
This paper was accepted to RecSys 2024. Please cite it instead once published.

beeFormer: Bridging the Gap Between Semantic and Interaction
Similarity in Recommender Systems

Vojtěch Vančura
vancurv@fit.cvut.cz

Faculty of Information Technology,
Czech Technical University in Prague

Prague, Czech Republic
Recombee

Prague, Czech Republic

Pavel Kordík
pavel.kordik@fit.cvut.cz

Faculty of Information Technology,
Czech Technical University in Prague

Prague, Czech Republic
Recombee

Prague, Czech Republic

Milan Straka
straka@ufal.mff.cuni.cz

Faculty of Mathematics and Physics,
Charles University

Prague, Czech Republic

ABSTRACT
Recommender systems often use text-side information to improve
their predictions, especially in cold-start or zero-shot recommenda-
tion scenarios, where traditional collaborative filtering approaches
cannot be used. Many approaches to text-mining side informa-
tion for recommender systems have been proposed over recent
years, with sentence Transformers being the most prominent one.
However, these models are trained to predict semantic similarity
without utilizing interaction data with hidden patterns specific
to recommender systems. In this paper, we propose beeFormer, a
framework for training sentence Transformer models with interac-
tion data. We demonstrate that our models trained with beeFormer
can transfer knowledge between datasets while outperforming
not only semantic similarity sentence Transformers but also tradi-
tional collaborative filteringmethods.We also show that training on
multiple datasets from different domains accumulates knowledge
in a single model, unlocking the possibility of training universal,
domain-agnostic sentence Transformer models to mine text repre-
sentations for recommender systems. We release the source code,
trained models, and additional details allowing replication of our
experiments at https://github.com/recombee/beeformer.

CCS CONCEPTS
• Information systems→ Recommender systems.

KEYWORDS
Recommender systems, Text mining, Sentence embeddings, Cold-
start recommendation, Zero-shot recommendation

ACM Reference Format:
Vojtěch Vančura, Pavel Kordík, and Milan Straka. 2024. beeFormer: Bridging
the Gap Between Semantic and Interaction Similarity in Recommender
Systems. In 18th ACM Conference on Recommender Systems (RecSys ’24),
October 14–18, 2024, Bari, Italy. ACM, New York, NY, USA, 6 pages. https:
//doi.org/10.1145/3640457.3691707

RecSys ’24, October 14–18, 2024, Bari, Italy
© 2024 Copyright held by the owner/author(s).
This is the author’s version of the work. It is posted here for your personal use.
Not for redistribution. The definitive Version of Record was published in 18th ACM
Conference on Recommender Systems (RecSys ’24), October 14–18, 2024, Bari, Italy,
https://doi.org/10.1145/3640457.3691707.

item text
embeddings    

 
Encoder

Decoder

Encode text item
descriptions

Sentence Transformer
Update parameters
of the Transformer

Interaction
matrix

Predicted
interactions

ELSA

user
interactions

user
predictions

loss

gradients

Figure 1: Training with the beeFormer framework: A sen-
tence Transformer model (up) act as a an encoder to generate
item embeddings represented by the matrix 𝑨. Then ELSA
act as a decoder (down) in a training step on interactions to
obtain gradients used to optimize the Transformer model.

1 INTRODUCTION
Recommender systems (RS) aim to help users find what they are
looking for in various domains. Many approaches to building al-
gorithms for RS have been proposed over the past years, with
Collaborative Filtering (CF) [18] being the most popular choice. CF
methods predict (filter) user preferences by analyzing past interac-
tions. Popular CF techniques include neighborhood-based methods
[23, 35], matrix-factorization (MF) [24, 46], deep neural networks
(DNN) [8, 27], or shallow linear autoencoders (SLAs) [41, 42, 47].

SLAs became popular recently, mainly because the EASE [42]
model has a closed-form solution while yielding high performance
comparable to deep models. Since EASE cannot scale to datasets
with a high number of items, scalable variants of EASE have been
proposed: SANSA [41] and ELSA [47]. SANSA keeps the original
structure of EASE but uses (sparse) incomplete Cholesky factoriza-
tion approximating the inverse of the (potentially) large sparse ma-
trix𝑋𝑇𝑋 to construct the asymmetric approximation of the item-to-
item weight matrix. ELSA, on the other hand, approximates learned
item-to-item weight matrix𝑊 with low-rank approximation𝑊 =

𝐴𝐴𝑇 , with diag(𝑊 ) = 0 to prevent trivial solution such as the iden-
tity solution. The matrix 𝐴 is optimized using backpropagation.

Despite the popularity and state-of-the-art performance of CF
methods in recommendation tasks, they cannot provide any pre-
dictions when there are no interactions. In such cases, also known
as cold-start [36] and zero-shot [13] recommendation, one can

https://orcid.org/0000-0003-2638-9969
https://orcid.org/0000-0003-1433-0089
https://orcid.org/0000-0003-3295-5576
https://github.com/recombee/beeformer
https://doi.org/10.1145/3640457.3691707
https://doi.org/10.1145/3640457.3691707
https://doi.org/10.1145/3640457.3691707


RecSys ’24, October 14–18, 2024, Bari, Italy Vojtěch Vančura, Pavel Kordík, and Milan Straka

use content-based filtering (CBF) [3, 4] using side information (at-
tributes, images, text) directly to produce recommendations or learn
a transformation function to transform side information to CF rep-
resentations [15, 51].

