
Supporting Universal Dependencies in Tree
Editor TrEd
Jan Štěpánek1

1Charles University, Faculty of Mathematics and Physics

Abstract

The paper presents the tree editor TrEd and related tools that
can be used to create, modify, browse, and search treebanks - large
language corpora annotated with syntactic and/or semantic struc-
ture information. This might include not only phrase structure or
dependencies, but also coreference, discourse analysis, and even inter-
sentence relations.

The project started in the year 2000, and it has been in continuous
use since then at various institutions all over the world. Most of the
tools are written in Perl, which makes them available to all major
operating systems.

For searching the treebanks, a query language was developed that
describes sets of tree nodes and the relations between them. It also
supports aggregation to produce quantitative outputs. There are two
different implementations, one translates the queries into SQL state-
ments, the other searches the data directly in the editor.

Originally, TrEd supported the PML data format used for the
Prague Dependency Treebank. To process data in a different format,
one first needed to convert the data into the PML format (and possibly
convert the modified data data back to the initial format). Later, a
versatile extension system was added to TrEd which made it possible
to support other data formats directly.

We will show how this works on the example of Universal Depen-
dencies. UD is a framework for grammar annotation across different
human languages. The described extension allows TrEd (and some

1

other tools) to open the files in the original UD format natively, build-
ing the internal representation on the fly, and also serialise them back
after editing.

1 Introduction
Corpus in the context of Natural Language Processing (NLP) is a collec-
tion of digital or digitalised texts. Corpora are often annotated, i.e. they
have linguistic information added to them. The simplest kind of such an
annotation is Part-of-Speech tagging, which assigns a part of speech to each
word. Moreover, modern corpora often include more sophisticated pieces of
information like a description of the relations between words.

Treebank is a corpus annotated with syntactic information. Usually, every
sentence is represented as a tree (in the graph theory sense), while there ex-
ist two main groups of the syntactic structure being annotated: phrase and
dependency structures. Phrase structures are based on Noam Chomsky’s
transformational grammar introduced in [1], whereas dependency structures
elaborate Lucien Tesnière’s ideas from [2]. The latter approach applied to En-
glish led to Stanford Dependencies [3], which combined with Google universal
part-of-speech tags [4] and Interset interlingua for morphosyntactic tagsets
[5] evolved into Universal Dependencies (UD, [6]) that will be described in
detail below in Section 2.

The tree editor TrEd [7] was initially developed as the annotation tool for
the Prague Dependency Treebank (PDT, [8]). In the beginning, it only sup-
ported the treebank’s internal data format, but once the treebank switched
to the XML-based format called Prague Markup Language (PML [9]), the
editor was extended to support it, too. Furthermore, the modules imple-
menting the new format were written in a general way, making it easier to
add support for other formats used by other treebanks in future.

2 Universal Dependencies
Universal Dependencies is a framework for grammar annotation of text cor-
pora in any human language, where “grammar” means part-of-speech tags,
morphological features, and syntactic dependencies. It is an open commu-
nity effort, with more than 600 contributors who have produced over 250

2

treebanks in more than 150 languages1 since the first batch in 2015.
The main goal of the project is to facilitate development of multilin-

gual parsers, cross-lingual learning, and research of the influence of language
typology on parsing. It has also been used by linguists to study various
language phenomena across different languages.

The dependency relations UD annotates hold between words, but there
is no requirement for strict correspondence to orthographic or phonological
words. Both 1:N and N:1 situations are supported: expanding contractions
(e.g. French au can be represented as two syntactic words, à and le) or
creating multi-token words (for example the abbreviation e. g. can enter
dependency relations as a single word). The latter approach should be used
scarcely, because a special technical dependency relation can often describe
the same construction without complicating the tokenisation and word seg-
mentation process.

The morphological information is composed of three parts:

• A lemma, a base form of the word. What a base form is is highly
language-dependent, but no other information than the base form
should be present in the lemma.

