plenéni(Sb), these three nodes match the whole query and form another result.

44

3.8 META-ATTRIBUTES

3.8.3 _#sons

The meta-attribute #sons (“number of sons”) controls the exact number of sons of
a node in the result tree. The following query searches for a Predicate governing an
Actor and a Patient and nothing else:

functor=PRED
_#sons=2

functor=ACT functor=PAT

With the textual version:

[functor=PRED, #sons=2]([functor=ACT], [functor=PAT])

The following tree is a possible result for this query:

uspokojit
PRED
Klaus
PAT
W
RSTR
ktery novy ODS
RSTR RSTR APP

In Czech: Reakce; nékterijch politikii na novou iniciativu ODS V. Klause, uspokojilys.

In English: V. Klaus, was_satisfieds with responses; of some politicians to the new initiative of
ODS.

The meta-attribute _#sons prevented the Predicate from having more than two sons
in the result tree. The predicate could not have less than two sons in the result also be-
cause there were two sons in the query.

3.8.4 _t#hsons

The meta-attribute #hsons (“number of hidden sons”) is similar to the meta-
attribute #sons. It controls the exact number of hidden sons of a node in the result
tree. Let us postpone giving an example of this meta-attribute until after the hidden
nodes have been introduced in Section “3.11 - Hidden Nodes” .

45

3 THE QUERY LANGUAGE

3.8.5 _depth

The meta attribute depth controls the distance of a node in the result tree from the
root of the result tree. The following query searches for all nodes that are at level 2 or
greater — their distance from the root is at least 2:

O
_depth>=2
With the textual version:
[depth>=2]

All nodes in the following tree but the root and the Predicate match the query; the
first result in the tree is displayed:

aus #Gen jinak
AET EFF MANN

Vaclav
R5TR
In Czech: Viclav Klaus, soudi jinak.
In English: Viclav Klaus, thinks otherwise.

3.8.6 _#descendants

The meta-attribute #descendants (“number of descendants”) controls the exact
number of all descendants of a node (number of nodes in its subtree), excluding the
node itself.

The following query searches for all trees consisting of at most 10 nodes (plus the
technical root that matches the query node (because of _depth=0)):

O

_#descendants<=10
_depth=0

With the textual version:

[depth=0, #descendants<=10]

46

3.8 META-ATTRIBUTES

3.8.7 _#lbrothers

The meta-attribute #lbrothers (“number of left brothers”) controls the exact
number of left brothers of a node in the result tree. The following query searches for a
Predicate that governs a Patient as its first son:

functor=PR|

/

functor=PAT
_#lbrothers=0

With the textual version:
[functor=PRED] ([functor=PAT, #lbrothers=0])

The following tree is a possible result for the query:

zahranit
PRE
[0}

tupadek #Unsp wvykon
PAT ACT MEANS
In Czech: Upadku, zabrdnili, vijkonem.
In English: They prevented, bankruptcy; with effort.

3.8.8 _#rbrothers

Similarly, the meta-attribute #rbrothers (“number of right brothers”) controls
the exact number of right brothers of a node in the result tree.

3.8.9 _#occurrences

The meta-attribute _#occurrences (“number of occurrences”) specifies the exact
number of occurrences of a particular node at a particular place in the result tree. It
controls how many nodes of the kind can occur in the result tree as sons of the father
of the node (including the node itself).

The following query searches for Predicates that govern (directly) an Actor but not a
Patient:

functorM

functor=ACT functor=PAT
_#occurrences=0

47

3 THE QUERY LANGUAGE

With the textual form:
[functor=PRED] ([functor=ACT], [functor=PAT, #occurrences=0])

The following tree is a possible result for this query:

urad #Benef
LOC BEN

tento #Cor i informace

RSTR ACT RHEM PAT
potfebny
RSTR

In Czech: Na tomto iitadeé Ize, ziskat, i pottebné informace.
In English: Even useful information can; be_obtained, at this office.