Using texts (item descriptions, user reviews, etc.) as side infor-
mation has become extremely popular after the invention of the
Transformer [48] neural architecture. Transformer models can be
used to encode text into a vector representation, and sentence
Transformers [34] were explicitly developed to mine text latent rep-
resentations from the whole blocks of text ( sentences, paragraphs),
which can then be used for various tasks, with the recommendation
being one of them.

However, sentence Transformers trained to predict semantic
similarity often fail to capture patterns and user behaviors hidden
in the interaction data. In many cases, users may look for a specific
item (for example, batteries when buying a kid’s toy, or cables when
buying a new printer) with very low semantic similarity compared
to other items in the catalog.

To bridge this gap between the semantic and the interaction simi-
larity, we employ the following idea: We use the training procedure
from the ELSA model, but instead of optimizing the matrix 𝐴, we
generate matrix𝐴with a sentence Transformer model and optimize
parameters of the sentence Transformer instead of optimizing 𝐴
directly, as illustrated in Figure 1. However, this approach faces one
critical problem: In every training step, we need to generate and
optimize embeddings for all items in the catalog, which leads to
very high effective batch size for Transformer training, e.g., possi-
bly over a million for some datasets. We propose to overcome this
problem by employing the following three techniques: gradient
checkpointing [19], gradient accumulation [7], and negative sam-
pling [14]. Combining these techniques with sentence Transformer
and ELSA training procedure, we present beeFormer (short for the
Recombee Transformer in camel case), a sentence Transformer
training framework that uses text-side information and interactions
directly to update the parameters of a Transformer model.

The main contributions of this paper are listed as follows:
• We propose beeFormer, a framework for training sentence
Transformers on interaction data with text-side information.

• Our experiments show that sentence Transformer models
trained with beeFormer outperform all baselines in cold-start,
zero-shot and time-split recommendation scenarios.

• We demonstrate the beeFormer’s ability to transfer knowl-
edge between datasets.

• We show that training models on combined datasets from
various domains further increase performance in the domain-
agnostic recommendation.

• We create and publish LLM-generated item descriptions for
all used datasets for reproducibility of our experiments.

• Models trained with beeFormer are easily deployable into
production systems using the sentence Transformers library.

We believe the above improvements open a path towards a poten-
tially universal, domain-agnostic, and multi-modal Transformer
models for recommender systems.

2 RELATEDWORK
SLAs [41, 42, 47] have recently gained much attention, mainly be-
cause of their simplicity while retaining performance comparable to
deep models, with EASE [42] being the most promising. ELSA [47]
solved the scalability issue of EASE and enabled its use on large
datasets by low-rank approximation of the item-to-item weight
matrix of EASE. We use the idea of training the ELSA’s embed-
dings using backpropagation to obtain the gradients for training
the sentence Transformer model.

The first attempt to use Transformers in RS was in sequential
recommendation. Bert4rec [43] used item IDs as tokens and treated
the sequential recommendation problem in the same manner as
NLP. Several improvements to this approach have been proposed
since then [10, 16, 37]. Promising approach is to create artificial
text sequences combining descriptions of interacted items and train
a Transformer-based model on them [21, 25].

Another direction is to use Large Language Models (LLMs), such
as the Chat-GPT [12, 28]. LLMs can be used for various tasks, e.g., as
conversational recommendation [44, 50], to generate standardized
item text descriptions [1], recommendation explanation [38], or to
produce recommendations through its text output [26] directly.

Sentence Transformers [34] use a pooling function on top of
the Transformer architecture and provide a robust, easy-to-use
framework for tokenization, embedding generation, and training
sentence Transformer models. While using sentence Transformers
is very popular in the dense-retrieval domain [5, 17], using sentence
Transformers in recommender systems is limited to generating
side information for cold-start methods [15, 51] or using neural
networks [22] or graph neural networks [40] on top of sentence
Transformer models.

Improving sentence Transformers with training on interaction
data is crucial for boosting the performance of all methods using
sentence embeddings as side information mentioned above. Sadly,
to our best knowledge, there is no prior work on training sentence
Transformers directly with interaction data in the RS domain.

3 TRAINING PROCEDURE
We follow notation from [47]: assume a set of usersU = {𝑢1, 𝑢2, . . . ,
𝑢𝑈 }, a set of items I = {𝑖1, 𝑖2, . . . , 𝑖𝐼 }, and a set of token sequences
representing corresponding items T = {𝑡1, 𝑡2, . . . , 𝑡𝐼 } . Let 𝑋 ∈
{0, 1} |U |× |I | be a user-item interaction matrix: 𝑋𝑎,𝑏 = 1 if the user
𝑢𝑎 interacted with item 𝑖𝑏 , and𝑋𝑎,𝑏 = 0 otherwise. Assume that𝑀𝑎

is a column vector corresponding to the 𝑎-𝑡ℎ row of matrix𝑀 . Let
norm(𝑀) be a function that 𝐿2-normalizes each row of a matrix,
so norm(𝑀)𝑎 = 𝑀𝑎/∥𝑀𝑎 ∥. Finally, let 𝑔(•, \𝑔) : T −→ R𝐼×𝑑 be a
Transformer-based neural network with parameters \𝑔 .

The training procedure starts with generating latent representa-
tions of items – the matrix 𝐴:

𝐴 = 𝑔(T, \𝑔) . (1)

Then, we can compute our loss [47] as:

𝐿 =
 norm (

𝑋𝑢
)
− norm

(
𝑋𝑢 (𝐴𝐴⊤ − I)

)2
𝐹
. (2)

Finally, we compute the gradients of 𝐿with respect to𝐴, and then
the gradients for \𝑔 are computed using the chain rule. However,
when using common deep learning frameworks, there is a practical



beeFormer: Bridging the Gap Between Semantic and Interaction Similarity in Recommender Systems RecSys ’24, October 14–18, 2024, Bari, Italy

problem regarding the memory needed to track gradients for \𝑔
because the size of matrix 𝐴 depends on the number of all items.

