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Abstract

We present CorPipe 24, the winning entry to
the CRAC 2024 Shared Task on Multilingual
Coreference Resolution. In this third itera-
tion of the shared task, a novel objective is
to also predict empty nodes needed for zero
coreference mentions (while the empty nodes
were given on input in previous years). This
way, coreference resolution can be performed
on raw text. We evaluate two model variants:
a two-stage approach (where the empty nodes
are predicted first using a pretrained encoder
model and then processed together with sen-
tence words by another pretrained model) and
a single-stage approach (where a single pre-
trained encoder model generates empty nodes,
coreference mentions, and coreference links
jointly). In both settings, CorPipe surpasses
other participants by a large margin of 3.9 and
2.8 percent points, respectively. The source
code and the trained model are available at
https://github.com/ufal/crac2024-corpipe.

1 Introduction

The CRAC 2024 Shared Task on Multilingual
Coreference Resolution (Novák et al., 2024) is
a third iteration of a shared task, whose goal is
to accelerate research in multilingual coreference
resolution (Žabokrtský et al., 2023, 2022). This
year, the shared task features 21 datasets in 15 lan-
guages from the CorefUD 1.2 collection (Popel
et al., 2024).

Compared to the last year—apart from 4 new
datasets in 3 languages—a novel task is to predict
the so-called empty nodes (according to the Univer-
sal Dependencies terminology; Nivre et al. 2020).
The empty nodes can be considered “slots” that
can be part of coreference mentions even if not be-
ing present on the surface level of a sentence. The
empty nodes are particularly useful in pro-drop
languages (like Slavic and Romance languages),
where pronouns are sometimes dropped from a

sentence when they can be inferred, for example
by verb morphology, like in the Czech example

“Řekl, že nepřijde”, translated as “(He) said that
(he) won’t come”.

We present CorPipe 24, an improved version of
our system submitted in last years (Straka, 2023;
Straka and Straková, 2022). We evaluate two vari-
ants of the system. In a two-stage variant, the empty
nodes are first predicted by a baseline system utiliz-
ing a pretrained language encoder model;1 then, the
predicted empty nodes are, together with the input
words, processed by original CorPipe using another
pretrained encoder. In comparison, a single-stage
variant employs a single pretrained encoder model,
which predicts the empty nodes, coreference men-
tions, and coreference links jointly.

Our contributions are as follows:
• We present the winning entry to the CRAC

2024 Shared Task on Multilingual Corefer-
ence Resolution, surpassing other participants
by a large margin of 3.9 and 2.8 percent points
with a two-stage and a single-stage variant, re-
spectively.

• We compare the two-stage and the single-
stage settings, showing that the two-stage sys-
tem outperforms the single-stage system by
circa one percent points, both in the regular
and the ensembled setting.

• Apart from the CorefUD 1.2, we eval-
uate the CorPipe performance also on
OntoNotes (Pradhan et al., 2013), a frequently
used English dataset.

• The CorPipe 24 source code is available at
https://github.com/ufal/crac2024-corpipe un-
der an open-source license. The two-stage
and the single-stage models are also released,
under the CC BY-NC-SA license.

1Our implementation of the baseline system was available
to all shared task participants in case they do not want to
predict the empty nodes themselves.
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2 Related Work

Traditionally, coreference resolution was solved
by first predicting the coreference mentions and
subsequently performing coreference linking (clus-
tering) of the predicted mentions. However, in
recent years, the end-to-end approach (Lee et al.,
2017, 2018; Joshi et al., 2019, 2020) has become
more popular. Indeed, the baseline of the CRAC
2022, 2023, and 2024 shared tasks (Pražák et al.,
2021) follow this approach, as well as the second-
best solution of CRAC 2022 (Pražák and Konopik,
2022) and the third-best solution of CRAC 2023.

The end-to-end approach has been improved by
Kirstain et al. (2021) not to explicitly construct the
span representations, and by Dobrovolskii (2021)
to consider only the word level, ignoring the span
level altogether during coreference linking. Simul-
taneously, Wu et al. (2020) formulated coreference
resolution in a question answering setting, reach-
ing superior results at the expense of substantially
more model predictions and additional question-
answering data.