The Predicate ("PRED"”) in the result tree can have other sons than the Actor ("ACT").
Nevertheless, non of them can be a Patient ("PAT").
Please note that the following query has quite a different meaning:

functor%

functor=ACT functor!=PAT

With the textual version:

[functor=PRED] ([functor=ACT], [functor!=PAT])

The following tree is a possible result for the query:

postup praxe, zhotovovani
ACT LOC

tento pie

RSTR ACT T
ovéfeny
RSTR

In Czech: Tento postup; si_vyZadd, v_praxis zhotovovini ovéfenyjch kopi.
In English: In_practices, this procedure; will_require, production of certified copies.

48

3.8 META-ATTRIBUTES

The “non-Patient” node from the query matches the Locative ('LOC") in the result
tree and does not prevent another son from being a Patient ("PAT").

The meta-attribute #occurrences can be combined with the meta-attribute tran-
sitive set to the value true for the transitive meaning of the occurrences; then, it
controls how many nodes of the kind can occur in the whole subtree of the father of
the node in the result tree (excluding the father). The following query searches for
trees that contain exactly two Predicates (in the whole tree; the technical root cannot
be a Predicate):

o...
_depth=0 ')
"-.O

functor=PRED
_transitive=true
_#occurrences=2

With the textual version:

[depth=0]([functor=PRED, transitive=true, #occurrences=2])

Note: If the meta-attribute #occurrences is combined with transitive=true,
the father node in the query may even be omitted and the query may consist only of
the node defining the Predicate, with the same result. It may be simpler but probably
is less intuitive. The following tree is a possible result for the query:

@'

banka zpravidla (hrada #Gen #Gen #Neg
ACT THO A PAT ADDR RHEM

rychly pfeklenovaci diuh

RSTR R3TR PAT
In Czech: Nejrychlejsi cestou by_byl; pieklenovact iivér, ale banky zpravidla na tihradu dluhii
nepijcuji.
In English: The bridging loan would_be; the fastest way but banks usually do not lend money
for settlement of debt.

Since only one Predicate is actually drawn in the query, only one is highlighted in
the result.

49

3 THE QUERY LANGUAGE

3.8.10 _name

The meta-attribute name is used to name a node for a later reference, see Section
“3.9 - References” below.

3.8.11 _sentence

The meta-attribute sentence can be used to search in the linear surface form of the
trees — in the sentences. The following query searches for all trees (sentences) that
contain the expression “v souvislosti s” (“in connection with”), regardless of its
position in the sentence. To avoid matching each node in these trees, we use the meta-
attribute _depth. It makes sure that only the root will match the query node:

o

_depth=0
_sentence=".*[Vv] souvislosti 5.*"

With the textual version:
[sentence=".*\[Vv\] souvislosti s.*", depth=0]

The following tree is a possible result for the query:

uzavieny mirovy posledni teroristicky lzraelec

RSTR RS3TR RSTR R3TR BEN
In Czech: V_souvislosti_s; uzavienyjymi mirovymi smlouvami v posledni dobé zesilily teroris-
tické iitoky proti Izraelciim.
In English: In_connection_with; the signed treaties of peace, terrorist attacks towards Israelis
recently intensified.

Since the expression “v souvislosti s” is considered a secondary preposition and not
an auto-semantic word(s), it is not represented with a node on the tectogrammatical
layer. Thanks to the meta-attribute _sentence, it can still be easily found.

3.9 References

References serve to refer in the query to values of attributes in the result trees, to
values unknown at the time of creating the query. First, a node in the query has to be

50

3.9 REFERENCES

named using the meta-attribute _name.’ Then, references to values of attributes of this
node can be used at other nodes of the query. The following query searches for a Pred-

icate with two sons with the same functor in the result tree, whatever the functor may
be:

functorcz)m

_hame=N1 functor={N1.functor}

With the textual form:
[functor=PRED] ([name=N1], [functor={N1l.functor}])

The reference is enclosed in braces ("{"”, "}") and the name of the node that is re-
ferred to is separated from the name of the attribute with a dot (”."”). The first son is
named N1, the functor of the second son is set to the same value as the functor of the
node N1 in the result tree.

The following tree is a possible result for the query. In this case, the functor of the

two sons is TWHEN:

@

Praha vcera odpoledne specidl Rotterdam
DIR3 TWHEN TWHEN MEANS DIR1

rn rockovy

R5TR
Pink Floyd
FPHR FPHR

In Czech: Clenové rockové skupiny Pink Floyd pfiletéli; do Prahy vcera, odpolednes specidlem
z Rotterdamu.