• A part-of-speech tag is one of the fixed 17 tags2. Some languages do
not use all the tags, but adding new tags is not possible. All additional
information belongs to the features. For example, DET designates a
determiner, VERB and NOUN hopefully do not to be explained.

• A set of features. They typically describe the inflection of the word
form (e.g. Gender=Masc|Number=Sing), but there can also be lexical
features (e.g. the PronType feature categorises pronouns or pronominal
adjectives, numerals, and adverbs as personal, reciprocal, interrogative,
relative, demonstrative, etc.). Besides listed features, each language or
treebank can define its own new features.

The syntactic annotation is formed of relations between words. Exactly
one word is the head of the sentence, and each other word depends on another
word in the sentence. The dependency relations hold primarily between con-
tent words (see Figure 1), function words “depend” on content words. This

1Numbers taken from UD version 2.14 from May 15, 2024.
2The list of all universal POS tags and their explanation can be found at https:

//universaldependencies.org/u/pos/index.html

3

https://universaldependencies.org/u/pos/index.html
https://universaldependencies.org/u/pos/index.html

is different from how function words are treated in many theories and de-
pendency grammars, which also means the structure might need to be trans-
formed non-trivially when translating a treebank from a different annotation
schema into UD. The relations are typed, the set of so called basic types is
fixed and language independent.

Figure 1: Basic dependencies in the sentence The cat could have chased
all the dogs down the street. The relation is represented by a tree edge, the
tree nodes correspond to words. Word forms are shown in black, lemmas
in brown; to save horizontal space, only lemmas different to word forms are
shown. Parts of speech are rendered in cyan. The type of a relation is
displayed in blue at the depending word.

Example-1

The the
DET det

cat
NOUN nsubj

could can
AUX aux

have
AUX aux

chased chase
VERB root

all
DET det

the
DET det

dogs dog
NOUN obj

down
ADP case

the
DET det

street
NOUN obl

.
PUNCT punct

.
.

.
.
. .

.
.

. .

.
.

. .

. .

Besides basic dependencies there are also enhanced dependencies. They
annotate implicit relations between words like additional subject relation
in control and raising constructions or coreference in relative clauses (see
Figure 2); they can express relations to elided words; propagation of depen-
dencies into or from conjuncts; or further specify a basic relation (e.g. adding
preposition and/or case to a nominal modifier nmod or adnominal clause acl
can help disambiguate its semantic role). Enhanced dependencies do not
have to form a tree and their types can bear more detailed information than
the fixed basic dependency types. The enhanced graph is not required to
contain all the basic dependencies, but many of them are usually part of it.

UD uses the so called CoNLL-U format to serialise the data. Every node
is represented by a line, tabs separate the line into columns corresponding to

4

Figure 2: Enhanced dependencies in the sentence Is that Microwave that
you gave Dan really expensive?: that references Microwave which in turn is
an object of give.

Example-2

Is be
AUX cop

that
DET det

Microwave microwave
NOUN nsubj

that
PRON obj

you
PRON nsubj

gave give
VERB acl:relcl

Dan
PROPN iobj

really
ADV advmod

expensive
ADJ root

?
PUNCT punct

.
.

.

.
.

. .

.
.

.

.

.

.

obj

ref

the identifier, form, lemma, part of speech, language-specific part of speech,
feature set, head identifier, dependency type, enhanced dependency, and
miscellaneous. For example, the word that in Figure 2 is represented by the
line shown in Figure 3. The enhanced dependency column contains both the
basic dependency and the coreference separated by a vertical bar, it encodes
both the head of the dependency (3 in the enhanced case, i.e. Microwave)
and the type (ref here), separated by a colon.

Figure 3: Columns representing that in Figure 2.

