Introducing the Prague Discourse Treebank 1.0

Lucie Poláková, Jiří Mírovský, Anna Nedoluzhko, Pavlína Jínová, Šárka Zikánová and Eva Hajičová
Charles University in Prague
Faculty of Mathematics and Physics
Institute of Formal and Applied Linguistics
Czech Republic
{polakova|mirovsky|nedoluzko|jinova|zikanova|hajicova}@ufal.mff.cuni.cz

Abstract

We present the Prague Discourse Treebank 1.0, a collection of Czech texts annotated for various discourse-related phenomena "beyond the sentence boundary". The treebank contains manual annotations of (1) discourse connectives, their arguments and senses, (2) textual coreference, and (3) bridging anaphora, all carried out on 50k sentences of the treebank. Contrary to most similar projects, the annotation was performed directly on top of syntactic trees (from the previous project of the Prague Dependency Treebank 2.5), benefiting thus from the linguistic information already existing on the same data. In this article, we present our theoretical background, describe the annotations in detail, and offer evaluation numbers and corpus statistics.

1 Introduction and Motivation

Large collections of gold standard language data are known to build an indispensable base for many NLP algorithms. Reliable morphological tagging and syntactic analysis (phrasal or dependency) are nowadays quite a standard information in language corpora released all over the world. With the gradually increasing interest in modeling discourse structure or using various discourse features in different NLP tasks (anaphora resolution, summarization, MT), also the development of resources aimed at representing various discourse-related aspects has gained on importance. Moreover, both theoretical discourse research and NLP algorithms can benefit from a reliable multi-dimensional analysis of the data (Webber et al., 2003, Stede, 2004). There are already several elaborate theoretical concepts on discourse coherence brought to life in real-data annotation (see Sections 1.1 and 1.2). Still, it is only in recent years that large-scale corpora with manual annotations of sentential and discourse-level phenomena have become available. Even fewer such corpora exist that combine more types of manual discourse-level annotations.

In this paper, we present a large-scale manual annotation project for Czech in which, apart from the "standard" analysis of a sentence (morphology, syntactic trees), several discourse phenomena are marked, all over the same data: pronominal, nominal and zero coreference, discourse connectives (henceforth DCs) and the semantic relations they express, and the associative relations of the so-called bridging anaphora.

The paper is structured as follows: In Sections 1.1 and 1.2, brief overviews of recent projects concerning discourse relations and coreference + bridging anaphora are described, respectively. In Section 2, data and tools used in Prague Discourse Treebank (PDiT) are introduced. Section 3 describes the annotation scenario and is followed by evaluation of the project in comparison with similar projects (Section 4) and basic distribution numbers (Section 5). We conclude with discussion (Section 6).

1.1 Corpora of Discourse Relations

The first attempts in representing discourse structure date over a decade back. One of very first and most influential projects was the RST-Treebank (Carlson et al., 2001), an annotation project over the English texts of Wall Street Journal. In accordance with the Rhetorical Structure Theory of Mann and Thompson (1988), the whole document is represented as a single tree-like structure. Wolf and Gibson (2005) propose a less con-

1 The term of discourse in this paper is used in two meanings. The broader interpretation is roughly equal to text (as in discourse structure, discourse features or discourse coherence) whereas the narrower sense denotes semantic relations between propositions (as in discourse relations).

2 Czech is a pro-drop language. The restored ellipses in the underlying sentence analysis allow us to annotate zero forms as co-referential.
strained model in Discourse Graphbank by giving up the requirement of a tree-structure. These approaches are referred to as "deep discourse parsing" or modeling of global coherence (whole document = one connected structure) in contrast to the so-called "shallow discourse parsing" or local coherence modeling of the lexically grounded approaches, which are based on identification of discourse markers and relations they express. The most influential of the latter is the Penn Discourse Treebank (for English, PDTB, Prasad et al., 2008) with several subsequent similarly aimed corpora for different languages, the project presented here being one of them.