In English: Members of the rock group Pink Floyd arrived; in Prague yesterday, afternoon;
with a special flight from Rotterdam.

References can refer to the whole value (as shown above) or only to one character of
the value. The required position is separated from the name of the attribute with an-

8 In Netgraph, the meta-attribute _name can only be defined once at a node. If there are
alternative nodes defined, the meta-attribute _name can only be used in the first set of

n_n

attributes. It can only be used with the relation equal (”="). It cannot use alternative values.

51

3 THE QUERY LANGUAGE

other dot (”.”). It is also possible that references only form a substring of a defined
value and appear several times in a definition of an attribute. The following query
searches for a father and a son that agree in case and number (which are the fourth
and fifth position of the morphological tag (attribute m/tag):

m/tag=""x
_hame=N1

SPI[1-7].*"

m/tag=???{N1.m/tag.4}{N1.m/tag.5}*

With the textual version:

[_name=N1,m/tag="...\[SP\I\[1-7\].*"]([m/tag=7?7?{N1.m/tag.4}
{N1.m/tag.5}*])

The definition of the tag of the father ensures that the tag is defined and sets which
values are acceptable at the fourth and fifth positions. The definition of the tag of the
son makes sure that the fourth and fifth positions of the two tags are the same, regard-
less of other positions.

The following tree is a possible result for the query:

Vt
VB-S---3P-AA=

pravdivy
NNIS1--——— A-——— AAIS1-——-1A——-

@
tento reklamni
PDYS1-————————m AAIS1-———1A—-—-

In Czech: Je tento; reklamni slogan, pravdivy?
In English: Is this; advertising slogan, honest?

A reference cannot be a part of a regular expression.

3.10 Multi-Tree Queries

A multi-tree query consists of several trees combined either with a general AND or a
general OR. In the case of AND, all the query trees are required to be found in the result
tree at the same time (different nodes in the query cannot be matched with one node
in the result), while in the case of OR, at least one of the query trees is required to be
found in the result tree. The following query also demonstrates a usage of an arith-
metic expression. It takes advantage of the fact that the attribute ord controls the hori-
zontal order of nodes in the analytical trees. The query searches for a Subject and a

52

3.10 MULTI-TREE QUERIES

node that can either be anywhere to the left from the Subject or, if to the right, at the
distance at most three:
o] o

afun=5bh ord<={N1l.ord}+3
_name=N1

andfor AND

In the textual version, the required boolean combination (AND or OR) is on the first
line and each tree is placed separately on the subsequent lines:
AND
[name=N1,afun=Sb]
[ord<={N1l.ord}+3]

The following tree shows a possible result for the query. Attributes m/lemma, afun
and ord are displayed:

Vaclav vlada
Atr Atr
1 5
ok
Atr
letosni
Atr
7

In Czech: Viclav Klaus, odkryl karty vlddy, pro letosni rok
In English: Viclav Klaus; revealed cards of the_government, for this year

The horizontal order of nodes is displayed in the tree. The leftmost node is the root
(ord=0). The node Vaclav (Atr) follows with ord=1, then Klaus (Sb) with ord=2 and
so on. The node leto3ni(Atr) is the rightmost but one (with ord=7), rok(Atr) with
ord=8 is the rightmost node in the tree.

53

3 THE QUERY LANGUAGE

3.11 Hidden Nodes

Hidden nodes are nodes that are marked as hidden by setting the attribute hide to
true.” Their visibility in result trees can be switched on and off. Hidden nodes serve
as a connection to the lower layers of annotation or generally to any external source of
information.

The search algorithm ignores the hidden nodes entirely unless a node in the query
is explicitly marked as hidden. Some meta-attributes do not take the hidden nodes
into account either. The meta-attribute _#descendants only counts non-hidden nodes
in a subtree, as well as the meta-attribute #sons. The meta-attribute #occurrences,
on the other hand, if used at a hidden node, treats hidden nodes as normal nodes. The
meta-attribute #hsons counts a number of hidden sons of a node.

Netgraph uses the hidden nodes as a connection to the lower layers of annotation
with non-1:1 relation, as described later in Section “4.6 - Hidden Nodes” .