ID FORM LEMMA UPOS XPOS FEATS HEAD DEPREL DEPS MISC
4 that that PRON WDT PronType=Rel 6 obj 3:ref|6:obj _

5

3 Tree Editor TrEd
3.1 The Tree Editor
The editor is written in Perl3. It makes it available for all major operating
systems of personal computers. The released code is available for download
and licensed under GNU GPL 2. The largest part of the source code has
been developed in a private SVN repository—but it is currently moving to git
and GitHub, where some other parts or related projects are located already.
Unfortunately, this change influences the release process, which makes the
transition more complex.

For the GUI, the project uses the Tk4 modules. Tk::Canvas turned out
to be quite flexible and powerful when it comes to connecting circles by lines
or curves of various colours and styles, as well as moving objects around with
a mouse.

By dragging tree nodes, annotators can change the structure of trees: by
dropping one node over another, they make the former a child of the latter.

TrEd can display and edit much more than just trees: many treebanks
also contain coreference links, references between elements of different layers
of annotation, or groups of words (multi-word expressions). Different types
of links between nodes can be created by dropping the nodes while holding
Shift, Control, Alt, or their combinations. Annotators’ most frequent ac-
tions can be assigned to keyboard shortcuts, speeding up the process and
making it less repetitive.

TrEd can be used to annotate data manually, but it also has a “batch”
version without the GUI. It can run Perl code against data files to perform
changes in the data, search the data, or aggregate information extracted from
the data. The process can be parallelised on a multi-CPU machine or in a
computer cluster, enabling fast processing of large data sets.

Inspired by Perl’s -n and -p switches, the btred (batch TrEd) command
implemented -T and -N which automatically run the given code for each tree
and node, respectively. The shell command in Listing 1 searches all the re-
quested UD files for nominal subjects whose parents are not verbs (not really
interesting from a linguistic point of view, the parents are most probably ad-
jectives, nouns, and pronouns in copula constructions, for example the word
expensive in Figure 2):

3https://perl.org
4https://metacpan.org/pod/Tk

6

https://perl.org
https://metacpan.org/pod/Tk

btred -NTe '
 FPosition()
 if $this ->{deprel} eq "nsubj"
 && $this ->parent ->{upostag} ne "VERB"
 ' data/*.conllu | tred -l-

Listing 1: Processing UD files from the command line.

The variable $this is assigned each node in each tree in each file. The
function FPosition prints a file name, a sentence number, and a node number
in a special format that TrEd understands, so we can directly browse the
matching nodes.

As a by-product of the treebank creation, various aspects of the anno-
tation process have been studied, e.g. inter-annotator agreement and its
development over time, or the influence of automatic pre-annotation on the
speed and accuracy of the annotation.

3.2 The Data Format
Internally, TrEd uses the PML format for its data. The distribution imple-
menting it can be found on CPAN as Treex::PML5. Each specific annotation
project that uses PML first defines its own PML schema that describes how
the general PML data structures are organised in the data. The schema is
used by Treex::PML to precompile fast data loading code in Perl. By default,
XML is used as the format of both the schema and data, but Treex::PML
provides means to change even this aspect of the data. The project can con-
sist of several interconnected layers of annotation, each layer can be a simple
linear annotation, or can contain dependency or constituency trees.

PML defines the following data types:

• A document represents one collection of annotated related sentences,
usually a list or sequence (see below) of trees plus some metadata.

• A node represents a node in a tree (usually corresponding to a word in
a sentence). The whole sentence is represented by its root node. Each
node can have a different type, which describes from what simpler types
it should be composed.

5https://metacpan.org/pod/Treex::PML

7

https://metacpan.org/pod/Treex::PML

• A list corresponds to an array, it consists of any number of elements of
the same type.

• An alternative is similar to a list, but its semantics is different: while a
list represents all its elements as valid values, an alternative represents
just one of the presented values, but it is not clear which one it should
be.

• A sequence is again similar to a list, but it does not require its elements
to be of the same type (the possible combinations of types can be
restricted, though).

• A structure is similar to a Perl hash. Some of its keys might be marked
as obligatory, each key must have a corresponding value type specified
by the schema.

• A container is a special type of a structure with only one central value
of a given type, possibly annotated with other name-value pairs with
atomic values.