We employ the following procedure (described in Algorithm 1)
to address this memory problem: First, we compute the matrix 𝐴
in batches without tracking the gradients for \𝑔 (lines 1-5 of the
algorithm). Then, we compute predictions (line 8), loss (lines 10-13)
for a batch of users 𝑋𝑢 , and gradient checkpoint [19] for the matrix
𝐴 (lines 14,16). Finally, we compute the matrix 𝐴 in batches again
and use the gradient checkpoint to compute the gradients for \𝑔 .
We accumulate gradients [7] during the loop (lines 19-21). Finally,
we update \𝑔 with a PyTorch optimizer (line 22).

Algorithm 1 beeFormer training step procedure in Python using
PyTorch
Input:

batch of interactions X
Transformer model t r a n s f o rme r
sequences of tokens t o k e n i z e d _ t e x t s
PyTorch optimizer o p t im i z e r optimizing the parameters
of the Transformer model t r a n s f o rme r

Output:
Transformer model with updated weights t r a n s f o rme r
predictions X_pred
computed loss l o s s

1 with t o r ch . no_grad ( ) :
2 A _ l i s t = [ ]
3 for t in t o k e n i z e d _ t e x t s :
4 A _ l i s t . append ( t r a n s f o rme r ( t ) )
5 A = t o r ch . v s t a c k ( A _ l i s t )
6
7 A . r e q u i r e s _ g r a d = True
8 X_pred = X @ A @ A. T − X
9
10 l o s s = t o r ch . nn . MSELoss (
11 t o r ch . nn . f u n c t i o n a l . no rma l i z e (X ) ,
12 t o r ch . nn . f u n c t i o n a l . no rma l i z e ( X_pred ) ,
13 )
14 l o s s . backward ( )
15
16 che ckpo in t = A . grad
17
18 op t im i z e r . z e ro_g r ad ( )
19 for i , t in enumerate ( t o k e n i z e d _ t e x t s ) :
20 A_i = t r an s f o rme r ( t )
21 A_i . backward ( g r a d i e n t = che ckpo in t [ i ] )
22 o p t im i z e r . s t e p ( )

Using the algorithm above, we effectively enable training of a
Transformer model using gradients computed with the ELSA al-
gorithm on top of it, from the memory point of view. However,
computing 𝐴 for all items in every training step quickly becomes
time-consuming for datasets with large number of items. At this

Table 1: Detailed statistics of datasets used for evaluation.

GB10k ML20M AB

# of items in 𝑋 9 975 16 902 63 305
# of users in 𝑋 53 365 136 589 634 964
# of interactions in 𝑋 4.20 M 9.69 M 8.29 M
density of 𝑋 0.77 % 0.42 % 0.02 %
density of 𝑋𝑇𝑋 41.22 % 26.93 % 7.59 %

point, we would like to note one property specific to recommender
systems: interaction matrix 𝑋 is typically (very) sparse. This prop-
erty means that when we sample a random batch of user interaction
vectors from 𝑋 , we obtain interactions only with a limited number
of items, meaning that it is not necessary to encode all items to
matrix 𝐴 in every training step. More formally, let I𝑏 be a subset
of I derived from the interactions presented in a random batch
𝑏 sampled from 𝑋 . Recent work shows that significant improve-
ment in performance during training CF models can be achieved
by negative sampling [14]. We implement negative sampling by
adding random items to I𝑏 and fixing the total number of items
observed in each step during training to 𝑚. The 𝑚 becomes an
additional hyperparameter fulfilling |I𝑏 | ≤ 𝑚 ≪ |I| for any possible
I𝑏 , to control the size of the matrix 𝐴. Finally, in a situation when
|I𝑏 | < 𝑚, we select uniformly at random𝑚 − |I𝑏 | items from the
catalog and add them to the sampled batch from 𝑋 with zeros in
corresponding columns. A notable advantage of our approach is
that the asymptotic complexity of beeFormer does not depends on
the overall number of items |I | but only on the hyperparameter𝑚.

4 EXPERIMENTAL EVALUATION
We evaluate our models on several popular datasets for evaluating
recommender systems:MovieLens20M (ML20M) [20],Goodbooks-
10k (GB10k) [49], and Amazon Books (AB) [31]. Since these
datasets contain explicit ratings, we transform them into implicit
feedback datasets by considering a rating of four or higher as an
interaction between the user and the item, and we keep only users
with at least five interactions. Then, we collect movie plots from
the IMDB Movies Analysis dataset [29] to obtain the descriptions
for the items of the MovieLens20M dataset, and we collect book de-
scriptions from the Goodreads books - 31 features dataset [33] and
Goodreads 100K books dataset [11] to get the descriptions for the
Goodbooks-10k dataset; most items in the Amazon Books dataset
already contains descriptions. We then remove the items without
descriptions. Finally, we use the Meta-Llama-3.1-8B-Instruct1 [2]
to generate standardized item descriptions from the existing ones
to train our models.2 Since the LLM refuse to generate descriptions
for some items (for example, because it refuses to generate explicit
content), we remove such items from the dataset. Summary of the
resulting dataset’s properties is available in Table 1.