The following query searches for a node that has at least three hidden sons, two of
which are verbs (their morphological tag starts with "V"):

#hsonsi\ﬁ

m/jtag=v*
hide=true
_#occurrences=2
With the textual form:
[#hsons>=3]([hide=true,m/tag=V*, #occurrences=2])

The following tree is a possible result for the query:

ten #PersPron #Gen
INTF ACT PAT

byt se divit
Ve-p-—-2 P7-X4 VpYS——-XR-AA-——

In Czech: To byste_se_divil,.
In English: You would_be_surprised,.

9 In Netgraph, the attribute hide can only be defined once at a node. If there are alternative nodes
defined, the attribute hide can only be used in the first set of attributes. It can only be used with

n_n

the relation equal (.

54

3.11 HIDDEN NODES

The nodes with the labels directly below the circles are nodes belonging to the tec-
togrammatical layer. All other nodes are the hidden nodes (now displayed), providing
connection to the lower layers of annotation. The attributes t_lemma and functor are
displayed at the tectogrammatical nodes, the attributes m/lemma and m/tag are dis-
played at the hidden nodes. The tectogrammatical node divit_se(PRED) has three
tectogrammatical sons and three hidden sons.

55

SUMMARY

Summary

Three sides existed whose connection is solved in this book. First, it was the Prague
Dependency Treebank 2.0, one of the most advanced treebanks in the linguistic world.
Second, there existed a very limited but extremely intuitive search tool — Netgraph 1.0.
Third, there were users longing for such a simple and intuitive tool that would be
powerful enough to search in the Prague Dependency Treebank.

In the book, we study the annotation of the Prague Dependency Treebank 2.0, espe-
cially on the tectogrammatical layer, which is by far the most complex layer of the
treebank, and assemble a list of requirements on a query language that would allow
searching for and studying all linguistic phenomena annotated in the treebank. We
propose an extension to the query language of the existing search tool Netgraph 1.0
and show that the extended query language satisfies the list of requirements. We also
show how all principal linguistic phenomena annotated in the treebank can be
searched for with the query language.

The proposed query language has also been implemented — we present the search
tool as well and talk about the data format for the tool. The tool is freely available and
can be downloaded from the internet, as described in the Appendix.

Chapter 1 offers the introduction to the content of the book. In Chapter 2, related
work and several existing search tools for treebanks are discussed. The annotation
manuals for the Prague Dependency Treebank 2.0 are studied here as well and a list of
requirements on a query language for the treebank is assembled. In Chapter 3, a query
language that meets the requirements is presented. Chapter 4 is dedicated to the
description of the data used in Netgraph. Hidden nodes are presented as a way of
accessing lower layers of annotation. Chapter 5 shows that Netgraph Query Language
fulfils the requirements stated in Chapter 2. Chapter 6 discusses some features of the
query language. A comparison to several other query languages is also offered here.
Chapter 7 introduces Netgraph — the tool that implements the query language.
Chapter 8 shows to what extent the features of the query language are put to use by
the users and what the users really do search for. Representative examples of real
queries set by users are presented here. Chapter 9 concludes and summarizes what
has been done and suggests what can be done in the future.

Much additional information can be found in Appendixes, including a list of publi-
cations about Netgraph, a formal description of the data format used in Netgraph, a
formal description of the syntax of the query language implemented in Netgraph, also
a comprehensive list of all attributes of the Prague Dependency Treebank 2.0 used in
Netgraph. Usages of Netgraph for some other treebanks are presented as well and
short installation and usage instructions for Netgraph are offered.

151

BIBLIOGRAPHY

Bibliography

Bird et al. (2000): Towards A Query Language for Annotation Graphs. In: Proceedings
of the Second International Language and Evaluation Conference, Paris, ELRA, 2000.

Bird et al. (2005): Extending Xpath to Support Linguistc Queries. In: Proceedings of the
Workshop on Programming Language Technologies for XML, California, USA, 2005. .

Bird et al. (2006): Designing and Evaluating an XPath Dialect for Linguistic Queries.
In: Proceedings of the 22nd International Conference on Data Engineering (ICDE), pp 52-
61, Atlanta, USA, 2006.