• An atomic value is a literal string, but its format might be further
specified in the schema (e.g. an integer, date, identifier, reference to
an identifier).

So called roles are assigned to particular object definitions in the schema,
telling TrEd (or other applications) how to interpret the data. For exam-
ple, the #NODE role tells TrEd it should build a tree node from the objects
corresponding to the given schema definition.

If we compare the UD data format based on table separated values with
very limited internal structure to the PML format, we can see that they
are substantially different, which makes the conversion between them a bit
challenging.

3.3 Searching
Trivial searches are possible in the data directly from TrEd, e.g. you can
specify a regular expression for an atomic value. To search for complex
structures (e.g. a subject of a passive verb in past tense with more than
one temporal adverbials), one can write a subroutine in Perl returning the

8

positions of matching nodes and run it in the batch mode. Unfortunately,
not all linguists can write complex Perl code.

Therefore, PML Tree Query (PML-TQ, [10]) was developed in 2009. It
consists of three components:

• A query language that can express relations between nodes, cross-layer
relations, and arbitrary boolean combinations of statements. It also
includes a sub-language to quantitative analysis of the results.

• There are three client interfaces: a GUI client implemented directly in
TrEd with graphical query builder, a command line interface, and a
web interface that provides some assistance in building a query.

• There are two engines that evaluate the queries. One translates the
query into SQL and searches the data saved to a relational database,
the second one is implemented in Perl and searches the data files di-
rectly. The latter is significantly slower, but suitable for data in the
process of annotation that change frequently, as the conversion to a
database is even more time consuming.

For example, to get a picture of what parts of speech are the non-verb
parents of nominal subjects (cf. Listing 1), one can use the query shown in
Figure 4. Note that nodes must be named if their attributes are later referred
to in the first line of the analytical part, any other line refers to the columns
of the preceding line by their numbers. The answer for all the English UD
data in version 2.14 is shown in Table 1.

3.4 Extensions
TrEd can be enhanced by extensions. Extensions are plugins that can pro-
vide additional Perl modules, resources (e.g. PML schemata), style sheets,
and/or annotation modes (usually adjusting keyboard and mouse behaviour
for a specific annotation project). TrEd also supports minor modes (inspired
by a similar feature of GNU Emacs6) which can change its behaviour across
annotation modes (for example, there is a minor mode for displaying neigh-
bouring sentences).

Extensions are organised into repositories which are accessible by the
HTTP protocol. Upon request, TrEd can download all available extensions

6https://www.gnu.org/software/emacs/

9

https://www.gnu.org/software/emacs/

Figure 4: Example query in the query language and its graphical represen-
tation.

ud.node [
deprel = "nsubj",
parent ud.node $p := [

upostag != "VERB"
]

];
>> give $p.upostag
>> for $1

give $1, count($1)
sort by $2

q-24-05-31_115323

ud.node $p
upostag != "VERB"

ud.node
deprel = "nsubj"

Tree Query

Output filters:
 >> give $p.upostag
 >> for $1
 give $1,count($1)
 sort by $2

parent

and let the user choose which ones to install, or upgrade the installed ones if
newer versions are found. Currently, there are 55 extensions available in the
official TrEd repositories7.

4 UD in TrEd
Most existing extensions for non-PML data formats included conversion
scripts from the native format to PML and back (see for example the Penn
Treebank extension8). When developing the extension for UD, we decided to
use a different strategy.

TrEd makes it possible to write a backend for a non-PML data format.
The backend is a module that implements a given interface, most importantly
the read and write functions. The functions are responsible for converting

7https://ufal.mff.cuni.cz/tred/extensions/
8https://ufal.mff.cuni.cz/tred/extensions/core/ptb/documentation/

10

https://ufal.mff.cuni.cz/tred/extensions/
https://ufal.mff.cuni.cz/tred/extensions/core/ptb/documentation/

PUNCT 2
X 9
PART 11
INTJ 26
DET 54
ADP 130
SYM 131
NUM 299
PROPN 605
ADV 735
AUX 929
PRON 1264
NOUN 5622
ADJ 7169

Table 1: Output of the query from Figure 4: Parts of speech of non-verbal
parents of nominal subjects in the English UD data.

the data format into TrEd’s internal representation and serialising the inter-
nal representation back to the original data format.

