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Abstract

This paper summarizes the second edition of
the shared task on multilingual coreference res-
olution, held with the CRAC 2023 workshop.
Just like last year, participants of the shared
task were to create trainable systems that de-
tect mentions and group them based on identity
coreference; however, this year’s edition uses
a slightly different primary evaluation score,
and is also broader in terms of covered lan-
guages: version 1.1 of the multilingual col-
lection of harmonized coreference resources
CorefUD was used as the source of training
and evaluation data this time, with 17 datasets
for 12 languages. 7 systems competed in this
shared task.

1 Introduction

The idea of a shared task focused on resolving
coreference for multiple languages goes back to
SemEval-2010 (Recasens et al., 2010) with seven
languages and CoNLL-2012 (Pradhan et al., 2012)
with three languages included. The amount of lan-
guages has been extended to 10 languages (with
multiple datasets for some of them) in the Mul-
tilingual Coreference Resolution Shared Task at
CRAC 2022 (Žabokrtský et al., 2022), making use
of the CorefUD 1.0 collection (Nedoluzhko et al.,
2022). This paper reports on the second edition
of this shared task organized in 2023,1 associated
with CRAC again.

In brief, the most important improvements in this
year’s edition are the following. First, the shared

1https://ufal.mff.cuni.cz/corefud/
crac23

task employs a newer version of the CorefUD col-
lection. CorefUD 1.1 contains updated versions
of 13 datasets (for 10 languages) already included
in CorefUD 1.0, one new dataset for (already in-
cluded) Hungarian, and 3 new datasets for newly
added languages: 2 for Norwegian and 1 for Turk-
ish.

Second, the original morpho-syntactic features
in the development and test sets were replaced by
the output of UDPipe 2 (Straka, 2018) to make the
evaluation scheme more realistic (with gold fea-
ture values being available, coreference prediction
might be simplified to some extent, compared to
real-world application scenarios).

Third, we use the head-matching approach for
mentions in the primary score in this year’s edi-
tion instead of partial matching. Last year, partial
matching led several teams to optimize their pre-
dicted mentions by reducing them to their syntactic
heads, thereby losing the information about full
mention spans.

The remainder of the paper is structured as fol-
lows. Section 2 focuses on changes of this shared
task’s data compared to the previous edition. Sec-
tion 3 explains the evaluation metrics – the pri-
mary score as well as the supplementary ones –
employed in the shared task. Section 4 describes
the baseline system and the 7 participating systems.
Section 5 summarizes the results. Section 6 con-
cludes.

2 Datasets

Like the previous year, the shared task draws its
training and evaluation data from the public part of

https://ufal.mff.cuni.cz/corefud/crac23
https://ufal.mff.cuni.cz/corefud/crac23
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CorefUD dataset docs sents words zeros entities avg. len. non-singletons

Catalan-AnCora 1298 13,613 429,313 6,377 18,030 3.5 62,417
Czech-PCEDT 2312 49,208 1,155,755 35,844 52,721 3.3 168,138
Czech-PDT 3165 49,428 834,720 22,389 78,747 2.4 154,983
English-GUM 195 10,761 187,416 99 27,757 1.9 32,323
English-ParCorFull 19 543 10,798 0 202 4.2 835
French-Democrat 126 13,057 284,883 0 39,023 2.0 46,487
German-ParCorFull 19 543 10,602 0 259 3.5 896
German-PotsdamCC 176 2,238 33,222 0 3,752 1.4 2,519
Hungarian-KorKor 94 1,351 24,568 1,988 1,134 3.6 4,103
Hungarian-SzegedKoref 400 8,820 123,968 4,857 5,182 3.0 15,165
Lithuanian-LCC 100 1,714 37,014 0 1,224 3.7 4,337
Norwegian-BokmaalNARC 346 15,742 245,515 0 53,357 1.4 26,611
Norwegian-NynorskNARC 394 12,481 206,660 0 44,847 1.4 21,847
Polish-PCC 1828 35,874 538,885 470 127,688 1.5 82,804
Russian-RuCor 181 9,035 156,636 0 3,636 4.5 16,193
Spanish-AnCora 1356 14,159 458,418 8,112 20,115 3.5 70,663
Turkish-ITCC 24 4,733 55,341 0 690 5.3 3,668

Table 1: Data sizes in terms of the total number of documents, sentences, tokens, zeros (empty words), coreference
entities, average entity length (in number of mentions) and the total number of non-singleton mentions. Train/dev/test
splits of these datasets roughly follow 8/1/1 ratio. See Nedoluzhko et al. (2022) for details.

the CorefUD collection (Nedoluzhko et al., 2022),2

now in its latest release (1.1).3 There are 17
datasets for 12 languages (3 language families).
Compared to CorefUD 1.0, which was used in the
previous year of the shared task, there are 4 new
datasets and 2 new languages (1 new language fam-
ily): Hungarian KorKor, Norwegian NARC (Bok-
mål and Nynorsk versions), and Turkish ITCC.

CorefUD ensures that the datasets are unified
at the file format level: They use the CoNLL-U
format with extra annotation in the last column.4

The data have not been sufficiently harmonized
at the level of annotation guidelines (for example,
different datasets may have different rules for the
extent of a mention). Table 1 gives an overview of
the datasets and their sizes.