Boag et al. (1999): XQuery 1.0: An XML Query Language. IW3C Working Draft,
http:/fwww.w3.org/TR/xpath, 1999.

Brants S. et al. (2002): The TIGER Treebank. In: Proceedings of TLT 2002, Sozopol,
Bulgaria, 2002.

Cassidy S. (2002): XQuery as an Annotation Query Language: a Use Case Analysis. In:
Proceedings of the Third International Conference on Language Resources and Evaluation,
Canary Islands, Spain, 2002

Clark J., DeRose S. (1999): XML Path Language (XPath). http://www.w3.0rg/TR/xpath,
1999.

Cermék, F. (1997): Czech National Corpus: A Case in Many Contexts. International
Journal of Corpus Linguistics 2, 1997, 181-197.

Eckel B. (2006): Thinking in Java (4" edition). Prentice Hall PTR, 2006.

Hana]., Zeman D., Haji¢ J., Hanovd H., Hladk4 B., Jefdbek E. (2005): Manual for
Morphological Annotation, Revision for PDT 2.0. UFAL Technical Report TR-2005-
27, Charles University in Prague, 2005.

Haji¢ J. (1998): Building a Syntactically Annotated Corpus: The Prague Dependency
Treebank. In Issues of Valency and Meaning, Karolinum, Praha 1998, pp. 106-132.

Haji¢ J. (2004): Complex Corpus Annotation: The Prague Dependency Treebank.
Jazykovednyj iistav L. Stiira, SAV, Bratislava, 2004.

Hajic¢ J., Vidova-Hladka B., Panevova J., Hajicova E., Sgall P., Pajas P. (2001a): Prague
Dependency Treebank 1.0 (Final Production Label). CD-ROM LDC2001T10, LDC,
Philadelphia, 2001.

Haji¢ J., Pajas P. and Vidova-Hladka B. (2001b): The Prague Dependency Treebank:
Annotation Structure and Support. In IRCS Workshop on Linguistic databases, 2001,
pp. 105-114.

153

BIBLIOGRAPHY

Haji¢ J. et al. (1997): A Manual for Analytic Layer Tagging of the Prague Dependency
Treebank. UFAL Technical Report TR-1997-03, Charles University in Prague, 1997.

Haji¢ J., Panevova J., Buranova E., Uresovad Z., Bémova A. (1999): Annotations at
analytical level, Instructions for annotators. Available from
http:/fufal.mff.cuni.cz/pdt2.0/doc/pdt-guide/en/html/ch05.html; also available on PDT 2.0
CD-ROM (Hgji¢ et al. 2006), 1999.

Hajic J. et al. (2006): Prague Dependency Treebank 2.0. CD-ROM LDC2006T01, LDC,
Philadelphia, 2006.

Hajicova E. (1998): Prague Dependency Treebank: From analytic to tectogrammatical
annotations. In: Proceedings of 2nd TST, Brno, Springer-Verlag Berlin Heidelberg New
York, 1998, pp. 45-50.

Hajicova E, Panevovd J. (1984): Valency (case) frames. In P. 5gall (ed.): Contributions to
Functional Syntax, Semantics and Language Comprehension, Prague, Academia, 1984, pp.
147-188.

Hajicova E., Partee B., Sgall P. (1998): Topic-Focus Articulation, Tripartite Structures
and Semantic Content. Dordrecht, Amsterdam, Kluwer Academic Publishers, 1998.

Hajicova E., Havelka J., Sgall P., Veseld K., Zeman D. (2004): Issues of Projectivity in
the Prague Dependency Treebank. MFF UK, Prague, 81, 2004.

Havelka J. (2007): Beyond Projectivity: Multilingual Evaluation of Constraints and
Measures on Non-Projective Structures. In: Proceedings of ACL 2007, Prague, pp. 608-
615.

Hazel P. (2007): PCRE (Perl Compatible Regular Expressions) Manual Page. Available
from http:/fwww.pcre.org/

Herout P. (2002): Ucebnice jazyka C. Kopp 2002.

Hinrichs E. W., Bartels J., Kawata Y. Kordoni V., Telljophann H. (2000): The
VERBMOBIL Treebanks. I Proceedings of KONVENS, 2000.