The current state-of-the-art results on
OntoNotes (Pradhan et al., 2013), a frequently
used English coreference resolution dataset, are
achieved by autoregressive models with billions of
parameters: Liu et al. (2022) propose a specialized
autoregressive system, while Bohnet et al. (2023)
employ a text-to-text paradigm. However, both
these architectures must call the trained model
repeatedly to process a single sentence.

3 Two-stage CorPipe

The two-stage variant of CorPipe processes in-
put in two steps: first, empty nodes are predicted
using the baseline system available to all shared
task participants; then, the coreference resolution
is performed using CorPipe. This approach is
very similar to the last year’s edition of the CRAC
Shared Task, where the empty nodes were already
given on input. Therefore, the last year’s version
CorPipe 23 (Straka, 2023) can be used.

3.1 Empty Nodes Baseline

The baseline for predicting empty nodes generates
for each empty node only the minimum amount of
information needed: the word order position de-
fined by an input word that the empty node should
follow (the word order position determines the po-
sition of the empty node in coreference mentions)
and the dependency head and the dependency re-
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Figure 1: The system architecture of the empty node
prediction baseline. Every ReLU activation is followed
by a dropout layer layer with a dropout rate of 50%.

lation of the empty node (required by the empty
node matching during evaluation); no forms or lem-
mas are predicted even if provided in the train-
ing data. The baseline predicts the empty nodes
non-autoregressively, generating at most two empty
nodes for every input word; the input word be-
comes the dependency head of the predicted empty
node.

The overview of the architecture is displayed in
Figure 1. The input words of a single sentence are
first tokenized, passed through a pretrained mT5-
large encoder (Conneau et al., 2020), and each
input word is represented by the embedding of its
first subword. Then, the candidate for empty nodes
are generated, two per word. The first candidate
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is generated by passing the input word represen-
tations through a 2k-unit dense layer with ReLU
activation, a dropout layer, and a 768-unit dense
layer. The second candidate is generated by con-
catenating the first candidate representation with
the input word representation and passing the result
through an analogous dense-dropout-dense module.
Then, three heads are attached, each first passing its
input by a ReLU-activated 2k-unit dense layer and
dropout: (1) a classification layer deciding whether
a candidate actually generates an empty node, (2)
a self-attention layer choosing the word order posi-
tion (i.e., an input word to follow) for every candi-
date, and (3) a dependency relation classification
layer, which processes the candidate representation
concatenated with the representation of the word
most likely according to the word-order prediction
head. Please refer to the released source code for
further details.

We train a single multilingual model using the
AdaFactor optimizer (Shazeer and Stern, 2018) for
20 epochs, each epoch consisting of 5 000 batches
containing 64 sentences each. The learning rate
first linearly increases from zero to the peak learn-
ing rate of 1e-5 in the first epoch, and then decays
to zero in the rest of the training according to a co-
sine schedule (Loshchilov and Hutter, 2017). Each
sentence is sampled from the combination of all
corpora containing empty nodes (see Table 1), pro-
portionally to the square root of the word size of
the corresponding corpus. The model is trained for
19 hours using a single L40 GPU with 48GB RAM.

The source code is released under the MPL
license at https://github.com/ufal/crac2024_zero_

nodes_baseline, together with the complete set of
used hyperparameters. Furthermore, the trained
model is available under the CC BY-SA-NC li-
cense at https://www.kaggle.com/models/ufal-mff/

crac2024_zero_nodes_baseline/. Finally, the devel-
opment sets and the test sets of the CorefUD 1.2
datasets with predicted empty nodes are available
to all participants of the CRAC 2024 Shared Task.

The intrinsic performance of the baseline system
on the development sets of CorefUD 1.2 is pre-
sented in Table 1. A predicted empty node is con-
sidered correct if it has correct dependency head,
dependency relation, and also the word order.

3.2 Coreference Resolution
With the empty nodes predicted by the baseline,
we can directly employ the CorPipe 23 from the
last year of the shared task (Straka, 2023). The

Treebank Precison Recall F1-score

ca 92.32 91.01 91.66
cs_pcedt 78.22 59.84 67.81
cs_pdt 81.47 71.56 76.19
cu 81.61 78.76 80.16
es 92.04 91.92 91.98
grc 90.29 86.58 88.39
hu_korkor 74.68 60.21 66.67
hu_szegedkoref 91.93 89.52 90.71
pl 87.50 91.61 89.51
tr 79.05 93.81 85.80

Table 1: Empty nodes prediction baseline performance
on the development sets of CorefUD 1.2 corpora con-
taining empty nodes. An empty node is evaluated as
correct if it has the correct dependency head, depen-
dency relation, and word order.

overview of the architecture is presented in Figure 2
and briefly described; for more details, please refer
to the original paper.

