
GPT Czech Poet: Generation of Czech Poetic Strophes with Language Models

Michal Chudoba and Rudolf Rosa
Institute of Formal and Applied Linguistics, Faculty of Mathematics and Physics

Charles University, Praha, Czech Republic
michal.chudoba.praha@gmail.com and rosa@ufal.mff.cuni.cz

Abstract
High-quality automated poetry generation systems are
currently only available for a small subset of languages.
We introduce a new model for generating poetry in
Czech language, based on fine-tuning a pre-trained
Large Language Model. We demonstrate that guiding
the generation process by explicitly specifying strophe
parameters within the poem text strongly improves the
effectiveness of the model. We also find that appro-
priate tokenization is crucial, showing that tokenization
methods based on syllables or individual characters in-
stead of subwords prove superior in generating poetic
strophes. We further enhance the results by introducing
Forced generation, adding explicit specifications of me-
ter and verse parameters at inference time based on the
already generated text. We evaluate a range of setups,
showing that our proposed approach achieves high ac-
curacies in rhyming and metric aspects of formal quality
of the generated poems.

Introduction
In this work, our goal is to devise a generative language
model to generate poem strophes in Czech language, accord-
ing to specified rhyme scheme and meter.

With the arrival of pre-trained open-domain Large Lan-
guage Models (LLMs), such as GPT (Radford et al. 2019;
OpenAI 2023) or Llama (Touvron et al. 2023), the two most
common approaches for solving such tasks is either fine-
tuning a LLM on a specialized dataset, or prompting the
LLM without training. The prompting approach is appli-
cable for languages and tasks sufficiently prevalent in the
training data (Liu et al. 2023), and might thus be applicable
for English poetry to some extent.

Our preliminary experiments have shown that even the
best available models, such as GPT-4, struggle to adhere
to the structural nuances of strophes and associated pa-
rameters of Czech poetry, leading to low-quality outputs.
Therefore, we adopt the approach of fine-tuning an available
LLM, specifically Czech GPT-2 czech-gpt2-oscar by
Chaloupský (2022), on a large corpus of Czech poetry. The
Czech language also differs in several important character-
istics from languages typically studied in previous works,
most notably by its rich inflection but rather regular orthog-
raphy and prosody, which motivates the approach we take in
this work.

We draw inspiration from treating text as a sequence of
syllables (Oncevay and Rojas 2020). Our main emphasis is
not on the detailed meaning of the text, an area where mod-
els using standard tokenizers like BPE (Sennrich, Haddow,
and Birch 2016) perform well. Instead, we prioritize the
phonetic aspects and adherence to meter, which are crucial
for our task. Syllabic modeling proves particularly advanta-
geous in generating neologisms, common in poetry to main-
tain prescribed rhyme scheme and meter. In pursuit of this,
we have delved into tokenizer-free models (Xue et al. 2022),
offering maximal flexibility in constructing neologisms and
pairing characters to align with stipulated strophe parame-
ters. This approach, already demonstrated to be effective
in poetry generation by the ByGPT5 system (Belouadi and
Eger 2023), showcased proficiency in both rhyme scheme
and meter adherence. We also experiment with several ways
of guiding the generation process by interleaving explicit an-
notations with the strophe text.

Tvá lod’ jde po vy-so-kém mo-ři, A iamb
x X x X x x x X x
v ně brá-zdu ja-ko střı́-bro re-je, B iamb
x X x X x X x X x
svou přı́-du v mod-ré vl-ny no-řı́ A iamb
x X x X x X x X x
a bok svůj pěn-né do pe-ře-je. B iamb
x X x X x X x x x

Figure 1: An ABAB strophe with meter annotation and
rhythm annotation: ‘x‘ = unstressed syllable, ‘X‘ = stressed
syllable. (Your ship is on the high seas, with a furrow in it
like silver, she plunges her prow into the blue waves, and its
side foaming into the rapids.)

Contributions
The main contributions of this paper are:

• advancing poetry generation in Czech language,

• introduction of providing verse parameter hints (number
of syllables, verse ending) to encourage rhyming,

• evaluation of several schemes of encoding rhyme, meter
and style,

• evaluation of several tokenization schemes.

ar
X

iv
:2

40
7.

12
79

0v
1

 [
cs

.C
L

]
 1

8
Ju

n
20

24

Parameters of Poetry
In poetic strophes, there are two main parameters that gov-
ern their structure: rhyme and meter (even though many
strophes are crafted without adhering to rhyme or are con-
structed in free verse). While the rhyme scheme applies to
the entire strophe, the meter may vary from verse to verse.
Consequently, in our analysis, we meticulously annotate the
meter for each individual verse (see example in Figure 1).

Rhyme
Utilizing the standard approach, we designate the rhyme
scheme with capital letters, such as ABAB, where each char-
acter denotes an individual verse in the strophe, also allow-
ing X for non-rhyming verses. We include configurations of
both 4 and 6 lines. The rhyming scheme thus can be e.g.
AABBCC, where each verse has a corresponding rhyming
pair, as well as e.g. XAXA, where only the second verse
rhymes with the fourth.