Kallmeyer L. (2000): On the Complexity of Queries for Structurally Annotated
Linguistic Data. In Proceedings of ACIDCA'2000, Corpora and Natural Language
Processing, Tunisia, 2000, pp. 105-110.

Kepser S. (2003): Finite Structure Query — A Tool for Querying Syntactically
Annotated Corpora. In Proceedings of EACL 2003, pp. 179-186.

Kralik J., Hladka B. (2006): Proména Ceského akademického korpusu (The
transformation of the Czech Academic Corpus). In: Slovo a slovesnost 3/2006, pp. 179-
194.

Kten M. (1996): Editor grafi. Master Thesis, Charles University in Prague, 1996.

154

BIBLIOGRAPHY

Kutova L. KolaFova-Reznitkova V., Zabokrtsky Z., Pajas P, Culo O. (2003):
Anotovani koreference v Prazském zavislostnim korpusu. UFAL Technical Report
TR-2003-19, Charles University in Prague, 2003.

Lai C., Bird S. (2004): Querying and updating treebanks: A critical survey and
requirements analysis. In: Proceedings of the Australasian Language Technology
Workshop, Sydney, Australia, 2004.

Lezius W. (2002): Ein Suchwerkzeug fiir syntaktisch annotierte Textkorpora. PhD.
Thesis IMS, University of Stuttgart, 2002.

Ljubopytnov V., Némec P., Pilatovd M., Reschke J., Stuchl J. (2002): Oraculum, a
System for Complex Linguistic Queries. In: Proceedings of SOFSEM 2002, Student
Research Forum, Milovy, 2002.

Lopatkovad M., Zabokrtsky Z., BeneSova V. (2006): Valency Lexicon of Czech Verbs
VALLEX 2.0. Tech. Report No. 2006/34, UFAL MFF UK, 2006.

Marcus M., Santorini B., Marcinkiewicz M. A. (1993): Building a large annotated
corpus of English: the Penn Treebank. In: Computational Linguistics, 19, 1993.

Marcus M., Kim G., Marcinkiewicz M. A., MacIntyre R., Bies A., Ferguson M., Katz K.,
& Schasberger B. (1994): The Penn Treebank: annotating predicate argument
structure. In Proceedings of the human language technology workshop. Morgan Kaufmann
Publishers Inc, 1994.

Merz Ch., Volk M. (2005): Requirements for a Parallel Treebank Search Tool. In:
Proceedings of GLDV-Conference, Bonn, Germany, 2005.

Mikulova M., Bémova A., Haji¢ J., Hajicova E., Havelka J., Koldfova V., Kucova L.,
Lopatkova M., Pajas P., Panevova J., Razimova M., Sgall P., Stépének J., UreSova Z.,
Vesela K., Zabokrtsky Z. (2006): Annotation on the tectogrammatical level in the
Prague Dependency Treebank. Annotation manual. Tech. Report 30, UFAL MFF UK,
2006.

Mirovsky J. (2008d): PDT 2.0 Requirements on a Query Language. In: Proceedings of
ACL 2008, Columbus, Ohio, USA, 16th - 18th June 2008, pp. 37-45.

Mirovsky J. (2008c): Does Netgraph Fit Prague Dependency Treebank? In: Proceedings
of the Sixth International Language Resources and Evaluation (LREC 2008), Marrakech,
Marocco, 28th - 30th May 2008.

Mirovsky J. (2008a): Towards a Simple and Full-Featured Treebank Query Language.
In: Proceedings of ICGL 2008, Hong Kong, 9th - 11th January 2008, pp. 171-178.

Mirovsky J. (2006): Netgraph: a Tool for Searching in Prague Dependency Treebank
2.0. In Proceedings of TLT 2006, Prague, pp. 211-222.

155

BIBLIOGRAPHY

Mirovsky J., Ondruska R., PriSa D. (2002b): Searching through Prague Dependency
Treebank - Conception and Architecture. In Proceedings of The First Workshop on
Treebanks and Linguistic Theories, Sozopol, 2002, pp. 114—122.

Mirovsky J., Ondruska R. (2002a): NetGraph System: Searching through the Prague
Dependency Treebank. In: The Prague Bulletin of Mathematical Linguistics 77, 2002,
pp. 101-104.