We follow the official train/dev/test splits of
CorefUD 1.1.

2.1 Updated Resources

The 13 datasets that were already available in
CorefUD 1.0 are introduced in Žabokrtský et al.
(2022). Instead of repeating the introduction here,
we focus on changes between CorefUD 1.0 and 1.1.

2https://ufal.mff.cuni.cz/corefud
3http://hdl.handle.net/11234/1-5053
4https://ufal.mff.cuni.cz/~popel/

corefud-1.0/corefud-1.0-format.pdf

Catalan-AnCora (ca_ancora) and Spanish-
AnCora (es_ancora): The 3LB section of the
AnCora treebank is omitted from CorefUD 1.1 be-
cause it does not contain coreference annotation.
Named entities that are not annotated for coref-
erence are omitted also in the remaining sections
(previously they appeared as singletons). There
are also some corrections in the LEMMA column
and in dependency relations; the arg and tem se-
mantic attributes from the original corpus are now
visible in the MISC column.

Czech-PCEDT (cs_pcedt) and Czech-PDT
(cs_pdt): Removed superfluous empty nodes (ze-
ros) #Rcp, #Cor and #QCor. Removed empty
nodes depending on the artificial root. Improved
guessing of pronominal forms for empty nodes,
fixed cases where conditional auxiliaries in multi-
word tokens are used to break mention spans. There
are also some improvements in morphological and
syntactic annotation. The tectogrammatical func-
tors from the original corpus are now visible in the
MISC column.

English-GUM (en_gum): new data from GUM
v9 (published in Universal Dependencies 2.12),
the total size increased from 164 to 187 thousand
words.

English-ParCorFull (en_parcorfull) and Ger-
man-ParCorFull (de_parcorfull): Morpho-

https://ufal.mff.cuni.cz/corefud
http://hdl.handle.net/11234/1-5053
https://ufal.mff.cuni.cz/~popel/corefud-1.0/corefud-1.0-format.pdf
https://ufal.mff.cuni.cz/~popel/corefud-1.0/corefud-1.0-format.pdf
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syntactic annotation updated using UD 2.10 models
for UDPipe 2. In addition, the conversion of the En-
glish data was fixed so that mentions are detected
even in invalid files.

French-Democrat (fr_democrat): Conversion
into CorefUD reimplemented, fixing multiple bugs.

German-PotsdamCC (de_potsdam), Hun-
garian-SzegedKoref (hu_szeged), Lithuanian-
LCC (lt_lcc), Polish-PCC (pl_pcc), and Russian-
RuCor (ru_rucor): Morpho-syntactic annotation
updated using UD 2.10 models.

2.2 New Resources

Hungarian-KorKor (hu_korkor) (Vadász, 2022)
contains texts from two sources: articles from Hun-
garian Wikipedia and texts from the Hungarian
website of the GlobalVoices news portal. Com-
pared to hu_szeged, the latter contains student
essays and news articles. Both corpora contain
zeros in subject, object, and possessor positions,
but the rules for their placement are not identical.
Moreover, the tagset of coreference and anaphora
relations are different as well.

Norwegian-BokmaalNARC and Norwegian-
NynorskNARC (no_bokmaalnarc, no_nynorsk-
narc) (Mæhlum et al., 2022) are based on parts
of the Norwegian Dependency Treebank (NDT),
which contains mostly news texts, but also govern-
ment reports, parliamentary transcripts, and blogs
in the two varieties of written Norwegian – Bokmål
and Nynorsk. Train/dev/test splits correspond to
those in the UD version of the NDT treebank.

Turkish-ITCC (tr_itcc) (Pamay and Eryiğit,
2018) is based on the Marmara Turkish Corefer-
ence Corpus, which in turn contains documents
from the METU Turkish Corpus. There is an over-
lap between ITCC and the UD Turkish IMST tree-
bank. The gold-standard morphosyntactic annota-
tion of sentences that occur in both datasets was
taken from IMST; the remaining sentences were
parsed by a model trained on IMST. Train/dev/test
split in the shared task follows that of CorefUD.5

The coreference annotation in this corpus is less ad-
vanced than in the other corpora in CorefUD: some
paragraphs completely lack coreference annotation,

5The CorefUD ITCC data split is not compatible with
the IMST treebank data split in Universal Dependencies 2.12
because the sentences were shuffled in IMST. An improved
version of IMST is prepared for UD 2.13 to be released in
November 2023: The original ordering of sentences from
METU is restored, sentence identifiers refer to METU, docu-
ment boundaries are marked and data split is made compatible
with ITCC.

in some other paragraphs coreference is annotated
only partially. Annotation of zeros is missing in
the current version.

2.3 Data pre-processing

For training and tuning purposes, we have provided
the participants with the train and dev sets as they
were released in CorefUD 1.1, i.e. with gold coref-
erence annotation for all datasets and manually an-
notated morpho-syntactic features for the datasets
that originally include them. However, in the dev
and test sets intended for evaluation (and submit-
ting), we have deleted the corefence annotation
and replaced original morpho-syntax features by
the outputs of UD 2.10 models for all datasets,
even those in which these features were originally
human-annotated. Although it makes the evalu-
ation setup more realistic, there is still room for
improvement as this has not affected zeros. Simi-
larly to last year’s edition, participants have been
given the input documents with zeros already re-
constructed.