Meter
We considered the following meter types that occur in
our dataset (labelled with one-letter labels), according to
Plecháč et al. (2015):

iamb (J) First syllable is unstressed, second is stressed.
E.g. ‘attempt’ to ‘at-tempt’, stress is on second syllable
‘tempt’.

trochee (T) Reverse of iamb, first syllable is stressed, sec-
ond is unstressed. E.g. ‘double’ to ‘dou-ble’ with stress
on first syllable.

dactyl (D) Three part meter with stress on first syllable.
Next two syllables are unstressed. E.g. ‘poetry’ to ‘po-
et-ry’ with stress on first syllable.

amphibrach (A) Three part meter with stress on second
syllable. E.g. ‘the scenes of’, where stress is placed on
the word ‘scenes’.

dactylotrochee (X) Combination of dactyl and trochee.

dactylotrochee with anacrusis (Y) Anacrusis is a set of
unstressed syllables preceding the first stressed dacty-
lotrochee syllable.

hexameter (H) Dactyl meter of 6 parts, where 5th part must
be dactyl and 6th trochee.

pentameter (P) Dactyl meter of 5 parts, where 3rd and 6th
are not complete.

Not Recognized (N) Does not pertain to any before men-
tioned meter. Consists of free-verse, Syllable weight
based meter and not recognized meters.

See Figure 1 for an example of a strophe with the ABAB
rhyme scheme and iamb meter for each verse. To illustrate
how each verse adheres to the iambic meter, we mark un-
stressed syllables with ”x” and stressed syllables with ”X”.

Dataset
We opted for the Corpus of Czech Verse (Plecháč and
Kolár 2015), curated by the Institute of Czech Literature of

the Czech Academy of Sciences.1 This corpus comprises
1,305 volumes of poetry, each annotated for poetic meters,
rhymes, phonetic transcription, word tokenization, lemmati-
zation, and morphological tagging. The annotation is semi-
automatic and can thus contain errors; e.g. meter annotation
has an estimated accuracy of 95.3% (Plecháč 2016). The
metadata include information such as the author name, book
editors, and the publication years of the book.

Dataset Preprocessing
The utilized corpus lacks direct specification of rhyme
schemes, instead providing information on whether two or
more verses rhyme or if a verse is non-rhyming. This is car-
ried through the whole poem utilizing numbering system.
We transformed this information into standardized rhyme
schemes such as AABB, AABBCC, loosing information
about between strophe rhyming in progress. But given we
only generate individual strophes, this loss is not consequen-
tial. Given that the metadata lacks details about the type
of poetry (Lyric, Narrative) or the specific style in which a
poem was composed, we inferred that the publication year
of the book containing the poem serves as the most indica-
tive feature. However, as Language Models struggle with
numerical data and benefit from fine-tuning for improved
comprehension (Spithourakis and Riedel 2018), we buck-
etized the publishing year data into 20-year periods to better
categorize poems into distinct styles. Some poems lacked
information about their publication year, and for these in-
stances, we introduced the category NaN to encompass such
examples.

Dataset Makeup
To gain a more comprehensive understanding of potential
biases in our model, it was crucial to scrutinize the compo-
sition of the processed data. The combined corpus encom-
passes 2,310,917 verses, forming 374,537 strophes, which
collectively constitute 66,428 poems. We split the dataset
into a train set (95%) and a test set (5%).

Rhyme schemes Our processing identified 218 differ-
ent schemes (primarily due to our leniency towards non-
rhyming verses), with a very uneven distribution. Figure 2a
depicts the 10 most frequent rhyme schemes, which together
constitute 74% of the dataset. Conversely, we identified
149 distinct rhyme schemes with a presence below 0.05%
each (fewer than 200 strophes) in our corpus, thus probably
constituting noise rather than meaningful patterns that our
model could learn from.

Meter We observe a modest variety with only 9 distinct
types of meter (8 metric and 1 default). However, as illus-
trated in Figure 2b, over 85% of all verses pertain to either
iamb (J) or trochee (T), whereas the least frequent meter
types (H, Y, P) each individually constitute less than 0.2% of
the data. Therefore, in the absence of specific instructions,
our model is likely to mostly generate J and T verses.

1https://github.com/versotym/
corpusCzechVerse

https://github.com/versotym/corpusCzechVerse
https://github.com/versotym/corpusCzechVerse

Rhyme Schema

Pr
es

en
ce

0,00%

10,00%

20,00%

30,00%

ABAB
XXXX

XAXA

XXXXXX
AABB

AABBCC
AAXX

ABABXX

ABABCC
Othe

r

(a) Top 10 rhyme schemes presence

Meter

P
re
se
nc
e

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

J T N D X A H Y P

(b) Meter presence

Figure 2: Rhyme and meter presence

1800
1820
1840
1860
1880
1900
1920
1940
1960
NaN

0,00% 5,00% 10,00% 15,00% 20,00% 25,00% 30,00%

Figure 3: Year regions presence

Year of poem publication Figure 3 illustrates a more even
distribution across all categories than for rhyme schemes and
meters. Only NaN exhibits a presence below 0.5%, while 6
out of the 10 defined regions have a presence exceeding 5%.

Data Format
Standard language modelling is done on the plain text. How-
ever, for poetry modelling, previous works have demon-
strated strong benefits of explicitly encoding various prop-
erties within the text by using annotations via functional to-
kens interleaved with the actual language tokens. We there-
fore explore three variants of specifying strophe and verse
parameters.