CorPipe processes the document one sentence at
a time; to provide as much context as possible, as
many preceding and at most 50 following tokens
are additionally added on input, to the limit of the
maximum segment size (512 or 2 560). The words
are first passed through a pretrained language en-
coder model. Then, coreference mentions are pre-
dicted using an extension of BIO encoding capable
of representing possibly overlapping set of spans.
Finally, each predicted mention is represented as
a concatenation of its first and last word, and the
most likely entity link (possibly to itself) of every
mention is generated using a self-attention layer.

During training, the maximum segment size is
always 512; however, during inference, we con-
sider also larger segment size of 2 560 for the mT5
models, which support larger segment sizes due to
their relative positional embeddings.

3.3 Training

We train the coreference resolution system
analogously to the CorPipe 23 training proce-
dure (Straka, 2023). Three model variants are
trained, based on either mT5-large, mT5-xl (Xue
et al., 2021), or InfoXLM-large (Chi et al., 2021).
For every variant, 7 multilingual models are trained
on a combination of all corpora, differing only in
random initialization. The sentences are sampled
proportionally to the square root of the word size
of the corresponding corpora.
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Figure 2: The CorPipe 23 model architecture introduced in Straka (2023).

Every model is trained for 15 epochs, each epoch
consisting of 10k batches. The mT5-large and
InfoXLM-large variants use the batch size of 8
and train for 14 hours on a single A100 with 40GB
RAM; the mT5-xl variant employ the batch size of
12 and train for 17 hours on 4 A100s with 40GB
RAM each. The mT5 variants are trained using the
AdaFactor optimizer (Shazeer and Stern, 2018) and
the InfoXLM-large is trained using Adam (Kingma
and Ba, 2015). The learning rate is first increased
from 0 to the peak learning rate in the first 10%
of the training and then decayed according to the
cosine schedule (Loshchilov and Hutter, 2017); we
employ the peak learning rates of 6e-4, 5e-4, and
2e-5 for the mT5-large, mT5-xl, and InfoXLM-
large encoders, respectively.

For each model, we keep the checkpoints after
every epoch, obtaining a pool of 3 · 7 · 15 check-
points. From this pool, we select three configura-
tions: (1) a single checkpoint reaching the highest
development score on all the corpora, (2) a best-
performing checkpoint for every corpus according

to its development set, (3) an ensemble of 5 best-
performing checkpoints for every corpus.

4 Single-stage CorPipe

While the two-stage variant is full-fledged, al-
lowing coreference mention to be composed of
any continual sequence of input words and empty
nodes, it requires two large pretrained encoders,
which makes the model about twice as big and
twice as slow compared to a single model.

Therefore, we also propose a single-stage vari-
ant, with the goal of using just a single pretrained
language encoder model. For simplicity’s sake, we
restrict the model in the following way: if a coref-
erence mention contains an empty node, the whole
mention must be just this single empty node. In
other words, a coreference mention either does not
contain empty nodes, or it is just a single empty
node. Note that this restriction does not decrease
the score under the head-match metric because only
the mention head is used during score computation.

With the described restriction, we no longer need
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Figure 3: The changes in the CorPipe 23 architecture
when empty nodes and zero mentions are generated
jointly with mention detection and coreference linking.

to distinguish between empty nodes and zero coref-
erence mentions; therefore, the single-stage model
predicts only such empty nodes that are also zero
coreference mentions. Finally, the word order of an
empty node is no longer needed for evaluation; as a
result, we no longer predict the word order explic-
itly and place the empty node after its dependency
head in the word order.