Resources manually annotated for (some type of) discourse phenomena are already available or work-in-progress for various languages, including Chinese (Zhou and Xue, 2012), Arabic (Al-Saif and Markert, 2010), Turkish (Zeyrek et al., 2010), Hindi (Oza et al., 2009), French (Afantenos et al., 2012, Danlos et al., 2012), German (Stede, 2004, Gastel et al., 2011) and others. Additionally, the relevance of the PDTB annotation concept was further tested on specific domains, e.g. on spoken dialogs (Italian, Tonelli et al., 2010) and on biomedical texts (English, Prasad et al., 2011).

1.2 Corpora of Coreference and Bridging Relations

There is a number of different large-scale annotated corpora for coreference and anaphoric relations. The largest annotated corpora for English include MUC (Hirschman and Chinchor, 1997), ACE (Doddington et al., 2004), OntoNotes (Pradhan et al., 2007), GNOME (Poesio, 2004), ARRAU (Poesio and Artstein, 2008). The coreference annotations for other languages than English are more limited. The most well-known corpora including anaphoric information are AnCora (Recasens and Martí, 2009) for Spanish and Catalan, VENEX (Poesio et al., 2004a) for spoken and written Italian, the Italian Live Memories Corpus (Rodriguez et al., 2010), TüBA-D/Z (Hinrichs et al., 2004) and Postdam Commentary Corpus (Stede, 2004, Krasavina and Chiarcos, 2007) for German, and some others.

Early work on bridging relations dates back to the mid-70s. Clark (1975) documents several ways in which an inference is needed to understand the meaning intended by the speaker. Clark names several types of bridging relations such as set-membership, part-whole, roles, reasons and consequences. Bridging relations have been later investigated by Poesio et al. (1997, 2004b). The annotation of bridging relations in different projects includes different types of relations. In the GNOME corpus (Poesio, 2004), such bridging relations as set-membership, subset, and part-whole are annotated. The Copenhagen Dependency Treebank (Korzen and Buch-Kromann, 2011) has a very detailed annotation scheme based on general semantic roles. Another way to capture bridging relations is to define them vaguely, e.g. as a reference which is made to a subpart of an object that has already been mentioned in the discourse (Hendrickx et al., 2011) or to mark as bridging all non-coreferent anaphoric references. The last approach was used in Hou et al. (2013), providing a reasonably sized and reliably annotated corpus for English.

To our knowledge, there are only few corpus projects portraying phenomena "beyond the sentence boundary" that gather different types of textual information, or, in other words, offer some kind of multi-dimensional discourse annotation. The texts of Wall Street Journal have undergone various annotations but they arose within different projects and frameworks – rhet-

Figure 1. Annotation of two sentences. Discourse relations are represented by thick orange arrows, textual coreference by dark blue slim arrows, bridging anaphora by light blue slim arrows. Grammatical coreference (the only one in the figure is between nodes co [what] and upouštět [to abandon]) is represented by a brown slim arrow.
Table 1: Distribution of discourse types in the data

<table>
<thead>
<tr>
<th>TEMPORAL</th>
<th>CONTINGENCY</th>
<th>CONTRAST</th>
<th>EXPANSION</th>
</tr>
</thead>
<tbody>
<tr>
<td>synchronous</td>
<td>reason – result</td>
<td>confrontation</td>
<td>conjunction</td>
</tr>
<tr>
<td>asynchronous</td>
<td>pragmatic reason – result</td>
<td>opposition</td>
<td>exemplification</td>
</tr>
<tr>
<td></td>
<td>condition</td>
<td>pragmatic contrast</td>
<td>specification</td>
</tr>
<tr>
<td></td>
<td>pragmatic condition</td>
<td>restrictive opposition</td>
<td>equivalence</td>
</tr>
<tr>
<td></td>
<td>explication</td>
<td>concession</td>
<td>generalization</td>
</tr>
<tr>
<td></td>
<td>purpose</td>
<td>correction</td>
<td>conjunctive alternative</td>
</tr>
<tr>
<td></td>
<td></td>
<td>gradation</td>
<td>disjunctive alternative</td>
</tr>
</tbody>
</table>