BASIC Our initial method, as previously explored in the
ByGPT5 article (Belouadi and Eger 2023), involves adding
the rhyme scheme, theme (i.e. publishing year), and the most
prevalent meter as the first line, while the subsequent lines
contain the strophe in plain text; see the example in Figure 4.

ABAB # 1900 # J
Tvá lod’ jde po vysokém moři,
v ně brázdu jako střı́bro reje,
svou přı́du v modré vlny nořı́
a bok svůj pěnné do peřeje.

Figure 4: Example of a strophe using the BASIC model in-
put format.

VERSE PAR While the initial approach is promising, in-
sights from the GPoet-2 article (Lo, Ariss, and Kurz 2022)
indicate that relying solely on raw attention may be insuf-
ficient, necessitating reverse modeling to achieve rhyming
verses. In response to this, we propose the inclusion of a
set of verse parameters, syllable count and ending hint, as
a prefix to each line, to provide more guidance to the at-
tention mechanism in individual verses. The ending hint is
the Czech poetic clausula according to the rhyming rules of
Czech poetry and is the part of the verse that should match
its rhytmic partner (Ibrahim, Plecháč, and Řı́ha 2013). This
modification is reflected in the example in Figure 5.

ABAB # 1900 # J
9 # oři # Tvá lod’ jde po vysokém moři,
9 # eje # v ně brázdu jako střı́bro reje,
9 # ořı́ # svou přı́du v modré vlny nořı́
9 # eje # a bok svůj pěnné do peřeje.

Figure 5: Example of a strophe using the VERSE PAR
model input format with verse parameters.

METER VERSE Building upon our prior considerations,
and given the availability of data for the meter of each in-
dividual verse, we recognize the potential value in incor-
porating meter information for each verse individually in-
stead of the full strophe. This additional input, which can
vary between sets of rhyming verses (e.g., from iamb to
trochee), provides enhanced guidance to the attention mech-
anism, particularly in achieving a clear separation of non-
rhyming verses. The resulting input scheme is illustrated in
Figure 6.

ABAB # 1900
J # 9 # oři # Tvá lod’ jde po vysokém moři,
J # 9 # eje # v ně brázdu jako střı́bro reje,
J # 9 # ořı́ # svou přı́du v modré vlny nořı́
J # 9 # eje # a bok svůj pěnné do peřeje.

Figure 6: Example of a strophe using the METER VERSE
model input format with meter as verse parameter.

Tokenization
We recognize tokenization as a critical element in our task,
given our emphasis on formal aspects (rhyming, meter)
rather than meaning, as well as our explicit inclusion of
functional tokens specifying desired properties (rhyming,
meter, year) interleaved with actual language tokens. We
embarked on a series of experiments to address the follow-
ing objectives:
• Distinguish between actual language tokens and func-

tional tokens.
• Segment words into tokens that aid in guiding meter and

inflection.
• Facilitate the swapping of small chunks to encourage fit-

ting the formal requirements and the generation of neolo-
gisms.
The standard approach in current NLP is subword tok-

enization, such as BPE (Sennrich, Haddow, and Birch 2016).
Given the nature of the Czech language with its reliance on
inflection, our focus on formal properties, and the incorpo-
ration of neologisms in poetry, particularly for rhyming pur-
poses, we also drew inspiration from approaches involving
the separation of words into syllables (Oncevay and Rojas
2020) or even individual characters (Xue et al. 2022).

Therefore, we experiment with the following four tok-
enization approaches:
BASE The original tokenizer of the
czech-gpt2-oscar model (Chaloupský 2022)
which we use.

OUR A BPE tokenizer trained on our dataset.
SYLLABLE Splitting the text into syllables, using the

Sekacek tool (Macháček 2014).2

UNICODE Splitting the text into individual characters.
The benefit of training a standard BPE tokenizer on our

dataset is that it can learn to keep functional annotations as
single tokens, as shown in Figure 7.3

INPUT: # ABAB # 1900
BASE: [#] [AB] [AB] [#] [1900]
OUR: [#] [ABAB] [#] [1900]
SYLL.: [#] [ABAB] [#] [1900]
UNIC.: [#][][A][B][A][B][][#][][1][9][0][0]

Figure 7: Tokenization of strophe parameters.

Obviously, SYLLABLE and UNICODE encode se-
quences into larger amounts of shorter tokens; see Figure 8.
This allows the model to make fine generation decisions
with a higher granularity, so that it can better fit the pre-
scribed formal properties (meter, rhyme). It also makes pro-
duction of neologisms easier. However, as mentioned by
ByGPT5 article (Belouadi and Eger 2023), the time required
for model training and inference increases accordingly.

2https://github.com/Gldkslfmsd/sekacek
3Of course, this is only effective for annotations that are suffi-

ciently frequent in our dataset.

Tokenizer Model parameters
BASE 137M
OUR 137M
SYLLABLE 105M
UNICODE 86M

Table 1: Sizes of the fine-tuned models, depending on the
tokenization approach.

INPUT: a v duchu
BASE: [a] [v] [duchu]
OUR: [a] [v] [duchu]
SYLLABLE: [a] [v] [duch] [u]
UNICODE: [a] [] [] [v] [] [d] [u] [c] [h] [u]

Figure 8: Tokenization of verse text.