3 Evaluation Metrics

Systems participating in the shared task are evalu-
ated with the CorefUD scorer.6 The primary evalu-
ation score is the CoNLL F1 score with singletons
excluded and using head mention matching, which
is a change to the last year’s edition, where partial
mention matching was used in the primary score.
In addition, we calculate several other supplemen-
tary scores to compare the shared task submissions.

Official scorer We use the CorefUD scorer to
evaluate participants’ submissions. It is built on
the Universal Anaphora (UA) scorer 1.0 (Yu et al.,
2022)7 taking advantage of the implementations of
all generally used coreferential measures with no
modifications. Additionally, the CorefUD scorer in-
troduces the implementation of head match and the
Mention Overlap Ratio (MOR; Žabokrtský et al.,
2022). It also supports matching of potentially dis-
continuous mentions and anaphor-level evaluation
of zeros. Naturally, it is also compatible with the
CorefUD 1.0 file format.8

6https://github.com/ufal/
corefud-scorer

7This in turn reimplements the official CoNLL-2012 scorer
(Pradhan et al., 2014).

8After the scorer for the shared task had been frozen, the
UA scorer 2.0 (Yu et al., 2023), which integrates most of the
new features from the CorefUD scorer, was released as a result
of the cooperation of the authors of the two scorers.

https://github.com/ufal/corefud-scorer
https://github.com/ufal/corefud-scorer
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Mention matching Within the CorefUD col-
lection, some datasets do not specify mention
spans in their original annotations (e.g. cs_pdt,
hu_korkor). In such datasets, a mention is primar-
ily identified by its head and loosely associated
with a dependency subtree rooted in this head. Ad-
ditionally, in other datasets, it can be challenging to
precisely define mention boundaries, particularly
when mentions involve embedded clauses, long de-
tailed specifications, etc. On the other hand, some
of the original sources from CorefUD do not anno-
tate mention heads at all (e.g. de_potsdam, lt_lcc).
Consequently, CorefUD addresses this issue by
specifying both the mention span and its head for
each mention in all its datasets. While mention
spans are derived using the dependency tree only if
they are not present in the original source, mention
heads are always determined from the tree9 using
the Udapi block corefud.MoveHead.10

The availability of both spans and heads in gold
annotation allows for various possible ways of men-
tion matching in the evaluation. Last year, the
participants were asked to predict only the span
boundaries in order to keep the task simple. To
compensate for the drawbacks of exact matching
(i.e., precise matching of the full span), we pro-
posed the partial mention matching method and
used it also in the primary score. A partial match
of a predicted mention to a gold mention is found
if all its words are included in the gold mention and
one of them is the gold head. Nevertheless, this ap-
proach appeared to be problematic. It encouraged
some participants to post-process their predictions
by reducing the full mention spans to the head word
only. First, since not all the participants applied
this post-processing, it made the comparison of the
participants’ submissions slightly unfair. To rec-
tify this imbalance, we evaluated the submissions
also with a head match, deriving the mention heads
automatically using the same method as for the
gold spans. More importantly, forced shrinkage
of predicted mention spans performed by some of
the teams resulted in loss of the original mention

9Note that some datasets label a semantic head (single
word) or a minimal span (multiple words possible, e.g. in
ARRAU, Uryupina et al., 2020), i.e., a unit that carries the
most crucial semantic information, instead. Nedoluzhko et al.
(2021) have shown though that heads labeled in coreference
annotation most often correspond to heads in a dependency
tree.

10https://github.com/udapi/
udapi-python/blob/master/udapi/block/
corefud/movehead.py

spans produced by their systems. Consequently,
such submissions failed in the evaluation with the
exact match.

For this year’s edition, we decided to use head
match in the primary metric. Two mentions are
considered matching if their heads correspond to
identical tokens. If there are multiple gold or pre-
dicted mentions with the same head, full spans
are taken into account but only to disambiguate
between multiple mentions with the same head.
Otherwise, full mention spans are ignored.

Therefore, the participants were expected to pre-
dict mention heads in their submissions. However,
due to the disambiguation rules we encouraged the
participants to predict the mention span boundaries
as well. In addition, their presence allows us to
evaluate the systems with respect to exact match-
ing as one of the supplementary scores.

Note that the participants were also free to use
the Udapi block corefud.MoveHead in order
to derive the mention head from the dependency
tree, if their systems were not able to predict the
heads by their own means.11

Singletons New additions to the CorefUD collec-
tion have not altered the dominance of the datasets
without the annotation of singletons, i.e., entities
comprising only a single mention. We thus keep
the setup from the last year’s edition and calculate
the primary score excluding potential singletons in
both gold and predicted coreference chains.

Primary score As is usual for coreference res-
olution tasks, we employed the CoNLL F1 score
(Denis and Baldridge, 2009; Pradhan et al., 2014)
as the primary evaluation score. It is an unweighted
average of the F1 scores of three coreference met-
rics: MUC (Vilain et al., 1995), B3 (Bagga and
Baldwin, 1998) and CEAF-e (Luo, 2005), each
adopting a different view on coreference rela-
tions, namely link-based, mention-based and entity-
based, respectively. A single primary score provid-
ing a final ranking of participating submissions is
a macro-average over all datasets in the CorefUD
test collection.