We use two setups for our experiments. First, to test the ability
of beeFormer to generalize toward new items, we split ML20M and

1LLAMA 3.1 license allows the use of generated output to train new language models.
We add the prefix "Llama" to the names of our models to comply with license terms.
2Using Llama to generate the item descriptions allows us to publish them. More details
about the item description generation are available on our GitHub page.



RecSys ’24, October 14–18, 2024, Bari, Italy Vojtěch Vančura, Pavel Kordík, and Milan Straka

GB10k datasets item-wise (item-split): we randomly choose 2000
items as the test set, and we use the rest to cross-validate and train
our models. Next, we simulate a real-world scenario with the AB
dataset: we sorted all interactions by timestamp and used the last
20% of interactions as a test set (time-split). Again, the remaining
interactions were used as validation and training sets.

Item-split Setup. In the item-split setup, we use the following sce-
narios: Firs, a zero-shot scenario, where the models were not trained
on the evaluated dataset – they need to transfer knowledge from
other datasets. We use CBF in this scenario – we generate item
embeddings with a sentence Transformer, and then we use cosine
similarities between item embeddings to provide recommendations.
Second, in a cold-start scenario, the models use the text side infor-
mation to generalize towards new, previously unseen items. We use
the Heater model [51] mapping interaction data to side information,
to benchmark the baseline models. Again, for our models, we use
CBF.

We choose to compare our beeFormer-trained models to three
best-performing sentence Transformer models:
• all-mpnet-base-v2, the best performing model from the sen-
tence Transformers [34] library. It is based on MPNET [39],
a model pre-trained with combined masked and permuted
language modeling and then finetuned on various datasets.

• BAAI/bge-m3 [6], which uses three-fold versatility (dense,
sparse/lexical, and multi-vector) retrieval during training. It is
trained and finetuned on various datasets and synthetic data.

• nomic-ai/nomic-embed-text-v1.5 [32], which uses Flash
attention [9] to handle longer context (up to 8192 tokens for
predictions.) It was trained using a Contrastor framework.3

Time-split Setup. Similarly, for the time-split setup, we use a zero-
shot scenario and supervised models trained with interaction data.
This setup allows the use of classical CF; we chose KNN [35], ALS
matrix factorization [45], ELSA [47], and SANSA [41] as baselines.

We train four models by finetuning the initial all-mpnet-base-v2
model: one for each dataset and one model combining the data from
the ML20M and GB10k datasets (denoted goodlens). The resulting
models are available on our Huggingface page.4

We use Recall@20 (R@20), Recall@50 (R@50), and NDCG@100
(N@100) metrics computed using the RecPack [30] framework to
compare the models. We also calculate the standard error for each
experiment with bootstrap resampling.

We publicly share further details about the datasets, description
of the LLM generative procedure, resulting data for reproducibility,
hyperparameters, and other technical details on our GitHub page ,
along with all the source code.5

4.1 Results
Item-split setup. In the zero-shot scenario, we observe that the
beeFormer models trained on a different domain (books vs. movies)
significantly outperform all baselines. Detailed results are in Table 2.

For the cold-start scenario, we observe that beeFormer-trained
models outperform all baselines when the Heater model approach

3https://github.com/nomic-ai/contrastors
4https://huggingface.co/beeformer
5https://github.com/recombee/beeformer

Table 2: Results for zero-shot scenario in item-split setup.
Names of our models trained with beeFormer are in italics, the best-
performing models are represented in bold, and the best baseline
for each scenario is underlined. The standard error of all values is
below 0.0001 (evaluated via bootstrap resampling).

Dataset Sentence Transformer R@20 R@50 N@100

GB10K

all-mpnet-base-v2 0.1017 0.1886 0.1739
nomic-embed-text-v1.5 0.1146 0.2069 0.1896
bge-m3 0.1134 0.1953 0.1838
Llama-movielens-mpnet 0.1782 0.2837 0.2719
Llama-amazbooks-mpnet 0.2649 0.3957 0.3787

ML20M

all-mpnet-base-v2 0.0788 0.1550 0.1042
nomic-embed-text-v1.5 0.1113 0.2143 0.1511
bge-m3 0.1409 0.2125 0.1578
Llama-goodbooks-mpnet 0.1589 0.2647 0.2066

is used for mapping semantic embeddings to interactions. The
model demonstrate interesting behavior when trained on multiple
datasets: goodlens model outperforms the models trained solely on
the evaluated dataset both for ML20M and GB10k. This indicates the
possibility to train one (universal) recommender model on multiple
datasets from multiple domains. Detailed results are in Table 3.

Comparing results from Tables 2 and 3, models trained on dif-
ferent datasets within the same domain yield similar performance
to models trained on the evaluated dataset. This demonstrates the
critical capability of beeFormer to transfer knowledge from one
dataset to another.

Time-split setup. We utilize the time-split setup to compare the
beeFormer-trained models with the CF models. The beeFormer
models outperform all CF baselines for both training on the evalu-
ated dataset and in the zero-shot scenario within the same domain.
The model trained on multiple datasets performs slightly worse in
cold-start scenario than pure in-domain knowledge transfer, but
the results are still comparable. Detailed results are in Table 4.

5 CONCLUSIONS
We introduce beeFormer, a novel training procedure that enhances
neural representations of items by training sentence encoders on
interactions. Our approach is scalable, utilizing ELSA linear autoen-
coder as the decoder during the training process, enabling it to
handle datasets with a large number of items. BeeFormer-trained
models are easily deployable into existing production systems since
they are compatible with the widely adopted sentence Transform-
ers library and can produce recommendations via embedding tables
with cosine similarity criterion.