Training the Models
As our base model, we have selected
czech-gpt2-oscar by Chaloupský (2022),4 a GPT-2-
small model (Radford et al. 2019) trained on the Czech part
of the OSCAR dataset (Suárez, Romary, and Sagot 2020).
This selection was made based on the low availability of
Czech models.

We then fine-tune the model on our dataset, using one of
the three data formats (see Data Format Section) and one of
the four tokenizers (see Tokenization Section).

We explore two different approaches of training the model
for the selected data format. We either simply train the
model using only the selected data format, or we first pre-
train the model using the METER VERSE format, and then
fine-tune it using the BASIC or VERSE PAR format; the
motivation for this approach is that each of these formats
can be regarded as a subset of the METER VERSE format.

For our loss computation, we employ the conventional
Cross Entropy Loss, with our input serving as labels as well.
Since our model is GPT-based, we avoid using input mask-
ing because GPT-2 is trained more effectively through next
word prediction, which is the preferred training method.

For using our custom tokenizers, we have followed the
model recycling approach (de Vries and Nissim 2021),
which utilizes overlap in current and target vocabularies to
jump-start the model by keeping large parts of the embed-
ding matrix.

The sizes of the resulting fine-tuned models can be seen
in Table 1. As SYLLABLE and UNICODE tokenizers have
smaller vocabularies, the resulting models are smaller; on
the other hand, the data format has no effect on the model
size.

Text Generation
To further enhance the model’s proficiency in adhering to
strophe and verse parameters at inference, we propose an
alternative approach to the standard text generation method.

4https://huggingface.co/lchaloupsky/
czech-gpt2-oscar

https://github.com/Gldkslfmsd/sekacek
https://huggingface.co/lchaloupsky/czech-gpt2-oscar
https://huggingface.co/lchaloupsky/czech-gpt2-oscar

Basic Decoding The prompt consists of the first line
which specifies the strophe parameters. Then, generation
proceeds token by token until the end-of-sequence token is
generated.

Forced Generation This iterative method involves exam-
ining an already accepted rhyme scheme and compelling
verse parameters for lines intended to rhyme. After generat-
ing each verse, the generation process stops, and if the next
verse to be generated should rhyme with an already gen-
erated verse, then the verse parameters are copied (forced)
as the prefix for the next line before resuming the genera-
tion process, as illustrated in Figure 9. More formally, if the
model has already generated meter X, syllable count Y and
ending hint Z as annotations for a verse connected to char-
acter A in the rhyme scheme, all other verses linked to char-
acter A will be prompted with verse parameters X # Y # Z #.
Obviously, this approach is only applicable for VERSE PAR
and METER VERSE input formats.

AABB # 1900
T # 8 # ánı́ # A když přijde z nenadánı́,
T # 8 # ánı́ # ...

Figure 9: Forced generation. According to the AABB
rhyme scheme, the second verse should rhyme with the first
verse. Thus, after generating the first verse, the verse param-
eters for the second verse (underlined) are forced, i.e. copied
from the first verse (in bold).

Validators
Comprehensive automated quality evaluation of text gener-
ation is hard. In our setting, we have decided to focus on
a narrower subtask, mostly evaluating formal quality of the
generated poetry. Other approaches exist (Plecháč 2018),
but given the large annotated dataset at our disposal, we
can train validator models directly on the dataset. Specifi-
cally, we train classifiers that label strophes with the rhyme
scheme, meter, and year. We can then simply evaluate
whether the predicted value matches the value specified on
the input.

The general approach we take is to train a softmax clas-
sifier attached to the class token representation in a masked
language model; we use either RoBERTa (Liu et al. 2019),
or its Czech version, RobeCzech (Straka et al. 2021).

Validator Input Preprocessing
Syllabification As syllables are useful text units when
concerned with formal properties of poetry, we again exper-
iment with splitting the input into syllables before feeding it
into the RoBERTa/RobeCzech model. This approach could
simplify the tasks of rhyme and meter validators, as they no
longer need to guess word partitioning. However, the effec-
tiveness of syllabification for the year validator is uncertain.
Understanding themes requires both grasping the employed
metrical and rhyming structures, as well as discerning the
semantic meaning, where syllabification could cause a par-
tial disruption.

Base model Input type Accuracy
robeczech-base Syllable 94.68 %
robeczech-base Raw 48.06 %

roberta-base Syllable 96.62 %
roberta-base Raw 96.96 %
Baseline 18.65 %

Table 2: Rhyme scheme prediction validator.

Base model Input type Accuracy
robeczech-base Syllable 89.90 %
robeczech-base Raw 90.03 %
robeczech-base Contextual 94.94 %

roberta-base Syllable 89.12 %
roberta-base Raw 89.28 %
roberta-base Contextual 94.34 %

Baseline 48.52 %
Upper bound 95.30 %

Table 3: Meter prediction validator. Accuracy of meter pre-
diction for each verse.

Contextualization While the meter is a fundamental verse
parameter, poets usually do not follow it exactly. The result-
ing sequence of weak and strong syllables, called rhythm,
could thereafter be argued to fulfill multiple meters. To pre-
vents this, the context of the whole verse is taken into ac-
count, as it is uncommon to employ multiple meters in a
classical rhythmic strophe.