At the beginning, no annotation tool for UD was needed, as most data
were converted to UD from existing treebanks in other data formats. There-
fore, the extension implemented no advanced editing methods. Later on,
when UD became more prominent, new annotation projects started using
UD natively, leading to incorporation of more complex functionalities.

The extension also contains a style sheet that configures how trees are
drawn in TrEd (Figures 1 and 2 show simple examples).

• The word form is displayed as a black label of each node, the label is
grey for empty nodes. The part of speech tag is displayed in dark cyan.

• As each non-root node must have a single parent, the dependency type
is shown as a blue label of the child node.

• The lemma is displayed only if it is different from the word form to
narrow the trees.

• If the enhanced dependency is the same as the basic one, it is not
shown at all. If there is an additional dependency, it is shown as an

11

orange curved arrow with the dependency type shown in magenta near
the start of the arrow. If the basic dependency is not duplicated in the
enhanced one, the tree edge is coloured in cyan instead of grey and is
thinner. If the enhanced dependency has the same parent as the basic
one but a different type, the type can be displayed in two ways: if it
begins with the basic type, only the extra characters are displayed in
blue violet, otherwise, it is displayed full in violet after a slash (see
Figure 5: the prepositions to and in extend the basic dependency type
obl, while the basic dependency type fixed is replaced by the type
advmod in the enhanced dependency graph).

Figure 5: Enhanced dependencies to parent, but with a type different to
the basic one: At least you get to go to Florida in JANUARY.

answers-20111107193044AAvUYBv_ans-0018

At at
ADP advmod

least
ADJ fixed

you
PRON nsubj

get
VERB root

to
PART mark

go
VERB xcomp

to
ADP case

Florida
PROPN obl

in
ADP case

JANUARY
PROPN obl

.
PUNCT punct

.
.

. /advmod

.

.

.

.

.

. :to

.

. :in

.

nsubj:xsubj

• An expanded contraction is represented by a dashed area covering the
individual words (see Figure 6 for a bit more complex example).

Moreover, the extension implements basic editing functionality:

• Dropping node a on node b attaches node a to node b. An enhanced
dependency is created together with the basic one, if an enhanced de-
pendency existed to the old or new parent, it is removed.

12

Figure 6: Different basic and enhanced dependencies: Вперше за останні
півроку працюю з 11-ї і встаю, коли на вулиці вже сонце.

u-1m9u

Вперше вперше
ADV advmod

за
ADP case

останні останній
ADJ amod

пів
NUM nummod:gov

року рік
NOUN obl

працюю працювати
VERB root

з
ADP case

11-ї 11-й
ADJ obl

і
CCONJ cc

встаю вставати
VERB conj

,
PUNCT punct

коли
ADV orphan

на
ADP case

вулиці вулиця
NOUN orphan

вже
ADV orphan

є бути
VERB _

сонце
NOUN advcl

.
PUNCT punct

.
.

.
.
. .

.
.

.
.

.

.
.

.

.

.

. .

.

.

. .

.
.

.

.

root

punct advmod obl advmod

advcl

nsubj

• Dropping node a on node b while pressing Control toggles existence
of an enhanced dependency of node a on node b. If a dependency
was created, the user is asked for its type. This works even when a is
already b’s parent.

• Dropping node a on node b while pressing Shift attaches node a to
node b without creating an enhanced dependency. If an enhanced de-
pendency existed to the old or new parent, it is removed.

• Pressing Insert inserts a null child node after the current one. The
user is asked for its form.