Supplementary scores In addition to the primary
CoNLL F1 score, we calculate alternative versions
of this metric using different ways of mention
matching: partial-match and exact-match. Note

11All of the participants used this Udapi block for predicting
heads (or another method with identical results on the test set).

https://github.com/udapi/udapi-python/blob/master/udapi/block/corefud/movehead.py
https://github.com/udapi/udapi-python/blob/master/udapi/block/corefud/movehead.py
https://github.com/udapi/udapi-python/blob/master/udapi/block/corefud/movehead.py
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that the partial-match setup was used as the pri-
mary score in the last year’s edition. Furthermore,
we compute the primary metrics using the head-
match for all mentions including singletons.

Besides the primary score, we also report the sys-
tems’ performance in terms of the coreference mea-
sures that contribute to the CoNLL score as well as
other standard measures, e.g. BLANC (Recasens
and Hovy, 2011) and LEA (Moosavi and Strube,
2016). To evaluate the quality of mention matching
while ignoring the assignment of mentions to coref-
erential entities, we use the MOR score. Last but
not least, we also measure the performance of the
systems on zeros using the anaphor-decomposable
score for zeros (Žabokrtský et al., 2022), which is
an application of the scoring schema proposed by
Tuggener (2014).

4 Participating Systems

4.1 Baseline
Same as last year, the baseline system is the end-to-
end neural coreference resolution system based on
Pražák et al. (2021).12 The model solves both tasks
(mention prediction and coreference linking) at the
same time. It goes through all the possible mention
spans and learns to predict the antecedent of each
span. In case a span is not the correct mention or
it is the singleton the model learns to align it to
the artificial antecedent. Therefore, the model is
not able to predict singletons. During training, the
marginal probability of all the correct antecedents
of each mention is maximized. More details can be
found in Pražák et al. (2021).

4.2 System Submissions
This year, 7 teams participated in the shared task.
The descriptions below are based on the informa-
tion provided by the respective participants in an
online questionnaire. As the authors of the Deep-
BlueAI system have neither provided us with any
details nor submitted their system description pa-
per, we cannot include it among the descriptions.

Anonymous13 The system initially drew inspira-
tion from wl-coref (Dobrovolskii, 2021), account-
ing for head information. The authors found that
XLM-Roberta yields the best results, leading to its
selection for subsequent tests. They developed a

12https://github.com/ondfa/
coref-multiling

13The authors of this system asked us to anonymize this
submission.

conversion system to manage the CoNLL-U format
as jsonlines. Furthermore, they efficiently incorpo-
rate new features (e.g., UPOS, DEPREL, FEATS)
with Udapi assistance. Alongside the CoNLL fea-
tures, a BIO-like scheme is added to the indices in
mention spans. Various distance/matching features
and context sizes are used to update token scores
for potential antecedents. The results primarily de-
pend on a model’s ability to construct the assigned
scheme, where the head (B) is the primary focus
of this specific task. Future work plans include
leveraging similarity- and classification properties
through fine-tuning sentence embeddings to further
enhance span detection and merging. The authors
note that they did not conduct any ablation study,
and there is still much to explore regarding the
usefulness of features.

CorPipe14 ÚFAL CorPipe is a minor evolution
from the system implemented in the previous year
(Straka and Straková, 2022). All models undergo
training on the concatenation of all treebanks. They
utilize either the mT5-large pre-trained model or
the mT5-xl pre-trained model. The architecture
remains the same, with a few modifications: The
system employs 2560 subwords during prediction,
which is possible due to the relative embeddings
in mT5. Instead of using CRF to perform mention
span detection (since it would be complicated to
ensemble), the authors train the model using stan-
dard classification into generalized BIO encoding,
allowing overlapping mentions. Subsequently, a dy-
namic programming algorithm performs structured
prediction, whose output always presents a valid
sequence of BIO tags. Ensembling takes place
during both the mention span detection and the
coreference linking. The ÚFAL CorPipe team sub-
mits multiple configurations – one best-performing
mT5-large-sized model, one best-performing mT5-
xl-sized model, a best-performing checkpoint se-
lected for each treebank independently, and the best
submission that is an ensemble of 3 checkpoints
chosen for each treebank independently. See Straka
(2023) in this volume for details.

DFKI-Adapt15 The DFKI-Adapt system is
based on the baseline system provided by the orga-
nizers. This system augments it by adding charac-
ter embeddings for each token to the original input

14The CorPipe system was submitted to CodaLab by user
“straka” from team ÚFAL CorPipe.

15The DFKI-Adapt system was submitted to CodaLab by
user “tatiana.anikina” from team DFKI_TR.

https://github.com/ondfa/coref-multiling
https://github.com/ondfa/coref-multiling
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embeddings (based on multilingual BERT) using
LSTM (300 dimensions). The training procedure
starts with pre-training the joint model utilizing all
languages combined into a single training set. Fol-
lowing this step, the team merges the datasets for
the related languages (for example, all Slavic or Ro-
mance languages) and fine-tunes a separate model
for each language using these combined datasets.
Additionally, they train the language-specific task
adapters added to the BERT model. During the
training process, they sort all documents after every
epoch according to their difficulty for the model,
as determined by the loss function. The most chal-
lenging instances are chosen for further model fine-
tuning before the next epoch begins. The DFKI-
Adapt system employs no external resources for
training, relying solely on the Shared Task data.