For the annotation of discourse relations, we used the Prague Dependency Treebank 2.5 (PDT, Bejček et al., 2012), which is an update of the Prague Dependency Treebank 2.0 (Hajič et al., 2006). It is a treebank of almost 50 thousand sentences of Czech newspaper texts, annotated manually on three levels of annotation: morphological, analytical and tectogrammatical. The annotation of a sentence at the highest, tectogrammatical layer captures the deep syntax and the information structure of a sentence and is represented by a dependency tree.

For the annotation of discourse relations, textual coreference and bridging anaphora, we used several extensions to a highly customizable tree editor TrEd (Pajas and Štěpánek, 2008). Technically, each of the annotated relations is represented as an arrow connecting two tectogrammatical nodes. The two nodes represent the two arguments of the relation, i.e. typically the subtrees of the nodes. All information about the relation is kept in a set of dedicated attributes at the initial node of the relation, containing a unique identifier of the target node of the relation, type of the relation, and other pieces of information (depending on the relation, e.g. a connective for the discourse relation). The relation is depicted as a curved arrow between the nodes, see Figure 1.

In the first release of PDT, we only focused on discourse relations indicated by overtly present (explicit) discourse connectives, i.e. expressions like but, however, as a result, even though etc. Every DC is thought of as a discourse-level predicate that

3 Some remarks on annotation of the implicit DCs and of the so-called alternative lexicalizations of connectives (AltLex) are added in the discussion in Section 6.
takes two discourse units as its arguments. Only discourse relations connecting clausal arguments (with a predicate verb), i.e. not those between nominalizations or deictic expressions were annotated in version 1.0. Additionally, the Prague discourse annotation includes marking of list structures (as a separate type of discourse structure) and marking of some smaller text phenomena: article headings, figure captions, non-coherent texts like collections of news etc.

The annotation of discourse relations consisted of two phases, first being manual and the subsequent including automatic extraction of relevant syntactic features. For the manual part, the annotators had at their disposal both plain text and the tree structures, the annotation itself was carried out on syntactic (tectogrammatical) dependency trees, as we did not want to lose connection with and information from the analyses of previous levels. Intra-sentential discourse relations, i.e. those that had already been captured within the syntactic (tectogrammatical) analysis, were only to be newly annotated if their discourse semantics differed from the tectogrammatical interpretation (Jínová et al., 2012b), otherwise they were automatically extracted and mapped onto the discourse annotation.

Automatic Extraction of Syntactic Features

An automatic procedure was designed to extract discourse-relevant features from the syntactic level of description, i.e. the intra-sentential discourse relations. As mentioned earlier, the tectogrammatical tree structures offer some types of information that can be transferred to the discourse-level annotation. In general, this concerns subordinate syntactic relations between clauses with labels like causality, conditionality, temporality, concession etc.; and coordinate syntactic relations between clauses of one sentence with selected coordinative labels like conjunction, disjunction, opposition or contrast, confrontation etc. These relations were semi-automatically mapped onto the discourse annotation. (Jínová et al., 2012b).

Semantic labels

The Prague discourse label set was inspired by the tectogrammatical functors (Mikulová et al., 2005) and also by Penn sense tag hierarchy (Miltsakaki et al., 2008). Table 1 shows the discourse-semantic label set used for PDT1 1.0. The four main semantic classes, Temporal, Contingency, Contrast (Comparison) and Expansion are identical to those in PDTB but the hierarchy itself is only two-level. The third level is captured by the direction of the discourse arrow. The annotators, unlike in the Penn approach, were not allowed to only assign the major class, they always had to decide for a single relation within one of the classes.4 Within these four classes, the types of the relations partly differ from the Penn types and go closer to Prague tectogrammatical functors and/or are a matter of language-specific distinctions. Compared to the PDTB label set, we added the categories of purpose and explication in the Contingency group and restrictive opposition and gradation to the Contrast group. In the PDTB, four pragmatic meanings are distinguished and annotated: pragmatic cause, condition, contrast and concession. In the Prague scenario, three pragmatic senses were annotated, pragmatic concession and pragmatic contrast joined to one group, for the lack of reliable distinctive features.5