In Figure 3, we visualize the proposed changes
to the CorPipe architecture needed to support joint
empty nodes/zero mentions prediction. Analo-
gously to the empty nodes baseline described in
Section 3.1, we start by generating two candidate
empty nodes representations from every input word
representation. We then run a classification head
for every candidate, which either predicts NONE
when the candidate should not generate an empty
node, or it predicts the dependency relation of the
generated empty node. Finally, to construct a rep-
resentation of a zero coreference mention, we con-
catenate the empty node representation to itself
because the empty node is both the first and the last
word of the mention. The coreference linking then
proceeds as before, just using a concatenation of
surface mentions and zero mentions.

The single-stage model is trained analogously
to the two-stage model. The only differences are
that (1) we pass only the input words through the
pretrained language encoder model, (2) we add the
loss of the classifier predicting dependency relation
or NONE to the other losses (using simple addition),
and (3) we concatenate the zero mention representa-
tions to the surface mention representations before
the coreference linking step.

We closely follow the training procedure of the
two-stage model described in Section 3.3. No-
tably, we also consider the same three pretrained en-
coders, train the same number of models using the
same optimizers and learning rates, and select the
same three configurations (single best-performing
checkpoint, per-corpus best checkpoint, and a per-
corpus 3-model ensemble).2

5 Shared Task Results

In the shared task, each team was allowed to submit
at most three systems. We submitted the following
configurations:

• CorPipe-single, the large-sized single-stage
model checkpoint achieving the best develop-
ment performance across all corpora;

• CorPipe, the best-performing 3-model single-
stage ensemble for every corpus;

• CorPipe-2stage, the best-performing 5-
model two-stage ensemble for every corpus.

The first configuration corresponds to a real-world
deployment scenario, where a single model would
be used for all corpora; the latter configurations
are the highest performing single-stage approach
(CorPipe, Section 4) and two-stage approach
(CorPipe-2stage, Section 3).

The official results of the shared task’s primary
metric are presented in Table 2. All our submis-
sions outperform other participant systems, even
if CorPipe-single only slightly. Overall, the en-
sembled single-stage variant outperforms other par-
ticipants by 2.8 percent points, and the ensembled
two-stage variant outperforms other participants by
3.9 percent points.

Table 3 shows the results of the submitted sys-
tems using four metrics. Apart from the primary
head-match metric, our three submissions outper-
form all others also when evaluated using exact
match and with singletons. When considering par-

2We only managed to use a 3-model ensemble before the
shared task deadline, while we use a 5-model ensemble for
the two-stage variant.
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CorPipe-2stage 73.90
1

82.2
2

74.8
1

77.2
1

61.6
1

69.5
3

71.8
2

75.7
1

79.6
1
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2
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1
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2
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1

72.0
1

63.2
2
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1
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1
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1
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1
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1

83.2
1

68.2
1

CorPipe 72.75
2

81.0
3

73.7
2

75.8
2

60.7
2

71.7
1

71.5
3

74.6
2

79.1
2

69.8
1

81.0
3

68.8
1

68.5
2

70.9
2

60.3
3

68.1
3

75.8
2

79.5
2

77.5
2

77.0
2

83.1
2

59.4
3

CorPipe-single 70.18
3

80.4
4

72.8
3

74.8
4

57.1
3

61.6
4

67.0
4

74.4
3

78.1
3

58.6
3

79.8
4

67.9
3

66.0
3

67.2
3

60.1
4

67.3
4

75.2
3

78.9
3

76.6
3

75.2
4

81.2
3

53.4
4

Ondfa 69.97
4

82.5
1

70.8
4

75.8
3

55.0
4

71.4
2

71.9
1

70.5
4

74.2
4

55.6
4

81.9
2

62.7
4

61.6
4

61.6
4

64.9
1

69.3
2

72.0
4

74.5
4

72.1
4

76.3
3

80.5
4

64.5
2

BASELINE† 53.16
5

68.3
5

64.1
5

63.8
5

24.5
5

47.2
5

55.6
5

63.2
5

63.5
5

33.1
6

69.6
5

53.6
5

28.8
5

24.6
6

35.1
5

54.5
5

62.0
5

65.0
5

63.7
5

66.2
5

65.8
5

44.0
5

DFKI-CorefGen 33.38
6

34.8
6

32.9
6

30.9
6

22.5
6

23.1
7

45.9
7

35.5
6

46.6
6

32.7
7

37.8
6

36.3
7

25.9
6

38.0
5

23.5
7

33.9
6

42.7
7

37.9
6

35.7
6

27.2
6

47.8
7

9.7
6

Ritwikmishra 16.47
7

0.0
7

0.0
7

0.0
7

6.8
7

25.4
6

48.9
6

0.0
7

0.0
7

53.1
5

0.0
7

43.7
6

5.6
7

0.1
7

33.4
6

30.3
7

44.8
6

0.0
7

0.0
7

0.0
7

53.9
6

0.0
7

Table 2: Official results of CRAC 2024 Shared Task on the test set (CoNLL score in %). The system † is described
in Pražák et al. (2021); the rest in Novák et al. (2024).