We observe performance improvements over various state-of-
the-art baselines in all evaluated scenarios. Notably, in the time-
split setup on the Amazon Books dataset, our models achieves
significantly better results over CF methods in both supervised and
zero-shot scenarios, demonstrating both superior performance and
the ability to transfer knowledge from one dataset to another.

https://github.com/nomic-ai/contrastors
https://huggingface.co/beeformer
https://github.com/recombee/beeformer


beeFormer: Bridging the Gap Between Semantic and Interaction Similarity in Recommender Systems RecSys ’24, October 14–18, 2024, Bari, Italy

Table 3: Results for cold-start scenario in item-split setup.
Names of our models trained with beeFormer are in italics, the best-
performing models are represented in bold, and the best baseline
for each scenario is underlined. The standard error of all values is
below 0.0001 (evaluated via bootstrap resampling).

Dataset
Method Sentence Transformer R@20 R@50 N@100

GB10K
CBF

Llama-goodbooks-mpnet 0.2505 0.3839 0.3747
Llama-goodlens-mpnet 0.2710 0.4218 0.4066

GB10K
Heater

all-mpnet-base-v2 0.2078 0.3221 0.3195
nomic-embed-text-v1.5 0.2154 0.3317 0.3193
bge-m3 0.2052 0.3113 0.3099
Llama-movielens-mpnet 0.2060 0.3161 0.3196

ML20M
CBF

Llama-movielens-mpnet 0.4291 0.6108 0.4054
Llama-goodlens-mpnet 0.4630 0.6152 0.4066

ML20M
Heater

all-mpnet-base-v2 0.3114 0.4331 0.3407
nomic-embed-text-v1.5 0.3049 0.4285 0.3270
bge-m3 0.2847 0.3932 0.3161
Llama-goodbooks-mpnet 0.3204 0.4669 0.3381

Table 4: Results for time-split setup on the Amazon Books
dataset. Names of our models trained with beeFormer are in italics,
the best-performing models are represented in bold, and the best
baseline for each scenario is underlined. The standard error of all
values is below 0.00005 (evaluated via bootstrap resampling).

Scenario
Method Model R@20 R@50 N@100

zero-shot
CBF

all-mpnet-base-v2 0.0218 0.0336 0.0193
nomic-embed-text-v1.5 0.0387 0.0560 0.0320
bge-m3 0.0398 0.0546 0.0313
Llama-goodbooks-mpnet 0.0649 0.0931 0.0515
Llama-goodlens-mpnet 0.0617 0.0891 0.0492

supervised
CF

KNN 0.0370 0.0562 0.0303
ALS MF 0.0344 0.0580 0.0313
ELSA 0.0367 0.0628 0.0346
SANSA 0.0421 0.0678 0.0362

CBF Llama-amazbooks-mpnet 0.0706 0.1045 0.0571

We also demonstrate that training the Llama-goodlens-mpnet
model on two datasets (GB10K and ML20M) from different do-
mains further increases performance when evaluating on individ-
ual datasets. This ability to accumulate knowledge from multi-
ple datasets marks an important step towards training universal,
domain-agnostic, content-based models for RS.

In our future work, we plan to build one (big) dataset from several
RS domains and train a universal sentence Transformer model
on it. We want to also explore the possibility of using beeFormer
with computer vision models. Building multi-modal encoders with
beeFormer could be especially useful in domains such as fashion
recommendation.

ACKNOWLEDGMENTS
Wewant to thank anonymous reviewers for their suggestions, many
of which helped us improve this paper. Our research has been
supported by the Grant Agency of Czech Technical University
(SGS23/210/OHK3/3T/18) and by the Grant Agency of the Czech
Republic under the EXPRO program as project “LUSyD” (project
No. GX20-16819X).

REFERENCES
[1] Arkadeep Acharya, Brijraj Singh, and Naoyuki Onoe. 2023. LLM Based Gen-

eration of Item-Description for Recommendation System. In Proceedings of the
17th ACM Conference on Recommender Systems (Singapore, Singapore) (RecSys
’23). Association for Computing Machinery, New York, NY, USA, 1204–1207.
https://doi.org/10.1145/3604915.3610647

[2] AI@Meta. 2024. The Llama 3 Herd of Models. (2024). https://ai.meta.com/
research/publications/the-llama-3-herd-of-models

[3] Fahad Anwaar, Naima Iltaf, Hammad Afzal, and Raheel Nawaz. 2018. HRS-CE: A
hybrid framework to integrate content embeddings in recommender systems for
cold start items. Journal of computational science 29 (2018), 9–18.

[4] Ricardo Baeza-Yates, Di Jiang, Fabrizio Silvestri, and Beverly Harrison. 2015.
Predicting the next app that you are going to use. In Proceedings of the eighth
ACM international conference on web search and data mining. 285–294.

[5] Jan A. Botha, Zifei Shan, and Daniel Gillick. 2020. Entity Linking in 100 Languages.
In Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing (EMNLP), Bonnie Webber, Trevor Cohn, Yulan He, and Yang Liu (Eds.).
Association for Computational Linguistics, Online, 7833–7845. https://doi.org/
10.18653/v1/2020.emnlp-main.630

[6] Jianlv Chen, Shitao Xiao, Peitian Zhang, Kun Luo, Defu Lian, and Zheng Liu.
2024. Bge m3-embedding: Multi-lingual, multi-functionality, multi-granularity
text embeddings through self-knowledge distillation. arXiv:2402.03216 (2024).