Post-annotation checks and fixes

After the manual annotation of discourse relations was finished, some checks turned up to be necessary, especially for relations whose nature revealed to be more complicated in real data than we had expected on the basis of linguistic handbooks. After having collected all examples of these relations (namely specification, explication, generalization, exemplification and equivalence) in our data and established more complex definitions of their nature, annotation of these relations was manually unified in the whole data. Also some DCs required unification via post-annotation. Additionally, the part of the data which was annotated first was fully re-annotated at the end since we expected it might have suffered from initial inexperience of the annotators.

Results of the automatic extraction were checked randomly on several hundreds of examples. All discrepancies found were integrated in an automatic script (treatment of multiple DCs, multiple coordinations etc.). Only two situations required manual checks and fixes: i) Due to a complicated situation in a tree, the automatic extraction failed in 23 cases of DC identification (opposed to 10,482 cases with correct identification). ii) Solely manual treatment was necessary for constructions with a discourse-relevant clause dependent on a complex predicate structure with

4 In special cases, they had the option to assign an additional secondary relation.
5 It may be that different text types require slightly different sets of semantic labels. For instance, some discourse projects use a more fine-grained set of pragmatic senses (e.g. for spoken dialogs).
an infinitive or a noun phrase. In such cases only
semantics allowed to distinguish if the clause is
related to the whole structure or only to the infinitive
or noun phrase.

3.2 Coreference and Bridging Relations

In PDiT 1.0, two types of coreference (grammatical and textual) and six types of bridging
relations are marked. The grammatical coreference
typically occurs within a single sentence, the antecedent being able to be derived on the basis of grammatical rules of a given language (Czech). It includes relative pronouns, verbs of
control, reflexive pronouns, reciprocity and verbal complements (Mikulová et al., 2005).

Textual coreference marks coreferential relations
between language expressions referring to the
same discourse entity when the reference is not expressed by grammatical means alone, but
also via context. Anaphoric (occasionally cata-
phoric) relations are expressed by various lin-
guistic means (pronouns, synonyms, generalizing
nouns etc.). Textual coreference has been an-
nnotated in two time periods. First, the so-called prono-

3.2 Coreference and Bridging Relations

In PDiT 1.0, two types of coreference (grammatical and textual) and six types of bridging relations are marked. The grammatical coreference typically occurs within a single sentence, the antecedent being able to be derived on the basis of grammatical rules of a given language (Czech). It includes relative pronouns, verbs of control, reflexive pronouns, reciprocity and verbal complements (Mikulová et al., 2005). Textual coreference marks coreferential relations between language expressions referring to the same discourse entity when the reference is not expressed by grammatical means alone, but also via context. Anaphoric (occasionally cata-
phoric) relations are expressed by various lin-

guistic means (pronouns, synonyms, generalizing
nouns etc.). Textual coreference has been an-
nnotated in two time periods. First, the so-called pro-
nominal textual coreference was manually annot-
ated. It was restricted to cases in which a demon-

strative this or an anaphoric pronoun of the 3rd person, also in its zero form, are used (Kučová
and Hajičová, 2004). Afterwards, the annotation of textual coreference was extended to cases where the anaphoric expression is represented by other means such as full noun phrases, adverbs (there, then etc.) and some types of numerals and pronouns left out during the first stage (Ne-
doluzhko et al., 2013).

The textual coreference is further classified
into two types – coreference of noun phrases with specific (type SPEC) or generic (type GEN)
reference. Compare examples (2) and (3):

(2) Mary and John went together to Israel, but Mary [type SPEC] had to return because of the illness.