System Head-
match

Partial-
match

Exact-
match

With Sin-
gletons

CorPipe-2stage 73.90
1

72.19
1

69.86
1

75.65
1

CorPipe 72.75
2

70.30
2

68.36
2

74.65
2

CorPipe-single 70.18
3

68.02
4

66.07
3

71.96
3

Ondfa 69.97
4

69.82
3

40.25
5

70.67
4

BASELINE 53.16
5

52.48
5

51.26
4

46.45
5

DFKI-CorefGen 33.38
6

32.36
6

30.71
6

38.65
6

Ritwikmishra 16.47
7

16.65
7

14.16
7

15.42
7

Table 3: Official results of CRAC 2024 Shared Task on
the test set with various metrics in %.

tial match, the CorPipe-single is outperformed by
the system Ondfa, assumingly because it limits
the predicted mentions just to their heads, which
slightly improves partial match but severely deteri-
orates exact match.

6 Ablations Experiments

6.1 CorefUD 1.2

Table 4 contains quantitative analysis of ablation
experiments on the CorefUD 1.2 test set. In Ta-
ble 4.A, we compare the three configurations of
the single-stage model variant. Selecting the best-
performing checkpoint for every corpus increases
the overall score by 1.4 percent points, while mak-
ing the model up to 21 times larger. Further addi-
tion of ensembling improves the score by another
1.2 percent points.

The same comparison is available also for the
two-stage model variant in Table 4.B. We observe a
similar trend of 1.2 percent points increase for the

best per-corpus checkpoint approach and further
1.4 percent points increase during ensembling.

The sections C, D, and E of Table 4 compare the
individual checkpoint configurations of the single-
stage and the two-stage models. We observe that
the effect of the two-stage model is 0.9–1.1 per-
cent point increase in all checkpoint configuration.
We hypothesize that two factors contribute to the
better performance of the two-stage variant: first,
the empty node representation is computed by a
pretrained encoder, allowing better contextualiza-
tion of the empty node representation. Second, the
mentions with empty nodes are represented in the
original form, i.e., the mentions can contain any se-
quence of input words and empty nodes, while the
single-stage variant represent zero mentions always
by a single empty node.

It would be interesting to evaluate the two-stage
variant using the gold empty nodes instead of pre-
dicted empty nodes to quantify the decrease of the
score caused by empty node prediction errors. Un-
fortunately, such an evaluation is not supported by
the shared task evaluation platform. Nevertheless,
Table 4.F at least shows that such a difference for
the provided baseline coreference system (Pražák
et al., 2021) is 1.4 percent points, as reported by
the shared task organizers.

Finally, meaningful comparison of the shared
task results between this year and the last year is
very difficult to carry out. While many corpora
have changed only marginally and the evaluation
metric is the same (so the results are reasonably
comparable), other corpora have changed substan-
tially (especially Polish and Turkish). Even so, we
provide numerical comparison of this year’s and
last year’s best systems in Table 4.G. This year’s
results are slightly worse than in the last year, on
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A) CORPIPE SINGLE-STAGE VARIANTS

Single model 70.18 80.4 72.8 74.8 57.1 61.6 67.0 74.4 78.1 58.6 79.8 67.9 66.0 67.2 60.1 67.3 75.2 78.9 76.6 75.2 81.2 53.4
Per-corpus best +1.42 –0.4 –0.6 –0.2 +2.5 +7.2 +2.7 –0.4 –0.6 +10.4 –0.0 –0.3 +1.0 +1.5 +2.5 –1.6 +0.9 –0.4 +0.9 –0.2 –0.2 +5.1
Per-corpus ensemble +2.62 +0.6 +0.9 +1.0 +3.6 +10.1 +4.5 +0.2 +1.0 +11.2 +1.2 +0.9 +2.5 +3.7 +0.2 +0.8 +0.6 +0.6 +0.9 +1.8 +1.9 +6.0