DFKI-MPrompt16 The DFKI-MPrompt system
integrates two independent modules. One mod-
ule performs mention generation based on prompt
learning facilitated by the OpenPrompt library. Us-
ing a prefix template and a frozen mT5-large model,
the prompt model generates all possible mentions
within a given sentence, including their indices.
The training of this single prompt model encom-
passes all languages. The other module uses the
baseline trained on gold mentions. Given the avail-
ability of gold mentions, the baseline’s mention
scorer is not utilized. The baseline also undergoes
training on the combined datasets. In the final stage,
the authors input the mentions generated by the
prompt model to the baseline to identify coreferent
pairs.

McGill17 The McGill system is based on the
Longdoc “unbounded memory” model (Toshniwal
et al., 2020). It is similar to end-to-end coreference
(Lee et al., 2017) adapted for BERT (Joshi et al.,
2019). The primary difference is that the model has
a discrete set of candidate entities. The McGill sys-
tem uses the same hyperparameters that Toshniwal
et al. (2021) use for the PreCo dataset, with the fol-
lowing exceptions: Speaker information is included
at the start of each sentence if present in the dataset.
A language embedding is defined for each dataset
using the same configuration as the genre embed-
ding used by Lee et al. (2017). The McGill model
uses a batch size of 1, similar to most other models

16The DFKI-MPrompt system was submitted to CodaLab
by user “natalia_s” from team DFKI_TR.

17The McGill system was submitted to CodaLab by user
“ianpo”.

based on Lee et al. (2017). The authors experi-
mented with using XLM-Roberta (Conneau et al.,
2020) and mT5 (Xue et al., 2021) Large model
sizes as the language model encoder. They found
that XLM-Roberta leads to better performance, so
they used XLM-Roberta Large in the final sub-
mission. The McGill team trained the model for
60k steps. In the first 50k steps, they trained their
model on all datasets weighted by the number of
documents in the dataset. For the last 10k steps,
they trained the model on all datasets weighted
equally. The model with the best performance on
the development set, corresponding to 57.5k steps,
was submitted. The McGill model predicts only
coreferring spans. Therefore, the McGill team es-
timated mention heads using Udapi following the
same method as the shared-task baseline. For de-
tails, see Porada and Cheung (2023) in this volume.

Morfbase18 The Morfbase system enhances the
baseline system by incorporating morphological
features, drawing inspiration from Pamay Arslan
and Eryiğit (2023). These linguistic features, rep-
resented as one-hot vectors, are concatenated to
BERT representations. Both the mention detec-
tion and coreference linking stages utilize these
hand-crafted linguistic features. The team used
the provided heuristic head detection script on the
model outputs to estimate the heads of the predicted
mentions. The primary goal of this model is to en-
hance coreference performance, particularly for
pro-dropped and morphologically rich languages.
See Pamay Arslan et al. (2023) in this volume for
details.

Ondfa The UWB system remains identical to the
one submitted in the previous year, optimized for
the new metric (Pražák and Konopík, 2022). It
builds on the baseline system with several mod-
ifications. Initially, the team trains a joint cross-
lingual model (XLMR-large) for all datasets. Sub-
sequently, they fine-tune this model for each dataset
separately. The model learns to predict the heads of
the mentions from the original spans. They either
use head prediction or whole span prediction with
corefud.MoveHead (chosen for each dataset
separately based on the performance on the dev
dataset). Syntax trees are also incorporated as fea-
tures into the model. Additionally, the UWB team
modified the model to handle singletons.

18The Morfbase system was submitted to CodaLab by user
“TugbaP” from team TrCR, originally under the name “itunlp”.
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Figure 1: The evolution of the competition in the development (left) and the test phase (right).

4.3 System Comparison

Table 2 shows the basic properties of all submitted
systems for evaluation. Half of the submissions
based their systems on the provided baseline. The
participants who used the baseline model either
used it as it is, or added some modifications to
it, such as soft prompt, tuning per language, or
changing the sequence length.

Comparing Tables 2 and 3 reveals that results
generally improve with larger model sizes, apart
from some exceptions. This is expected, as larger
models have more parameters and can capture more
information and nuances from the data. However,
larger models also require more computational re-
sources and time to train and run, which could be a
challenge for some participants.

5 Results and Comparison

5.1 Evolution of CodaLab Submissions

Across the two phases of the competition, partici-
pants had access to the official evaluation scripts,
enabling them to track and evaluate the metrics
dynamically. We also encouraged them to send
continuous results into the CodaLab system.19 Af-
ter the competition, we collected all continuously
received results from all contributors. The compe-
tition evolved as participants refined their models
and strategies. We can see non-negligible progress
in Figure 1 in terms of observed metrics during

19https://codalab.lisn.upsaclay.fr/
competitions/11800

both phases, which was caused most probably by
competition among participants, who could check
the results of others during all phases.