(3) Dogs bark. This is the way how they [type GEN] express their emotions.

Discourse deixis (reference to a non-nominal antecedent) is annotated as a textual coreference
link when referring to a clause or a sentence. If a noun phrase endophorically refers to a discourse
segment that is larger than one sentence or it is
understood by inferencing from a broader co-
text, the antecedent is not specified.

7 For more details, see Jinová et al. (2012b).

A specifically marked link for exophora de-
notes that the referent is "out" of the co-text, it is
known only from the actual situation. In the
same way as for segments, the new nominal and
adverbial links were added.

For the bridging relations, the following
types are distinguished: part-of relation (room -
ceiling), set – subset (students – some students)
and FUNCT (trainer – football team) tradi-
tional relations, CONTRAST for coherence rele-
vant discourse opposites (e.g. this year – next
year), ANAF for explicitly anaphoric relations
without coreference (second world war – at that
time) and the further underspecified group
REST, which is mainly used to capture such
types of bridging relations as location – inhab-

ants or event – argument. A more detailed de-
scription of the types can be found in Ne-
doluzhko and Mirovský (2011).

Automatic Preannotation

For the textual coreference, only a limited pre-
annotation was carried out: We used a list of
pairs of words that with a high probability form a
coreferential pair in texts. Most of the pairs in the
list consist of a noun and a derived adjective, which are different in Czech, e.g. Praha –
pražský (in English: Prague – Prague, like in the
sentence: He arrived in Prague and found the
Prague atmosphere quite casual). The rest of the
list is formed by pairs consisting of an abbrevi-
ation and its one-word expansion, e.g. ČR –
Česko (similarly in English: USA – States). The
whole list consists of more than 6 thousand pairs
obtained automatically from the morphological
synthesizer for Czech, manually checked and
slightly extended.

4 Inter-Annnotator Agreement

Several annotators annotated the data but (for ob-
vious reasons of limited resources) each part of
the data has only been annotated by one of them.
Only 4% of the data (44 documents, 2,084 sen-
tences) have been annotated in parallel by two
annotators of discourse relations, and 3% (39
documents, 1,606 sentences) have been annot-
ated in parallel by two annotators of textual core-
ference and bridging anaphora. We used the par-
allel (double) annotations for measuring the in-
ter-annotator agreement, and for analyzing the
most common errors, i.e. difficult parts of the
annotation.

7 This decision is considered to be provisional. The ante-
cedents are supposed to be specified in further phases of the
annotation.
To evaluate the inter-annotator agreement on texts annotated in parallel by two annotators, we used several measures. The connective-based F1-measure (Mírovský et al., 2010c) was used for measuring the agreement on the recognition of a discourse relation, the chain-based F1-measure was used for measuring the agreement on the recognition of a coreference or bridging relation. A simple ratio and Cohen's κ were used for measuring the agreement on the type of the relations in cases where the annotators recognized the same relation.\footnote{In all our measurements, only inter-sentential discourse relations have been counted, as the intra-sentential relations were mostly annotated automatically.}

In the connective-based measure, we consider the annotators to be in agreement on recognizing a discourse relation if the two connectives they mark (each of the connectives marked by one of the annotators) have a non-empty intersection (technically, a connective is a set of tree nodes). For details, see Jinová et al. (2012a).

In the chain-based measure, we consider the annotators to be in agreement on recognizing a coreference or a bridging relation if two nodes connected by an arrow by one of the annotators have also been connected by the other annotator; coreference chains are taken into account, i.e. it is sufficient for the agreement if the arrow starts in or goes to a node that is coreferentially connected (possibly transitively) with the node used for the relation by the other annotator.

Table 2 shows the results of the inter-annotator agreement measurements.