B) CORPIPE TWO-STAGE VARIANTS

Single model 71.32 81.0 74.2 75.9 56.7 64.7 66.4 74.7 78.2 57.9 81.2 67.2 67.6 64.2 61.6 67.9 77.7 77.6 77.3 77.4 81.3 67.0
Per-corpus best +1.18 +0.1 +0.4 +0.3 +3.7 +4.9 +0.6 –1.2 +0.5 +10.2 +0.7 –0.2 +1.3 +5.6 –0.2 –0.6 –4.2 +2.2 +0.4 +0.5 –0.1 +0.2
Per-corpus ensemble +2.58 +1.2 +0.6 +1.3 +4.9 +4.8 +5.4 +1.0 +1.4 +11.1 +1.3 +1.0 +3.7 +7.8 +1.6 +2.1 –1.9 +2.2 +0.7 +1.1 +1.9 +1.2

C) COMPARISON OF SINGLE-MODEL VARIANTS

Single-stage 70.18 80.4 72.8 74.8 57.1 61.6 67.0 74.4 78.1 58.6 79.8 67.9 66.0 67.2 60.1 67.3 75.2 78.9 76.6 75.2 81.2 53.4
Two-stage +1.12 +0.6 +1.4 +1.1 –0.4 +3.1 –0.6 +0.3 +0.1 –0.7 +1.5 –0.7 +1.6 –3.0 +1.5 +0.6 +2.5 –1.3 +0.7 +2.2 +0.1 +13.6

D) COMPARISON OF PER-CORPUS BEST VARIANTS

Single-stage 71.59 80.0 72.2 74.6 59.6 68.8 69.7 74.0 77.5 69.0 79.7 67.6 67.0 68.7 62.6 65.7 76.1 78.5 77.5 75.0 81.0 58.5
Two-stage +0.91 +1.1 +2.4 +1.6 +0.8 +0.8 –2.7 –0.5 +1.2 –0.9 +2.2 –0.6 +1.9 +1.1 –1.2 +1.6 –2.6 +1.3 +0.2 +2.9 +0.2 +8.8

E) COMPARISON OF PER-CORPUS ENSEMBLE VARIANTS

Single-stage 72.75 81.0 73.7 75.8 60.7 71.7 71.5 74.6 79.1 69.8 81.0 68.8 68.5 70.9 60.3 68.1 75.8 79.5 77.5 77.0 83.1 59.4
Two-stage +1.15 +1.2 +1.1 +1.4 +0.9 –2.2 +0.3 +1.1 +0.5 –0.8 +1.5 –0.6 +2.8 +1.1 +2.9 +1.9 +0.0 +0.2 +0.5 +1.5 +0.1 +8.8

F) COMPARISON OF THE BASELINE SYSTEM WITH GOLD AND PREDICTED EMPTY NODES

Predicted empty nodes 53.16 68.3 64.1 63.8 24.5 47.2 55.6 63.2 63.5 33.1 69.6 53.6 28.8 24.6 35.1 54.5 62.0 65.0 63.7 66.2 65.8 44.0
Gold empty nodes +1.44 +1.3 +4.8 +2.4 +3.1 0.0 0.0 0.0 0.0 0.0 +1.0 0.0 +3.1 0.0 +6.5 +0.1 0.0 0.0 0.0 +0.8 0.0 +7.2

G) COMPARISON OF THE CORPIPE-2STAGE ENSEMBLE SYSTEM AND THE CRAC23 BEST RESULTS

CorPipe-2stage, ensemble 74.55 82.2 74.8 77.2 — 69.5 71.8 75.7 — 68.9 82.5 68.2 — — 63.2 70.0 75.8 79.8 78.0 78.5 83.2 68.2
CorPipe23, CRAC23 +0.65 +1.0 +4.5 +2.3 — +1.5 +0.0 +0.8 — +2.1 +1.0 +0.4 — — +6.3 +0.8 +0.6 –0.2 +1.0 +1.3 –0.6 –11.7

Table 4: Ablations experiments on the CorefUD 1.2 test set (CoNLL score in %).