Ondruska R. (1998): Tools for Searching in Syntactically Annotated Corpora. Master
Thesis, Charles University in Prague, 1998.

Pajas P. (2007): TrEd User's Manual. Available from http://ufal. mff.cuni.cz/~pajas/tred/

Pajas P., Stpanek J. (2006): XML-Based Representation of Multi-Layered Annotation
in the PDT 2.0. In: Proceedings of the LREC Workshop on Merging and Layering
Linguistic Information (LREC 2006), Paris, France, 2006, pp. 40-47.

Pajas P., Stdpanek J. (2005): A Generic XML-Based Format for Structured Linguistic
Annotation and Its Application to Prague Dependency Treebank 2.0. In: UFAL
Technical Report, 29, MFF UK, Prague, 2005.

Pito R. (1994): TGrep Manual Page. Awvailable from
http:/fwww.ldc.upenn.edu/ldc/online/treebank/

Rohde D. (2005): TGrep2 User Manual. Available from http://www-
cgi.cs.cmu.edu/~dr/TGrep2/tgrep2.pdf

Rychly P. (2000): Korpusové manazery a jejich efektivni implementace. PhD. Thesis,
Brno, 2000.

Smrz O., Pajas P., Zabokrtsky Z., Hajt J., Mirovsky J., Némec P. (2005): Learning to
Use the Prague Arabic Dependency Treebank. In: Elabbas Benmamoun.
Proceedings of Annual Symposium on Arabic Linguistics (ALS-19). Urbana, IL,
USA, Apr. 1-3: John Benjamins, 2005.

Steiner I., Kallmeyer L. (2002): VIQTORYA - A Visual Tool for Syntactically
Annotated Corpora. In: Proceedings of the Third International Conference on
Language Resources and Evaluation (LREC), Las Palmas, Gran Canaria, 2002, pp.
1704-1711.

Stpének J. (2006): Zavislostni zachyceni vétné struktury v anotovaném syntaktickém
korpusu (néstroje pro zajis téni konzistence dat). PhD. Thesis, Prague, 2006.

Vidova-Hladka B., Haji¢ J.,, Hana J., Hlavacova J., Mirovsky J., Votrubec J. (2007):
Czech Academic Corpus 1.0 Guide. Karolinum - Charles University Press, 2007, ISBN:
978-80-246-1315-4