<table>
<thead>
<tr>
<th>relation</th>
<th>F1</th>
<th>agreement on types</th>
<th>Cohen's κ</th>
</tr>
</thead>
<tbody>
<tr>
<td>discourse</td>
<td>0.83</td>
<td>0.77</td>
<td>0.71</td>
</tr>
<tr>
<td>text. coref.</td>
<td>0.72</td>
<td>0.90</td>
<td>0.73</td>
</tr>
<tr>
<td>bridging</td>
<td>0.46</td>
<td>0.92</td>
<td>0.89</td>
</tr>
</tbody>
</table>

Table 2: Inter-annotator agreement

Comparison of the inter-annotator agreement with other similar projects is difficult, as the projects usually use different annotation schemes and different scores. Nevertheless, some comparisons can be done:

The simple ratio agreement on types in discourse relations (0.77 on all parallel data, the third column of Table 2) is the closest measure to the way of measuring the inter-annotator agreement used on subsenses in the Penn Discourse Treebank 2.0, reported in Prasad et al. (2008). Their agreement was 0.8.

In theannotation of coreference relations in OntoNotes, the inter-annotator agreement on English was 80.9 for newspaper texts and 78.4 for magazine texts. On Chinese, the agreement was 73.6 for newspaper texts and 74.9 for magazine texts (reported in Pradhan et al. 2012). These numbers can be compared with our chain-based F1 measure (0.72 in the second column of Table 2), as it is similar to the MUC-6 score they used.

As to the bridging anaphora, we can compare our chain-based F1 score (0.46 in the second column of Table 2) to F1 score on recognition of bridging relations reported for the annotation of the COREA corpus (Dutch texts); their agreement on newspaper texts was 0.39 (reported in Hendrickx et al., 2011).

5 The Corpus in Numbers\footnote{Please note that 1/10 if the PDT/PDiT data has been designated to evaluation tests. Numbers presented in this section include also this part of the data. Therefore, these numbers should not be used in any experiments tested on the evaluation test data of PDT/PDiT!}

Table 3 shows total numbers of annotated relations in the whole data of PDiT.

<table>
<thead>
<tr>
<th>relation</th>
<th>count</th>
</tr>
</thead>
<tbody>
<tr>
<td>discourse relations</td>
<td>20,542</td>
</tr>
<tr>
<td>- discourse inter-sentential</td>
<td>6,195</td>
</tr>
<tr>
<td>- discourse intra-sentential</td>
<td>14,347</td>
</tr>
<tr>
<td>textual coreference</td>
<td>87,299</td>
</tr>
<tr>
<td>grammatical coreference\footnote{mostly annotated already in PDT}</td>
<td>23,272</td>
</tr>
<tr>
<td>bridging anaphora</td>
<td>33,154</td>
</tr>
</tbody>
</table>

Table 3: Total numbers of annotated relations in PDiT

In addition to the numbers in Table 3, there have been annotated 445 members of lists, 4,188 headings, 1,505 coreference relations to segment and 689 references out of the text (exophora).
Table 4 shows a distribution of bridging types annotated in PDiT. Table 5 shows the total number of individual discourse types annotated in PDiT.