Validators Accuracies

Using the train and test parts of the dataset, we train and
evaluate validators for rhyme scheme prediction (Table 2),
meter prediction (Table 3) and publishing year prediction
(Table 4). We also report the Baseline as the most com-
mon class, and for meter, we have included an Upper bound
based on the accuracy of the semi-automatic annotation in
the dataset (Plecháč 2016). We measured statistical signifi-
cance of the results using Random Permutation Test (Gandy
2009) with 100 repetitions on the test set.

Base model Input type Accuracy
robeczech-base Syllable 42.55 %
robeczech-base Raw 47.45 %
roberta-base Syllable 40.97 %
roberta-base Raw 43.15 %

Baseline 31.33 %

Table 4: Year of publishing prediction validator.

Syllabification Pre-splitting the input into syllables aids
the RobeCzech validator in classifying rhyme scheme, but
was significantly harmful for the year classification. Year
classification deterioration aligns with our expectations, as
the year of publishing is more closely tied to the subject of
the poem, a facet disrupted by the syllabification process.

Contextualization Inclusion of the whole strophe in me-
ter prediction showed great improvement, with the result-
ing validator almost achieving the set upper bound. Adding
syllabification to contextualization had negligible effect on
the accuracy, we therefore report only accuracies with non-
syllabified (raw) text. The resulting model utilizing contex-
tualization was significantly better than counterparts that did
not implement this preprocessing step.

Rhyme scheme and meter prediction The validators on
syllabified input achieve very high accuracies, reaching or
approaching the maximum accuracies achievable on the
dataset, as the semi-automated annotation of the dataset
is not perfect and contains errors. The accuracies of
RobeCzech and RoBERTa are close; RoBERTa is signifi-
cantly better than RobeCzech for rhyme prediction, but the
difference is not statistically significant for meter prediction.

Year prediction Using RobeCzech leads to significantly
higher accuracies than using RoBERTa. We believe this is
because this task also requires understanding the semantics
of the text, whereas the other tasks focus on the formal prop-
erties of the text, and thus the model pre-trained on Czech
data has a notable advantage. Still, all the accuracies on this
task are rather low, and we do not deem them sufficient for
using this validator to reliably evaluate the results of poetry
generation.

Token granularity In the context of rhyme scheme, we
have observed that the effect of syllabification is less pro-
nounced for RoBERTa than for RobeCzech. We posit that
this is because RoBERTa is not pre-trained on Czech texts
and thus its subword tokenization needs to split the text into
shorter tokens to represent Czech words.

Tokenizer Chars per token
roberta-base 1.50
robeczech-base 2.72

Table 5: Tokenizer influence on token granularity

We evaluated the model tokenizers by analyzing 10,000
verses and calculating the average number of characters per
token. As showcased in Table 5, RoBERTa already tok-
enizes the text more granularly, resulting in further syllabifi-
cation having a weaker effect than in the case of RobeCzech.

Model Validation
Through our validators, we can evaluate the poetry genera-
tion model’s adherence to the rhyme scheme and meter. In
addition to these metrics, we also assess conformity to the
number of syllables and the ending hint for each verse as
generated (or forced) in the prefix annotation at the start of
the line. We also measure the uniqueness of the generated
syllables as an indicator for non-repetitiveness. Altogether,
we compute these characteristics:

Num syl Proportion of verses with number of syllables
matching the prefix annotation.

End acc Proportion of verses with ending hint matching the
prefix annotation.

Unique Ratio of unique syllables among all syllables in the
strophe; the optimal value here is not 100%, but rather the
value observed on the true data in the dataset (87.9%).

Rhyme acc Proportion of strophes with rhyme scheme
matching the first line annotation.

Meter acc Proportion of strophes with the meter of all
verses matching the annotation.

We use the annotations of the strophes in the test part of
our dataset as inputs (as in Figure 10), and evaluate the gen-
erated outputs (now disregarding the actual texts of the stro-
phes in the test dataset).

AXAX # 1880
J # ...

Figure 10: Example of an input prompt using ME-
TER VERSE format.

Influence of Data Format
We first evaluate the effect of the data format (see Data For-
mat Section), while using the BASE tokenizer and Basic text
generation.

The model was either trained using only the selected data
format for 16 epochs, or it was first pretrained using ME-
TER VERSE format for 16 epochs and then fine-tuned for
further 4 epochs using the selected format.

Table 6 demonstrates that incorporating the individ-
ual verse parameters using either VERSE PAR or ME-
TER VERSE format significantly contributes to the model
performance, particularly in terms of adhering to the rhyme

Data format Pre-train Rhyme acc Meter acc
BASIC False 49.6 % 94.4 %
BASIC True 41.1 % 92.2 %

VERSE PAR False 89.8 % 94.4 %
VERSE PAR True 88.3 % 94.6 %

METER VERSE 86.8 % 94.6 %

Table 6: Influence of Data Format on accuracy.