156

Index
AGIEEIMNENL.vviiiiittct s 32,41,79
AEINAtiVe NMOAES.....c.viieiiiieeeeeecee ettt ettt e e 32, 36, 83, 85, 90
Alternative values..........cccooeevueeeeveneecceeecree e, 22p., 32, 36, 39, 82p., 85, 90, 117, 133, 135
APPOSItION....ciiiiiiiiicc 25, 32p., 66p., 85, 107p., 132, 134, 138
Arithmetic eXPressions..........covicucieiiiicic e 39
Complex predicate.........oeiiririiirccrreeeeeeee e 24,26, 67p., 69, 136
Coordination.......cccceeeveieerieeieieeeecreeeeee e e ee 20, 25, 33, 66, 85, 106pp., 134, 136, 138
(@0} <) (<) 4 1 L TP OTO PR 16, 19, 27, 60, 68p., 107, 111, 135
Dual Dependency.........cociiciiiecicie s 26p., 68
FOCUS PIOPET ..ottt 28p., 71pp.
FS File FOrmat.......ccooovviieiieieiieiesieeeeceee et 22, 57p., 95, 124, 128p., 141, 144
Bt 21, 84p
Hidden nodes............... 14, 45, 54p., 57, 59pp., 65, 77p., 99, 102, 111, 115, 122, 130pp., 140
HoOTIiZontal 1eIatiONS.c.veiviiieieceeeceeeeeteeeeeee ettt e et e e e enees 33, 64, 85
TAIOMS. ..o 25p., 67
Linguistic requirements...........ccccoviviiiiiiiiiii 17,32, 35
Lower layers........ccccooviiiiiiiciniiiicinns 14, 16, 23p., 30p., 54p., 57, 61, 65, 77, 115, 130
MaANAEE / BOTULO. ... eeeeeeeeeeeeeeeeeee ettt ettt e e e e e e e eeeaeeseeaaeeseaaeeseseesesnenaeeeeeeeseennnas 18,23
Meta-attributes.........ccocveeveiieeieiieieeeeeeee e 40, 54, 61, 90, 101, 105pp., 109, 115, 122p.
Meta-attributes
_HAESCENAANLES.ccevivieiicieeie ettt et e as 46, 54,103, 109
CHRSOMNIS ..ttt sa e ens 45,54, 61,103,110, 112
_HIDTORETS. ... 47,74, 87,103, 109pp., 117
_HOCCUITENCES.....vvveeeeeeerreeeeeeeenvvrnannns 47pp., 54, 63, 82, 84, 87, 89, 91pp., 104, 107, 110p.
CHIDIONETS. ..o 47,72,103, 109p.
=70 1 SO 45, 54, 61, 64p., 82, 84, 88pp., 93, 95, 103, 108
_depthu. 46, 49p., 64, 67, 89, 91pp., 103, 108pp.
D 1 =1 0 0 LSOO 50pp., 87pp., 96p., 104, 107, 110pp.
_optional......cccccoiiiiiiiiiii 42pp., 65p., 83, 88, 90, 94, 103, 107pp.
<< 01 (14 To/ SR URTON 50, 65, 67, 104, 108pp.
_transitive......ccooooiiiii, 40p., 49, 63, 87, 89, 91pp., 96p., 103, 107, 111
MUlti-tree......cooveveerenirreeieeieerenenns 33, 35, 38, 52, 65, 71, 81, 83, 85, 88p., 93, 102, 118, 128
Negation.......ccccooeviiiiiiiiiicie, 19, 21, 31, 33, 40, 85p., 92pp., 118,132, 137
Netgraph 1.0.....cooiiiiiiiiiiiicccrrcccceceeeee e 13p., 17, 22, 35, 99, 101, 115
OFACUIUINL ..ottt et b et eere e b e saesbeessesseessesrsessesssensennnas 20, 155
| AV 1<) 0 (< TR 25, 67
Predicative complement............ccccoeuviviniiiniiinininiii 24, 26pp., 60, 68p., 136

157

Projectivity ..., 29p., 75p., 96, 107, 111, 154
QUASIOCUS. ...ttt ettt sttt ettt et e ts et e ess e beesseeteessesssensesnsbeeensseessseeennnes 29,72
REAUNAANCY ... 81p.

References. .25pp., 33, 37, 39, 50pp., 57, 59p., 64, 67, 69, 78p., 81, 85, 90, 93, 95, 99, 101p.,
110p., 115,117, 122, 129

Regular EXpressions..........cccooeiiivininiiniinininininnicinenns 18, 31p., 37, 79, 85, 90, 101, 129, 154
RhematizZers.......ccovvevieiieieieceeeeeee ettt vee e ,29,74p., 109, 111, 137
TGIEP it 18p., 81, 84pp., 91, 94p., 122, 156
TGLEP2....oiiiiieiiecee s 19, 81, 84p., 88pp., 94, 156
TIGEISEATCh......oviiiiiic s 17, 19, 84p., 90pp.
TOPIC-FOCUS....cvviiiiiiicicccc 28p., 70, 74, 106, 108p., 111p., 154
T e eee e s e e s ee s seses e es s eeseseseeee s eesesesaees s ee e seeseeseseees 20, 124, 144, 156
Valency.....cooeeeeeiniieiiciecn 20, 24pp., 65p., 68, 106pp., 110, 113, 140, 144, 153pp.
Vertical RELAIONS.couieieiieiieteeteeeete ettt ettt ettt ve b et et eebae e savaeeeanaeenenas 33, 63, 85
VIQTORY A ...ttt ettt st te st e e s e e b e et e et e e sa e saesaesseessessesssesseessesssesssesssssessnsens 21, 156
WILA CATAS...evioveieiicieeteeeeeeee ettt ettt st e et e e nee s 22, 31p., 36p., 79, 85
WOId OFder.......coiiiieieeiieeeeeee e 16, 29, 32, 72, 74, 80, 107, 109, 111, 135

158