[7] Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. 2016. Training deep
nets with sublinear memory cost. arXiv preprint arXiv:1604.06174 (2016).

[8] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra,
Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, et al.
2016. Wide & deep learning for recommender systems. In Proceedings of the 1st
workshop on deep learning for recommender systems. 7–10.

[9] Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. 2022. Flashat-
tention: Fast and memory-efficient exact attention with io-awareness. Advances
in Neural Information Processing Systems 35 (2022), 16344–16359.

[10] Gabriel de Souza Pereira Moreira, Sara Rabhi, Jeong Min Lee, Ronay Ak, and
Even Oldridge. 2021. Transformers4Rec: Bridging the Gap between NLP and
Sequential / Session-Based Recommendation. In Proceedings of the 15th ACM
Conference on Recommender Systems (Amsterdam, Netherlands) (RecSys ’21).
Association for Computing Machinery, New York, NY, USA, 143–153. https:
//doi.org/10.1145/3460231.3474255

[11] Manav Dhamani. 2021. Goodreads 100K books. https://www.kaggle.com/
datasets/mdhamani/goodreads-books-100k

[12] Dario Di Palma, Giovanni Maria Biancofiore, Vito Walter Anelli, Fedelucio Nar-
ducci, Tommaso Di Noia, and Eugenio Di Sciascio. 2023. Evaluating chatgpt as a
recommender system: A rigorous approach. arXiv:2309.03613 (2023).

[13] HAO DING, Anoop Deoras, Bernie Wang, and Hao Wang. 2022. Zero-Shot
Recommender Systems. In ICLR Workshop on Deep Generative Models for Highly
Structured Data.

[14] JingtaoDing, YuhanQuan, Quanming Yao, Yong Li, andDepeng Jin. 2020. Simplify
and robustify negative sampling for implicit collaborative filtering. Advances in
Neural Information Processing Systems 33 (2020), 1094–1105.

[15] Xiaoyu Du, Xiang Wang, Xiangnan He, Zechao Li, Jinhui Tang, and Tat-Seng
Chua. 2020. How to learn item representation for cold-start multimedia recom-
mendation?. In Proceedings of the 28th ACM International Conference on Multime-
dia. 3469–3477.

[16] Shijie Geng, Shuchang Liu, Zuohui Fu, Yingqiang Ge, and Yongfeng Zhang. 2022.
Recommendation as Language Processing (RLP): A Unified Pretrain, Personalized
Prompt & Predict Paradigm (P5). In Proceedings of the 16th ACMConference on Rec-
ommender Systems (<conf-loc>, <city>Seattle</city>, <state>WA</state>, <coun-
try>USA</country>, </conf-loc>) (RecSys ’22). Association for Computing Ma-
chinery, New York, NY, USA, 299–315. https://doi.org/10.1145/3523227.3546767

[17] Daniel Gillick, Sayali Kulkarni, Larry Lansing, Alessandro Presta, Jason Baldridge,
Eugene Ie, and Diego Garcia-Olano. 2019. Learning Dense Representations
for Entity Retrieval. In Proceedings of the 23rd Conference on Computational
Natural Language Learning (CoNLL), Mohit Bansal and Aline Villavicencio (Eds.).
Association for Computational Linguistics, Hong Kong, China, 528–537. https:
//doi.org/10.18653/v1/K19-1049

[18] David Goldberg, David Nichols, Brian M. Oki, and Douglas Terry. 1992. Using
Collaborative Filtering to Weave an Information Tapestry. Commun. ACM (1992),

https://doi.org/10.1145/3604915.3610647
https://ai.meta.com/research/publications/the-llama-3-herd-of-models
https://ai.meta.com/research/publications/the-llama-3-herd-of-models
https://doi.org/10.18653/v1/2020.emnlp-main.630
https://doi.org/10.18653/v1/2020.emnlp-main.630
https://doi.org/10.1145/3460231.3474255
https://doi.org/10.1145/3460231.3474255
https://www.kaggle.com/datasets/mdhamani/goodreads-books-100k
https://www.kaggle.com/datasets/mdhamani/goodreads-books-100k
https://doi.org/10.1145/3523227.3546767
https://doi.org/10.18653/v1/K19-1049
https://doi.org/10.18653/v1/K19-1049


RecSys ’24, October 14–18, 2024, Bari, Italy Vojtěch Vančura, Pavel Kordík, and Milan Straka

61–70. https://doi.org/10.1145/138859.138867
[19] Andreas Griewank and Andrea Walther. 2000. Algorithm 799: revolve: an

implementation of checkpointing for the reverse or adjoint mode of compu-
tational differentiation. ACM Trans. Math. Softw. 26, 1 (mar 2000), 19–45.
https://doi.org/10.1145/347837.347846

[20] F. Maxwell Harper and Joseph A. Konstan. 2015. TheMovieLens Datasets: History
and Context. ACM Trans. Interact. Intell. Syst. 5, 4, Article 19 (Dec. 2015), 19 pages.
https://doi.org/10.1145/2827872

[21] Yupeng Hou, Shanlei Mu, Wayne Xin Zhao, Yaliang Li, Bolin Ding, and Ji-
Rong Wen. 2022. Towards Universal Sequence Representation Learning for
Recommender Systems. In Proceedings of the 28th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining (Washington DC, USA) (KDD ’22).
Association for Computing Machinery, New York, NY, USA, 585–593. https:
//doi.org/10.1145/3534678.3539381

[22] Budi Juarto and Abba Suganda Girsang. 2021. Neural collaborative with sentence
BERT for news recommender system. JOIV: International Journal on Informatics
Visualization 5, 4 (2021), 448–455.