5.2 Main Results

The main results are summarized in Table 3. The
CorPipe system is the best one according to the
official primary metric (head-match excluding sin-
gletons) as well as according to three alternative
metrics: partial-match excluding singletons (which
was the primary metric last year), exact-match ex-
cluding singletons and head-match including sin-
gletons. The Anonymous system is the second best
according to all four metrics. All metrics result
in the same ordering of systems with a single ex-
ception of the Ondfa system, which is the second
worst according to exact-match, but the third best
according to other metrics. This is caused by the
fact that for some datasets (cf. description of Ondfa
in Section 4.2), Ondfa predicted only the head word
and the span was always just this single word.

Table 4 shows recall, precision, and F1 for six
metrics. The F1 scores of the first five metrics
(MUC. B3, BLANC, and LEA) result in exactly
the same ordering of systems (same as the primary
metric). Most of the systems have higher precision
than recall for all the metrics, but the highest dis-
balance is in the BASELINE system. CorPipe is the
only system that has higher recall than precision
for at least some metrics (MUC and CEAF-e), but
other metrics have similar precision and recall.

The MOR metric (mention overlap ratio) mea-

https://codalab.lisn.upsaclay.fr/competitions/11800
https://codalab.lisn.upsaclay.fr/competitions/11800
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Name Baseline? Pretrained model Model size Seq. length
Anonymous No xlm-roberta-base 1-20M (various) 512
BASELINE Yes bert-base 220M 512
CorPipe No google/mt5-large, google/mt5-xl 567M, 1.7G (two sizes) 512, 2560
DFKI-Adapt Yes bert-base 259M 512
DFKI-MPrompt Yes bert-base + soft prompt 221M 512
McGill No xlm-roberta-large 596M 512
Morfbase Yes bert-base 219M 512
Ondfa Yes xlm-roberta-large 600M 512

Name Tuned per lang.? Batch size Tuned hyperparameters
Anonymous Some (l. families) 16 2 – Input size, learning rate
BASELINE No 1 doc 0
CorPipe No 8, 12, 16, 32 4 – Model size, batch size, learning rate, epochs
DFKI-Adapt Yes 1 doc 3 – Dropout, mention loss coef, task LR
DFKI-MPrompt No 1 sent + 1 doc 0
McGill No 1 1 – Number of training steps
Morfbase No 256 0
Ondfa Yes 1 doc 4 – Specific for the model

Table 2: The table compares properties of systems participating in the task (except for the DeepBlueAI system,
as there are no details available) . The systems are ordered alphabetically. The shortcuts in headings are defined
as follows: Name is the name of the submission, Baseline? indicates whether they used a baseline model or not,
Tuned per lang.? indicates whether they tuned their model for each language or not. various in Anonymous means
various settings depending on features and architecture.

sures only the mention matching quality, while ig-
noring the coreference, but even then the ordering
of systems is similar to the primary metric (Ondfa
is the third worst according to MOR, again because
it does not predict full spans for some datasets).

Table 5 shows that the CorPipe system consis-
tently outperforms the other submissions across
all datasets and languages. Furthermore, the low
results on tr_itcc confirm that the annotation of
coreference is unfinished in this dataset. Similarly,
we experienced an unexpectedly low performance
of submissions on en_parcorfull in the 2022 edi-
tion of the shared task. This was a consequence
of the small size of the dataset and an error in the
CorefUD conversion pipeline, making one of the
two documents in the test set completely missing
all coreference annotation. The error was fixed
this year, but the English and German ParCorFull
datasets remain the smallest ones in CorefUD, so
there is a high risk of overfitting. We admit such
outliers may have a negative impact on the overall
score, especially if macro-averaging is used in the
primary score to weigh performance on individ-
ual datasets. However, we still believe that due to
differences in languages and annotation standards,
each dataset should contribute equally. The im-
pact of potential errors in some datasets is then

mitigated by the number of contributing datasets.

5.3 Evaluation of Zeros
Table 6 focuses on the evaluation of zero anaphors
for individual languages where anaphoric zeros are
annotated.20 The F1 scores are again highly cor-
related with the primary score, with the exception
of pl_pcc, where CorPipe was outperformed by
Ondfa (4 points better) and DeepBleuAI (1 point
better). However, according to Table 1, pl_pcc has
a very small number of zeros annotated, so these
results are not reliable.

5.4 Further analysis
Similarly to last year, we provide several additional
tables in the appendices to shed more light on the
differences between the submitted systems.

Tables 7–8 show results factorized according to
the different universal part of speech tags (UPOS)
in the mention heads. Table 7 contains results on
datasets where all entities without any mention with
a given UPOS as head were deleted. Table 8 con-
tains results on datasets where all mentions without
a given UPOS as head were deleted, so these results
may be a bit misleading because e.g. the PRON

20Recall that the setup for zeros is slightly unrealistic (see
Section 2.3).