Tokenizer Generation Num syl End acc Unique Rhyme acc Meter acc
BASE Basic 91.8 % 94.6 % 85.7 % 86.5 % 94.5 %
BASE Forced 92.3 % 95.0 % 84.9 % 86.9 % 93.8 %

OUR Basic 91.0 % 95.4 % 83.3 % 80.6 % 94.6 %
OUR Forced 90.6 % 95.4 % 83.6 % 80.6 % 94.8 %

SYLLABLE Basic 94.4 % 95.2 % 85.6 % 88.7 % 94.6 %
SYLLABLE Forced 93.8 % 95.3 % 85.0 % 87.7 % 94.2 %

UNICODE Basic 91.1 % 91.2 % 89.7 % 73.8 % 93.5 %
UNICODE Forced 97.8 % 98.0 % 88.8 % 94.0 % 94.0 %

Target 100 % 100 % 87.9 % 100 % 100 %

Table 7: Validation results for the final models.

scheme. The inclusion of more detailed meter parame-
ters in METER VERSE scheme slightly enhances the mod-
els meter accuracy. Furthermore, the performance with
VERSE PAR format does not change when the model is first
pre-trained using the METER VERSE format. Notable de-
crease was observed using the BASIC format. We posit that
it is the result of large difference between BASIC and ME-
TER VERSE Input.

Final Validation
Finally, we train four models, exploring all the presented
tokenizers (BASE, OUR, SYLLABLE, UNICODE), us-
ing the METER VERSE data format, and training for 16
epochs. We generate strophes using either Basic decoding
or Forced generation.

As shown in Table 7, the best results are obtained by us-
ing the UNICODE tokenizer and Forced generation, sur-
passing the other setups. This underscores the viability of
character-level large language models, particularly in mor-
phological and phonetic tasks.5 For meter accuracy, all of
the setups showed high performance, with statistically in-
significant differences between the individual setups.

Validation Results Analysis
Forced Generation Our proposed approach to generation
significantly uplifted the performance of UNICODE tok-
enizer model, making it the best model in most categories.
We posit that the improvements in rhyme scheme accuracy
can be attributed to the fact that Forced generation con-
strains the model to generate matching verses with the same
ending hint, which plays role in rhyming. This constraint
is also the reason behind the usual decrease in meter accu-
racy and unique syllables ratio. The enforced ending hint
is not unique, and it compels the model to generate proper
meter inclusive of it, which, especially with single-syllable
unstressed words, can pose a challenge.

5On the other hand, we expect that character-level processing
has a negative effect on semantic quality of the generated texts;
however, we have not evaluated semantic quality in this paper and
leave this for future work.

Tokenizer Chars per token
BASE 3.37
OUR 3.77
SYLLABLE 2.43
UNICODE 1.00

Table 8: Tokenizer influence on token granularity

BASE, SYLLABLE, UNICODE tokenizer Both BASE
and SYLLABLE tokenizer performed well, with their rhyme
scheme accuracies significantly better than model utilizing
OUR tokenizer. The difference between BASE and SYL-
LABLE was not statistically significant in any metric. UNI-
CODE tokenizer model was significantly the worst when
Forced generation was not utilized. On the contrary, with
the usage of Forced generation it was significantly the best
model in Number of syllables, Ending hint accuracy and
Rhyme scheme accuracy.

OUR tokenizer The performance of OUR tokenizer was
the least satisfactory among the considered options with the
resulting rhyme scheme accuracy being significantly worse
that all remaining models. We contend that this can be at-
tributed to the fact that OUR tokenizer was trained solely
on poetry data, comprising only 2 GB in size. The resulting
number of characters per token is excessively large, render-
ing it less efficient for poetry generation. Unlike SYLLA-
BLE or UNICODE tokenizer, OUR tokenizer lacks the ca-
pability for syllable or character substitution. To substantiate
this observation, we conducted the same analysis as for val-
idator tokenizers (see Token granularity Section, Table 5).
In Table 8, we can observe that OUR tokenizer encodes 3.77
characters per token, which is the highest value among all to-
kenizers. This characteristic diminishes flexibility, restrict-
ing words to be represented by only 1 token.

Year Accuracy
Driven by curiosity, we also employed our validator to as-
sess the probable publishing year accuracy, which is our
proxy for poetic style; keeping in mind that this validator is

Tokenizer Year accuracy
BASE 41.1 %
OUR 41.2 %
SYLLABLE 41.1 %
UNICODE 38.6 %

Table 9: Year accuracy as reported by the validator model.
For each tokenizer, we report the best result observed among
all investigated configurations. Note that the year validator
is highly unreliable.

highly unreliable as its accuracy is rather low. Our hypoth-
esis was grounded in the belief that OUR tokenizer, with its
capacity to tokenize entire words in a single token, might
excel in tasks oriented more towards semantic meaning.

Given the high unreliability of the used validator, the re-
sults showcased in Table 9 do not provide much of a mean-
ing. The UNICODE tokenizer model is the only one, that
seems to showcases lower semantic understanding of the
strophes. This was expected as UNICODE tokenizer trades
flexibility as evident by Table 8 and collaborated by Table 7.

Conclusion
In this work, we proposed and implemented a novel com-
prehensive approach to poetic strophe generation, focusing
on formal qualities of poetry. We trained and evaluated our
models using a corpus of Czech poetry.

Our results reveal that enriching the plain text with in-
terleaved explicit annotations (number of syllables, verse
ending hint) significantly helps to better guide the model.
We have also demonstrated a superior rhyming accuracy of
character tokenization compared to standard subword tok-
enization methods when specific constraints are followed by
Forced generation.