[23] Joseph A. Konstan, Bradley N. Miller, David Maltz, Jonathan L. Herlocker, Lee R.
Gordon, and John Riedl. 1997. GroupLens. Commun. ACM 40, 3 (1997), 77–87.
https://doi.org/10.1145/245108.245126

[24] Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix factorization tech-
niques for recommender systems. Computer (2009). https://doi.org/10.1109/MC.
2009.263

[25] Jiacheng Li, Ming Wang, Jin Li, Jinmiao Fu, Xin Shen, Jingbo Shang, and Ju-
lian McAuley. 2023. Text Is All You Need: Learning Language Representa-
tions for Sequential Recommendation. In Proceedings of the 29th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining (<conf-loc>, <city>Long
Beach</city>, <state>CA</state>, <country>USA</country>, </conf-loc>) (KDD
’23). Association for Computing Machinery, New York, NY, USA, 1258–1267.
https://doi.org/10.1145/3580305.3599519

[26] Ruyu Li, Wenhao Deng, Yu Cheng, Zheng Yuan, Jiaqi Zhang, and Fajie Yuan.
2023. Exploring the Upper Limits of Text-Based Collaborative Filtering Using
Large Language Models: Discoveries and Insights. arXiv:2305.11700 [cs.IR]

[27] Dawen Liang, Rahul G. Krishnan, Matthew D. Hoffman, and Tony Jebara. 2018.
Variational autoencoders for collaborative filtering. In The Web Conference 2018 -
Proceedings of the World Wide Web Conference, WWW 2018. https://doi.org/10.
1145/3178876.3186150 arXiv:1802.05814

[28] Ahtsham Manzoor, Samuel C. Ziegler, Klaus Maria. Pirker Garcia, and Dietmar
Jannach. 2024. ChatGPT as a Conversational Recommender System: A User-
Centric Analysis. In Proceedings of the 32nd ACM Conference on User Modeling,
Adaptation and Personalization (Cagliari, Italy) (UMAP ’24). Association for Com-
putingMachinery, New York, NY, USA, 267–272. https://doi.org/10.1145/3627043.
3659574

[29] Samruddhi Mhatre. 2020. IMDB movies analysis. https://www.kaggle.com/
datasets/samruddhim/imdb-movies-analysis

[30] Lien Michiels, Robin Verachtert, and Bart Goethals. 2022. RecPack: An(Other)
Experimentation Toolkit for Top-N Recommendation Using Implicit Feedback
Data. In Proceedings of the 16th ACM Conference on Recommender Systems (Seattle,
WA, USA). Association for Computing Machinery, New York, NY, USA, 648–651.
https://doi.org/10.1145/3523227.3551472

[31] Jianmo Ni, Jiacheng Li, and Julian McAuley. 2019. Justifying recommendations
using distantly-labeled reviews and fine-grained aspects. In Proceedings of the
2019 conference on empirical methods in natural language processing and the 9th
international joint conference on natural language processing (EMNLP-IJCNLP).
188–197.

[32] Zach Nussbaum, John X Morris, Brandon Duderstadt, and Andriy Mulyar. 2024.
Nomic Embed: Training a Reproducible Long Context Text Embedder. arXiv
preprint arXiv:2402.01613 (2024).

[33] Austin Reese. 2020. Goodreads books - 31 features. https://www.kaggle.com/
datasets/austinreese/goodreads-books

[34] Nils Reimers and Iryna Gurevych. 2019. Sentence-BERT: Sentence Embeddings
using Siamese BERT-Networks. In Proceedings of the 2019 Conference on Em-
pirical Methods in Natural Language Processing. Association for Computational
Linguistics. http://arxiv.org/abs/1908.10084

[35] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. 2001. Item-based
collaborative filtering recommendation algorithms. In Proceedings of the 10th
international conference on World Wide Web. 285–295.

[36] Rachna Sethi and Monica Mehrotra. 2021. Cold start in recommender systems—A
survey from domain perspective. In Intelligent Data Communication Technologies
and Internet of Things: Proceedings of ICICI 2020. Springer, 223–232.

[37] Walid Shalaby, Sejoon Oh, Amir Afsharinejad, Srijan Kumar, and Xiquan Cui.
2022. M2TRec: Metadata-aware Multi-task Transformer for Large-scale and
Cold-start free Session-based Recommendations. In Proceedings of the 16th ACM
Conference on Recommender Systems. 573–578.

[38] Ítallo Silva, Leandro Marinho, Alan Said, and Martijn C. Willemsen. 2024. Lever-
aging ChatGPT for Automated Human-centered Explanations in Recommender
Systems. In Proceedings of the 29th International Conference on Intelligent User

Interfaces (IUI ’24). Association for Computing Machinery, New York, NY, USA,
597–608. https://doi.org/10.1145/3640543.3645171

[39] Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-Yan Liu. 2020. Mpnet:
Masked and permuted pre-training for language understanding. Advances in
neural information processing systems 33 (2020), 16857–16867.