9

excluding singletons with singletons

system head-match partial-match exact-match head-match

CorPipe 74.90 73.33 (-1.57) 71.46 (-3.44) 76.82 (+1.91)
Anonymous 70.41 69.23 (-1.18) 67.09 (-3.32) 73.20 (+2.79)
Ondfa 69.19 68.93 (-0.26) 53.01 (-16.18) 68.37 (-0.82)
McGill 65.43 64.56 (-0.88) 63.13 (-2.30) 68.23 (+2.80)
DeepBlueAI 62.29 61.32 (-0.98) 59.95 (-2.34) 54.51 (-7.78)
DFKI-Adapt 61.86 60.83 (-1.03) 59.18 (-2.69) 53.94 (-7.92)
Morfbase 59.53 58.49 (-1.05) 56.89 (-2.64) 52.07 (-7.47)
BASELINE 56.96 56.28 (-0.68) 54.75 (-2.21) 49.32 (-7.64)
DFKI-MPrompt 53.76 51.62 (-2.15) 50.42 (-3.35) 46.83 (-6.93)

Table 3: Main results: the CoNLL metric macro-averaged over all datasets. The table shows the primary metric
(head-match excluding singletons) and three alternative metrics: partial-match excluding singletons, exact-match
excluding singletons and head-match with singletons. A difference relative to the primary metric is reported in
parenthesis. The best score in each column is in bold. The systems are ordered by the primary metric.

system MUC B3 CEAF-e BLANC LEA MOR

CorPipe 80 / 79 / 80 73 / 73 / 73 73 / 71 / 72 72 / 73 / 72 70 / 71 / 70 79 / 80 / 79
Anonymous 74 / 78 / 76 65 / 72 / 68 67 / 68 / 67 63 / 71 / 66 62 / 69 / 65 74 / 78 / 76
Ondfa 74 / 78 / 75 64 / 71 / 67 64 / 67 / 66 62 / 70 / 65 61 / 68 / 64 52 / 83 / 63
McGill 69 / 76 / 71 60 / 69 / 63 58 / 68 / 62 58 / 68 / 61 57 / 66 / 60 59 / 82 / 67
DeepBlueAI 67 / 74 / 70 56 / 65 / 59 55 / 63 / 58 53 / 64 / 56 53 / 61 / 56 61 / 81 / 67
DFKI-Adapt 66 / 73 / 69 56 / 65 / 59 56 / 62 / 58 53 / 63 / 56 52 / 61 / 55 58 / 80 / 66
Morfbase 63 / 71 / 66 51 / 65 / 56 56 / 58 / 56 47 / 62 / 52 47 / 61 / 52 59 / 78 / 66
BASELINE 56 / 76 / 63 46 / 69 / 54 48 / 62 / 54 44 / 67 / 51 42 / 64 / 49 49 / 87 / 61
DFKI-MPrompt 57 / 67 / 61 45 / 60 / 50 49 / 56 / 51 41 / 57 / 45 40 / 55 / 45 57 / 71 / 62

Table 4: Recall / Precision / F1 for individual secondary metrics. All scores macro-averaged over all datasets.

system ca
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CorPipe 82.59 79.33 79.20 72.12 71.09 76.57 69.86 83.39 69.82 68.92 69.47 75.87 78.74 78.77 79.54 82.46 55.63
Anonymous 79.51 75.88 76.39 64.37 68.24 72.29 59.02 80.52 66.13 64.65 66.25 70.09 75.32 73.33 77.58 80.19 47.22
Ondfa 76.02 74.82 74.67 71.86 69.37 71.56 61.62 77.18 60.32 66.38 65.75 68.52 72.39 70.91 76.90 76.50 41.52
McGill 71.75 67.67 70.88 41.58 70.20 66.72 47.27 73.78 65.17 60.74 65.93 65.77 73.73 72.43 76.14 77.28 45.28
DeepBlueAI 67.55 70.38 69.93 48.81 63.90 63.58 43.33 69.52 55.69 54.38 63.14 66.75 69.86 68.53 73.11 74.41 36.14
DFKI-Adapt 68.21 68.72 67.34 52.52 69.28 65.11 36.87 69.19 58.96 51.53 58.56 66.01 70.05 68.21 67.98 72.48 40.67
Morfbase 68.23 64.89 64.74 39.96 64.87 62.80 40.81 69.01 53.18 52.91 56.41 64.08 68.17 66.35 67.88 68.53 39.22
BASELINE 65.26 67.72 65.22 44.11 57.13 63.08 35.19 66.93 55.31 40.71 55.32 63.57 65.10 65.78 66.08 69.03 22.75
DFKI-MPrompt 55.45 60.39 56.13 40.34 59.75 57.83 34.32 58.31 52.96 44.53 48.79 56.52 65.12 62.99 61.15 61.96 37.44

Table 5: Results for individual languages in the primary metric (CoNLL).
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system ca_ancora cs_pdt cs_pcedt es_ancora hu_korkor hu_szeged pl_pcc