<table>
<thead>
<tr>
<th>discourse type</th>
<th>full name</th>
<th>count</th>
</tr>
</thead>
<tbody>
<tr>
<td>conc</td>
<td>concession</td>
<td>878</td>
</tr>
<tr>
<td>cond</td>
<td>condition</td>
<td>1,369</td>
</tr>
<tr>
<td>confr</td>
<td>confrontation</td>
<td>654</td>
</tr>
<tr>
<td>conj</td>
<td>conjunction</td>
<td>7,551</td>
</tr>
<tr>
<td>conjalt</td>
<td>conj. alternative</td>
<td>90</td>
</tr>
<tr>
<td>corr</td>
<td>correction</td>
<td>440</td>
</tr>
<tr>
<td>disjalt</td>
<td>disj. alternative</td>
<td>270</td>
</tr>
<tr>
<td>equiv</td>
<td>equivalence</td>
<td>104</td>
</tr>
<tr>
<td>exempl</td>
<td>exemplification</td>
<td>142</td>
</tr>
<tr>
<td>explicat</td>
<td>explication</td>
<td>225</td>
</tr>
<tr>
<td>f cond</td>
<td>pragm. condition</td>
<td>16</td>
</tr>
<tr>
<td>f opp</td>
<td>pragm. contrast</td>
<td>50</td>
</tr>
<tr>
<td>f reason</td>
<td>pragm. reason</td>
<td>40</td>
</tr>
<tr>
<td>gener</td>
<td>generalization</td>
<td>106</td>
</tr>
<tr>
<td>grad</td>
<td>gradation</td>
<td>430</td>
</tr>
<tr>
<td>opp</td>
<td>opposition</td>
<td>3,209</td>
</tr>
<tr>
<td>preceded</td>
<td>asynchronous</td>
<td>808</td>
</tr>
<tr>
<td>purp</td>
<td>purpose</td>
<td>414</td>
</tr>
<tr>
<td>reason</td>
<td>reason-result</td>
<td>2,626</td>
</tr>
<tr>
<td>restr</td>
<td>restr. opposition</td>
<td>269</td>
</tr>
<tr>
<td>spec</td>
<td>specification</td>
<td>627</td>
</tr>
<tr>
<td>synchr</td>
<td>synchronous</td>
<td>222</td>
</tr>
<tr>
<td>other</td>
<td>other</td>
<td>2</td>
</tr>
<tr>
<td>total</td>
<td>20,542</td>
<td></td>
</tr>
</tbody>
</table>

Table 5: Distribution of discourse types in PDiT

6 Discussion

In the first release of PDiT, the annotation of discourse relations is limited to relations expressed by explicit DCs (coordinating conjunctions, particles, adverbs etc.), other tags between adjacent sentences were not inserted, unlike in some similar projects. Alternative lexicalizations (AltLex) are not annotated in PDiT, their thorough analysis is a recent work in progress. Entity-based relations (EntRel) are, in our view, a matter of coreference and bridging annotation.

Implicit connectives

Annotation of implicit connectives has been in all known attempts a problematic task, as the IAA numbers are rather low. For implicit connectives (not present on the surface, a DC must be "inferred" from the context), we conducted an experimental annotation of 100 sentences, trying to remove factors known as repeatedly disturbing. The annotators agreed in 49% on type of the relation. If only the distinction between any discourse relation on one side and coref + bridging relation on the other side was taken into consideration, the agreement was slightly higher – 58%. The most problematic issue revealed to be distinguishing between elaborative relations and relations based only on coreference. The restriction of the annotation only to slots between adjacent sentences was found useful for simplifying the annotation but it did not always match the annotators' intuition where the argument borders should be (e.g. if only the sentence-last dependent clause relates to the following sentence). Although the annotators were able to agree in most cases after discussion, the results convinced us to reconsider the annotation setting for implicit DCs before any future annotation.

Another phenomenon not present in PDiT in comparison with PDTB is attribution. We believe that this information can be at least partially obtained from syntactic features of the syntactic layers of PDT (e.g. attributes for direct speech, parentheses, verbal valency etc.).

7 Conclusion

We described the Prague Discourse Treebank 1.0, PDiT 1.0, a large collection of Czech texts that offers a rare combination of manual annotations of discourse relations, textual coreference and bridging anaphora. PDiT 1.0 is an extension of PDT 2.5 and all the annotation presented in this paper was carried out on the dependency trees of the tectogrammatical (deep syntax) layer. It was released in November 2012 under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License and it is available at the LINDAT-Clarin repository (Poláková et al., 2012b).

Recently, we focus on extensions of the annotation for the upcoming release of PDT 3.0. A genre classification of the corpus texts for the purposes of data clustering in automatic experiments has been finished. Annotation of alternative lexicalizations (AltLex) and anaphoric expressions of 1st and 2nd person are in progress.

Acknowledgment

We gratefully acknowledge support from the Grant Agency of the Czech Republic (projects n.
References