[40] Giuseppe Spillo, Cataldo Musto, Marco Polignano, Pasquale Lops, Marco de
Gemmis, and Giovanni Semeraro. 2023. Combining Graph Neural Networks and
Sentence Encoders for Knowledge-aware Recommendations. In Proceedings of the
31st ACM Conference on User Modeling, Adaptation and Personalization (Limassol,
Cyprus) (UMAP ’23). Association for Computing Machinery, New York, NY, USA,
1–12. https://doi.org/10.1145/3565472.3592965

[41] Martin Spišák, Radek Bartyzal, Antonín Hoskovec, Ladislav Peska, and Miroslav
Tůma. 2023. Scalable Approximate NonSymmetric Autoencoder for Collaborative
Filtering. In Proceedings of the 17th ACM Conference on Recommender Systems
(Singapore, Singapore) (RecSys ’23). Association for Computing Machinery, New
York, NY, USA, 763–770. https://doi.org/10.1145/3604915.3608827

[42] Harald Steck. 2019. Embarrassingly shallow autoencoders for sparse data. In The
Web Conference 2019 - Proceedings of the World Wide Web Conference, WWW 2019.
https://doi.org/10.1145/3308558.3313710 arXiv:1905.03375

[43] Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin, Wenwu Ou, and Peng Jiang.
2019. BERT4Rec: Sequential Recommendation with Bidirectional Encoder Rep-
resentations from Transformer. In Proceedings of the 28th ACM International
Conference on Information and Knowledge Management (Beijing, China) (CIKM
’19). Association for Computing Machinery, New York, NY, USA, 1441–1450.
https://doi.org/10.1145/3357384.3357895

[44] Ruixuan Sun, Xinyi Li, Avinash Akella, and Joseph A. Konstan. 2024. Large
Language Models as Conversational Movie Recommenders: A User Study.
arXiv:2404.19093 [cs.IR]

[45] Gábor Takács, István Pilászy, and Domonkos Tikk. 2011. Applications of the
Conjugate Gradient Method for Implicit Feedback Collaborative Filtering. In
Proceedings of the Fifth ACM Conference on Recommender Systems (Chicago,
Illinois, USA) (RecSys ’11). Association for Computing Machinery, New York, NY,
USA, 297–300. https://doi.org/10.1145/2043932.2043987

[46] Gábor Takács and Domonkos Tikk. 2012. Alternating Least Squares for Per-
sonalized Ranking. In Proceedings of the Sixth ACM Conference on Recommender
Systems (Dublin, Ireland) (RecSys ’12). Association for Computing Machinery,
New York, NY, USA, 83–90. https://doi.org/10.1145/2365952.2365972

[47] Vojtěch Vančura, Rodrigo Alves, Petr Kasalický, and Pavel Kordík. 2022. Scalable
Linear Shallow Autoencoder for Collaborative Filtering. In Proceedings of the
16th ACM Conference on Recommender Systems (Seattle, WA, USA) (RecSys ’22).
Association for Computing Machinery, New York, NY, USA, 604–609. https:
//doi.org/10.1145/3523227.3551482

[48] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing systems 30 (2017).

[49] Zygmunt Zajac. 2017. Goodbooks-10k: a new dataset for book recommendations.
http://fastml.com/goodbooks-10k. FastML (2017).

[50] Gangyi Zhang. 2023. User-Centric Conversational Recommendation: Adapt-
ing the Need of User with Large Language Models. In Proceedings of the 17th
ACM Conference on Recommender Systems (Singapore, Singapore) (RecSys ’23).
Association for Computing Machinery, New York, NY, USA, 1349–1354. https:
//doi.org/10.1145/3604915.3608885

[51] Ziwei Zhu, Shahin Sefati, Parsa Saadatpanah, and James Caverlee. 2020. Recom-
mendation for new users and new items via randomized training and mixture-
of-experts transformation. In Proceedings of the 43rd International ACM SIGIR
conference on research and development in Information Retrieval. 1121–1130.

https://doi.org/10.1145/138859.138867
https://doi.org/10.1145/347837.347846
https://doi.org/10.1145/2827872
https://doi.org/10.1145/3534678.3539381
https://doi.org/10.1145/3534678.3539381
https://doi.org/10.1145/245108.245126
https://doi.org/10.1109/MC.2009.263
https://doi.org/10.1109/MC.2009.263
https://doi.org/10.1145/3580305.3599519
https://arxiv.org/abs/2305.11700
https://doi.org/10.1145/3178876.3186150
https://doi.org/10.1145/3178876.3186150
https://arxiv.org/abs/1802.05814
https://doi.org/10.1145/3627043.3659574
https://doi.org/10.1145/3627043.3659574
https://www.kaggle.com/datasets/samruddhim/imdb-movies-analysis
https://www.kaggle.com/datasets/samruddhim/imdb-movies-analysis
https://doi.org/10.1145/3523227.3551472
https://www.kaggle.com/datasets/austinreese/goodreads-books
https://www.kaggle.com/datasets/austinreese/goodreads-books
http://arxiv.org/abs/1908.10084
https://doi.org/10.1145/3640543.3645171
https://doi.org/10.1145/3565472.3592965
https://doi.org/10.1145/3604915.3608827
https://doi.org/10.1145/3308558.3313710
https://arxiv.org/abs/1905.03375
https://doi.org/10.1145/3357384.3357895
https://arxiv.org/abs/2404.19093
https://doi.org/10.1145/2043932.2043987
https://doi.org/10.1145/2365952.2365972
https://doi.org/10.1145/3523227.3551482
https://doi.org/10.1145/3523227.3551482
http://fastml.com/goodbooks-10k
https://doi.org/10.1145/3604915.3608885
https://doi.org/10.1145/3604915.3608885

	Abstract
	1 Introduction
	2 Related Work
	3 Training Procedure
	4 Experimental Evaluation
	4.1 Results

	5 Conclusions
	Acknowledgments
	References