In future work, we want to expand our generation to full
poems with strophes that are thematically and schematically
connected.

Ethical Considerations
A topic of active discussion is whether it is ethical (or even
legal) to use various kinds of data for training large language
models, e.g. without explicit consents of the data authors. In
our work, we train the language model on a dataset com-
posed exclusively of poems in the public domain (due to the
authors having died more than 70 years ago), which we con-
sider to be non-problematic.

The base GPT-2 model, which we further fine-tune on that
dataset, was trained on various kinds of data, including po-
tentially problematic data. However, our approach can be in
principle applied to any base model; thus, if there is ever a
consensus that it is not ethical to use this base model, our
approach can be repeated and reevaluated using any other
base model.

It is becoming the norm (and may be soon required by
laws, such the EU AI Act) to label automatically generated
works as such, e.g. to avoid unintentional spreading of mis-

information. To this end, we make sure to always label all
our generated poems as automatically generated.

Limitations
As any transformer model, our solution grapples with sub-
stantial computational complexity (Vaswani et al. 2017),
necessitating the use of powerful GPUs (A40 40GB, A100
40GB, H100 80GB) for effective training.

An inherent challenge arises from the use of multiple tok-
enization techniques, potentially impacting the scalability of
next strophe generation. Notably, the UNICODE tokenizer
struggles to retain context across two verses, posing a risk of
losing crucial information.

Another issue stems from data distributions, as illustrated
in Figures 2a and 2b. If not prompted appropriately, the
model defaults to a rhyme scheme of ABAB and a meter
of iamb. This default behavior is problematic, particularly
considering that the model is likely incapable of generating
most of the 218 rhyme schemes appearing in the dataset.
Regarding meter, only iamb, trochee, and free-verse are re-
liably generated, with the remaining 6 typically defaulting
to iamb.

With our inability to observe if year of publishing is fol-
lowed (Table 4), it remains uncertain whether the model
gains any meaningful information from this parameter.

Lastly, we intentionally disregarded the meaning in po-
ems and notably simplified our measures around strophe
uniqueness. Generated verses tend to repeat entire words
and syllables to create the illusion of rhyming, whereas a
more preferable approach would involve generating sylla-
bles with close phonetics.

Acknowledgments
The work has been partially supported by the EduPo grant
(TQ01000153 Generating Czech poetry in an educative
and multimedia environment), which is co-financed from
the state budget by the Technology agency of the Czech
Republic under the SIGMA DC3 Programme. Computa-
tional resources were provided by the e-INFRA CZ project
(ID:90254), supported by the Ministry of Education, Youth
and Sports of the Czech Republic. The work described
herein has also been using data, tools and services pro-
vided by the LINDAT/CLARIAH-CZ Research Infrastruc-
ture (https://lindat.cz), supported by the Ministry of Educa-
tion, Youth and Sports of the Czech Republic (Project No.
LM2023062).

References
[Belouadi and Eger 2023] Belouadi, J., and Eger, S. 2023.
ByGPT5: End-to-end style-conditioned poetry genera-
tion with token-free language models. arXiv preprint
arXiv:2212.10474.

[Chaloupský 2022] Chaloupský, L. 2022. Automatic genera-
tion of medical reports from chest X-rays in Czech. Master’s
thesis, Charles University.

[de Vries and Nissim 2021] de Vries, W., and Nissim, M.
2021. As good as new. how to successfully recycle English

GPT-2 to make models for other languages. In Zong, C.;
Xia, F.; Li, W.; and Navigli, R., eds., Findings of the Asso-
ciation for Computational Linguistics: ACL-IJCNLP 2021,
836–846. Online: Association for Computational Linguis-
tics.

[Gandy 2009] Gandy, A. 2009. Sequential implementa-
tion of monte carlo tests with uniformly bounded resam-
pling risk. Journal of the American Statistical Association
104(488):1504–1511.

[Ibrahim, Plecháč, and Řı́ha 2013] Ibrahim, R.; Plecháč, P.;
and Řı́ha, J. 2013. Úvod do teorie verše. Akropolis, Praha.

[Liu et al. 2019] Liu, Y.; Ott, M.; Goyal, N.; Du, J.; Joshi,
M.; Chen, D.; Levy, O.; Lewis, M.; Zettlemoyer, L.; and
Stoyanov, V. 2019. Roberta: A robustly optimized bert
pretraining approach. arXiv preprint arXiv:1907.11692.

[Liu et al. 2023] Liu, Y.; Han, T.; Ma, S.; Zhang, J.; Yang,
Y.; Tian, J.; He, H.; Li, A.; He, M.; Liu, Z.; Wu, Z.; Zhao,
L.; Zhu, D.; Li, X.; Qiang, N.; Shen, D.; Liu, T.; and Ge,
B. 2023. Summary of ChatGPT-related research and per-
spective towards the future of large language models. Meta-
Radiology 1(2):100017.

[Lo, Ariss, and Kurz 2022] Lo, K.-L.; Ariss, R.; and Kurz, P.
2022. GPoeT-2: A GPT-2 based poem generator. arXiv
preprint arXiv:2205.08847.

[Macháček 2014] Macháček, D. 2014. Sekacek. https:
//github.com/Gldkslfmsd/sekacek.