• Pressing Control+→ or Control+← adds the current node to a con-
traction group to the right or left from the node. If the neighbouring
node is not in a group, a new group is created and the user is asked for
its form. If the nodes are already in a group, the group is deleted.

• Pressing d opens a dialog box to edit the current node’s dependency
type. If previously an enhanced dependency of the same type as the
basic dependency existed, it is changed together with it, otherwise, it
stays unchanged.

13

• Pressing p, f, and l makes it possible to edit upostag, feats, and
lemma, respectively.

By making all the UD data readable by TrEd, we also made them search-
able by both the engines of PML-TQ directly without any intermediate con-
version steps. The Perl engine can be run locally, the database engine is
available at a dedicated LINDAT/CLARIAH-CZ page9.

5 Conclusion
Annotation projects that use the Universal Dependencies framework natively
can use the tree editor TrEd as a tool for manual annotation. It should be
now available on any major computer operating system. Moreover, it offers
an expressive searching language with the editor itself used as a graphical
client.

Acknowledgement
This paper has been supported by the Ministry of Education, Youth and
Sports of the Czech Republic, Project No. LM2023062 LINDAT/CLARIAH-
CZ.

References
[1] Chomsky N. Syntactic Structures. The Hague/Paris: Mouton & Co.;

1957.

[2] Tesnière L. Éléments de syntaxe structurale. Paris: Klincksieck; 1959.

[3] de Marneffe MC, Manning CD. The Stanford Typed Dependencies Rep-
resentation. In: Coling 2008: Proceedings of the workshop on Cross-
Framework and Cross-Domain Parser Evaluation. Manchester, UK: Col-
ing 2008 Organizing Committee; 2008. p. 1–8.

[4] Petrov S, Das D, McDonald R. A Universal Part-of-Speech Tagset. In:
Proceedings of the 8th International Conference on Language Resources

9https://lindat.mff.cuni.cz/services/pmltq

14

https://lindat.mff.cuni.cz/services/pmltq

and Evaluation (LREC 2012). İstanbul, Turkey: European Language
Resources Association; 2012. p. 2089–2096.

[5] Zeman D. Reusable Tagset Conversion Using Tagset Drivers. In: Pro-
ceedings of the 6th International Conference on Language Resources and
Evaluation (LREC 2008). Marrakech, Morocco: European Language Re-
sources Association; 2008. p. 213-8.

[6] de Marneffe MC, Manning CD, Nivre J, Zeman D. Universal Depen-
dencies. Computational Linguistics. 2021;47(2):255-308.

[7] Pajas P, Štěpánek J. Recent Advances in a Feature-Rich Framework
for Treebank Annotation. In: Scott D, Uszkoreit H, editors. The 22nd
International Conference on Computational Linguistics - Proceedings of
the Conference. vol. 2. Manchester, UK: Coling 2008 Organizing Com-
mittee; 2008. p. 673-80.

[8] Hajič J, Böhmová A, Hajičová E, Vidová-Hladká B. The Prague De-
pendency Treebank: A Three-Level Annotation Scenario. In: Abeillé
A, editor. Treebanks: Building and Using Parsed Corpora. Amsterdam:
Kluwer; 2000. p. 103-27.

[9] Pajas P, Štěpánek J. XML-Based Representation of Multi-Layered An-
notation in the PDT 2.0. In: Hinrichs RE, Ide N, Palmer M, Pustejovsky
J, editors. Proceedings of the LREC Workshop on Merging and Layer-
ing Linguistic Information (LREC 2006). Genova, Italy: ELRA; 2006.
p. 40-7.

[10] Pajas P, Štěpánek J. System for Querying Syntactically Annotated
Corpora. In: Proceedings of the ACL-IJCNLP 2009 Software Demon-
strations. Suntec, Singapore: Association for Computational Linguistics;
2009. p. 33-6.

15

	Introduction
	Universal Dependencies
	Tree Editor TrEd
	The Tree Editor
	The Data Format
	Searching
	Extensions

	UD in TrEd
	Conclusion