Paper Model
#model

calls
∅, ELMO,
base PLM

large PLM
∼350M

xl PLM
∼3B

xxl PLM
∼11B

(Lee et al., 2017) e2e 1 67.2∅
(Lee et al., 2018) e2e 1 70.4ELMO

(Lee et al., 2018) c2f 1 73.0ELMO

(Joshi et al., 2019) c2f 1 73.9BERT 76.9BERT

(Joshi et al., 2020) c2f 1 79.6SpanBERT

(Kirstain et al., 2021) s2e 1 80.3Longformer

(Otmazgin et al., 2023) s2e/LingMess 1 81.4+additional annotations
Longformer

(Dobrovolskii, 2021) WL 1 81.0RoBERTa

(D’Oosterlinck et al., 2023) WL/CAW 1 81.6RoBERTa

(Liu et al., 2022) ASP O(n) 76.6T5 79.3T5 82.3T0 82.5FlanT5

(Bohnet et al., 2023) seq2seq O(n) 78.0devmT5 83.3mT5

(Wu et al., 2020) CorefQA O(n) 79.9+QA data
SpanBERT 83.1+QA data

SpanBERT

This paper CorPipe 1 80.7T5 82.0FlanT5

This paper CorPipe 1 77.2mT5 78.9mT5

Table 5: Comparison of CorPipe and other models on OntoNotes, using pretrained models of various size.

average by 0.65 percent points, but the difference
is quite comparable to the effect of predicted/gold
empty nodes on the baseline system (cf. Table 4.F).

6.2 OntoNotes

To compare the performance of the CorPipe ar-
chitecture to English state-of-the-art models, we
train also models on the OntoNotes dataset (Prad-

han et al., 2013). The dataset does not contain
any empty nodes, so we use the last year’s train-
ing setup, with the two exceptions: we also con-
sider pretrained English-specific encoders T5 (Raf-
fel et al., 2020) and Flan-T5 (Chung et al., 2024),
and we consider larger segment size during training
(up to 1 536 subwords).

The results are presented in Table 5. In the large-
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sized setting, CorPipe outperforms all models ex-
cept models utilizing additional data (Otmazgin
et al., 2023; Wu et al., 2020) and models utiliz-
ing the word-level approach (Dobrovolskii, 2021;
D’Oosterlinck et al., 2023).3 In the xl-sized set-
tings, our model is 0.3 percent points below the
state of the art of Liu et al. (2022); notably, Cor-
Pipe outperforms the state of the art system Bohnet
et al. (2023) and all large-sized models not using
additional training data. Unfortunately, we did not
have the resources to train an xxl-sized model.

7 Conclusions

We presented CorPipe 24, the winning entry to the
CRAC 2024 Shared Task on Multilingual Coref-
erence Resolution (Novák et al., 2024). Our sys-
tem has two variants, either first predicting empty
nodes using a pretrained language encoder model
and then performing coreference resolution em-
ploying another pretrained model, or predicting the
empty nodes jointly with mention detection and
coreference linking. Both variants surpass other
participants by a large margin of 3.9 and 2.8 per-
cent points, respectively. The source code and the
trained model are available at https://github.com/
ufal/crac2024-corpipe.
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Limitations

The presented system has demonstrated its perfor-
mance only on a limited set of 15 languages, and
heavily depends on a large pretrained model, tran-
sitively receiving its limitations and biases.

Training with the mT5-large pretrained model
requires a 40GB GPU, which we consider afford-
able; however, training with the mT5-xl pretrained
model needs nearly four times as much GPU mem-
ory.

3We are of course curious to find out how the word-level
approach works on the CorefUD dataset. Nevertheless, we
hypothesize that on some of the CorefUD corpora it might
not work well because the mention heads in these corpora are
considerably less unique than in OntoNotes.
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Zdeněk Žabokrtský, Miloslav Konopik, Anna
Nedoluzhko, Michal Novák, Maciej Ogrodniczuk,
Martin Popel, Ondrej Prazak, Jakub Sido, and Daniel
Zeman. 2023. Findings of the second shared task on
multilingual coreference resolution. In Proceedings
of the CRAC 2023 Shared Task on Multilingual
Coreference Resolution, pages 1–18, Singapore.
Association for Computational Linguistics.
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