[Oncevay and Rojas 2020] Oncevay, A., and Rojas, K. R.
2020. Revisiting neural language modelling with syllables.
arXiv preprint arXiv:2010.12881.

[OpenAI 2023] OpenAI. 2023. GPT-4 technical report.
arXiv preprint arXiv:2303.08774.

[Plecháč 2018] Plecháč, P. 2018. A Collocation-Driven
Method of Discovering Rhymes (in Czech, English, and
French Poetry). Cham: Springer International Publishing.
79–95.

[Plecháč and Kolár 2015] Plecháč, P., and Kolár, R. 2015.
The corpus of Czech verse. Studia Metrica et Poetica
2(1):107–118.

[Plecháč 2016] Plecháč, P. 2016. Czech verse processing
system KVĚTA – phonetic and metrical components. Glot-
totheory 7(2):159–174.

[Radford et al. 2019] Radford, A.; Wu, J.; Child, R.; Luan,
D.; Amodei, D.; and Sutskever, I. 2019. Language mod-
els are unsupervised multitask learners. In OSDI’04: Sixth
Symposium on Operating System Design and Implementa-
tion, 137–150.

[Sennrich, Haddow, and Birch 2016] Sennrich, R.; Haddow,
B.; and Birch, A. 2016. Neural machine translation of rare
words with subword units. In Erk, K., and Smith, N. A.,
eds., Proceedings of the 54th Annual Meeting of the Asso-
ciation for Computational Linguistics (Volume 1: Long Pa-
pers), 1715–1725. Berlin, Germany: Association for Com-
putational Linguistics.

[Spithourakis and Riedel 2018] Spithourakis, G., and
Riedel, S. 2018. Numeracy for language models: Eval-
uating and improving their ability to predict numbers. In

Proceedings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers).
Association for Computational Linguistics.

[Straka et al. 2021] Straka, M.; Ná plava, J.; Straková, J.; and
Samuel, D. 2021. RobeCzech: Czech RoBERTa, a mono-
lingual contextualized language representation model. In
Text, Speech, and Dialogue. Springer International Publish-
ing. 197–209.

[Suárez, Romary, and Sagot 2020] Suárez, P. J. O.; Romary,
L.; and Sagot, B. 2020. A monolingual approach to contex-
tualized word embeddings for mid-resource languages. In
Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics. Association for Computa-
tional Linguistics.

[Touvron et al. 2023] Touvron, H.; Martin, L.; Stone, K.; Al-
bert, P.; Almahairi, A.; Babaei, Y.; Bashlykov, N.; Batra,
S.; Bhargava, P.; Bhosale, S.; Bikel, D.; Blecher, L.; Ferrer,
C. C.; Chen, M.; Cucurull, G.; Esiobu, D.; Fernandes, J.;
Fu, J.; Fu, W.; Fuller, B.; Gao, C.; Goswami, V.; Goyal, N.;
Hartshorn, A.; Hosseini, S.; Hou, R.; Inan, H.; Kardas, M.;
Kerkez, V.; Khabsa, M.; Kloumann, I.; Korenev, A.; Koura,
P. S.; Lachaux, M.-A.; Lavril, T.; Lee, J.; Liskovich, D.; Lu,
Y.; Mao, Y.; Martinet, X.; Mihaylov, T.; Mishra, P.; Moly-
bog, I.; Nie, Y.; Poulton, A.; Reizenstein, J.; Rungta, R.; Sal-
adi, K.; Schelten, A.; Silva, R.; Smith, E. M.; Subramanian,
R.; Tan, X. E.; Tang, B.; Taylor, R.; Williams, A.; Kuan,
J. X.; Xu, P.; Yan, Z.; Zarov, I.; Zhang, Y.; Fan, A.; Kam-
badur, M.; Narang, S.; Rodriguez, A.; Stojnic, R.; Edunov,
S.; and Scialom, T. 2023. Llama 2: Open foundation and
fine-tuned chat models. arXiv preprint arXiv:2307.09288.

[Vaswani et al. 2017] Vaswani, A.; Shazeer, N.; Parmar, N.;
Uszkoreit, J.; Jones, L.; Gomez, A. N.; Kaiser, L.; and Polo-
sukhin, I. 2017. Attention is all you need. arXiv preprint
arXiv:1706.03762v1.

[Xue et al. 2022] Xue, L.; Barua, A.; Constant, N.; Al-Rfou,
R.; Narang, S.; Kale, M.; Roberts, A.; and Raffel, C. 2022.
ByT5: Towards a token-free future with pre-trained byte-to-
byte models. arXiv preprint arXiv:2105.13626.

https://github.com/Gldkslfmsd/sekacek
https://github.com/Gldkslfmsd/sekacek

	Introduction
	Contributions

	Parameters of Poetry
	Rhyme
	Meter

	Dataset
	Dataset Preprocessing
	Dataset Makeup

	Data Format
	Tokenization
	Training the Models
	Text Generation
	Validators
	Validator Input Preprocessing
	Validators Accuracies

	Model Validation
	Influence of Data Format
	Final Validation
	Validation Results Analysis
	Year Accuracy

	Conclusion
	Ethical Considerations
	Limitations
	Acknowledgments