CorPipe 93 / 92 / 92 91 / 92 / 92 87 / 88 / 87 94 / 95 / 95 82 / 89 / 85 88 / 70 / 78 75 / 69 / 72
Anonymous 91 / 90 / 91 90 / 91 / 90 86 / 86 / 86 94 / 95 / 94 79 / 89 / 84 83 / 74 / 78 71 / 63 / 67
Ondfa 91 / 90 / 91 90 / 92 / 91 86 / 87 / 87 94 / 94 / 94 77 / 87 / 82 86 / 74 / 79 79 / 73 / 76
McGill 89 / 90 / 89 88 / 89 / 89 82 / 87 / 84 92 / 95 / 94 81 / 85 / 83 81 / 73 / 77 71 / 65 / 68
DeepBlueAI 85 / 89 / 87 86 / 90 / 88 83 / 86 / 85 91 / 94 / 93 75 / 79 / 77 78 / 70 / 74 79 / 68 / 73
DFKI-Adapt 85 / 84 / 84 84 / 85 / 84 78 / 81 / 80 89 / 89 / 89 67 / 77 / 72 67 / 61 / 64 62 / 68 / 65
Morfbase 84 / 85 / 85 81 / 84 / 83 78 / 81 / 80 88 / 89 / 88 57 / 73 / 64 61 / 57 / 59 33 / 40 / 36
BASELINE 82 / 82 / 82 81 / 84 / 82 77 / 81 / 79 87 / 88 / 87 60 / 68 / 64 61 / 57 / 59 50 / 80 / 62
DFKI-MPrompt 78 / 83 / 80 78 / 85 / 81 72 / 79 / 75 78 / 87 / 82 69 / 70 / 69 59 / 45 / 51 46 / 55 / 50

Table 6: Recall / Precision / F1 for anaphor-decomposable score of coreference resolution on zero anaphors across
individual languages. Only the datasets that contain anaphoric zeros are listed (en_gum excluded as all zeros in its
test set are non-anaphoric). Note that these scores are directly comparable to neither the CoNLL score nor to the
supplementary scores calculated with respect to whole entities in Table 4.

column does not consider all pronominal coref-
erence, but only pronoun-to-pronoun coreference.
An entity with one pronoun and one noun mention
is excluded from this table (because it becomes a
singleton after deleting noun or pronoun mentions
and singletons are excluded from the evaluation in
these tables).

Tables 9–12 show various statistics on the enti-
ties and mentions in a concatenation of all the test
sets. Note that such statistics are mostly influenced
by larger datasets. Tables 13–16 show the same
statistics for cs_pcedt, which is the largest dataset
in CorefUD 1.1 (as for the number of words and
non-singleton mentions).

6 Conclusions and Future Work

Both editions of the shared task attracted a substan-
tial number of participants and led to an increase in
the state of the art. Hence, the success of the two
completed shared tasks supports us in the idea of
continuing this initiative in the future.

However, there are challenges, too. For instance,
the underlying data collection is still somewhat lim-
ited from the typological perspective, and thus our
ambition is to add more languages with substan-
tially different typological structures, experiment
with other writing systems, or add a historical per-
spective with data from classical languages.

There are also more technical questions that
would deserve a discussion in the future, such
as whether weightless macro-averaging is the
best approach for data collections with order-of-
magnitude differences in training and testing data
sizes. Similarly, substantial differences in internal
annotation consistency in individual resources is

also an issue from the evaluation viewpoint, since,
for example, optimizing performance for a low-
quality resource might lead to substantial perfor-
mance gains, which, however, may correspond to
systematic deficiencies present in the data rather
than objective quality.

Finally, we aim to progress to a fully realis-
tic evaluation setup which starts from raw or pre-
tokenized text. Participants would be then expected
to reconstruct zeros.
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A Data References

Catalan AnCora ca_ancora (Taulé et al., 2008; Recasens and Martí, 2010)
Czech PCEDT cs_pcedt (Nedoluzhko et al., 2016)
Czech PDT cs_pdt (Hajič et al., 2020)
English GUM en_gum (Zeldes, 2017)
English ParCorFull en_parcorfull (Lapshinova-Koltunski et al., 2018)
French Democrat fr_democrat (Landragin, 2021)
German ParCorFull de_parcorfull (Lapshinova-Koltunski et al., 2018)
German PotsdamCC de_potsdam (Bourgonje and Stede, 2020)
Hungarian KorKor hu_korkor (Vadász, 2022)
Hungarian SzegedKoref hu_szeged (Vincze et al., 2018)
Lithuanian LCC lt_lcc (Žitkus and Butkienė, 2018)
Norwegian Bokmål NARC no_bokmaalnarc (Mæhlum et al., 2022)
Norwegian Nynorsk NARC no_nynorsknarc (Mæhlum et al., 2022)
Polish PCC pl_pcc (Ogrodniczuk et al., 2013, 2015)
Russian RuCor ru_rucor (Toldova et al., 2014)
Spanish AnCora es_ancora (Taulé et al., 2008; Recasens and Martí, 2010)
Turkish ITCC tr_itcc (Pamay and Eryiğit, 2018)

B Partial CoNLL results by head UPOS

system NOUN PRON PROPN DET ADJ VERB ADV NUM

CorPipe 72.21 77.05 76.33 51.58 44.38 40.13 33.88 37.44
Anonymous 68.25 72.70 70.84 50.98 38.42 34.15 35.91 41.86
Ondfa 66.98 71.27 70.16 48.52 33.78 24.98 33.76 40.82
McGill 62.67 68.07 63.76 51.03 39.00 23.68 32.87 28.60
DeepBlueAI 59.54 65.05 60.08 40.34 36.57 17.57 28.26 31.68
DFKI-Adapt 57.80 64.02 61.82 39.53 26.72 14.71 21.29 33.03
Morfbase 55.39 61.74 58.45 44.61 28.58 20.74 30.26 29.17
BASELINE 51.82 57.79 56.32 33.89 25.80 14.12 19.43 27.51
DFKI-MPrompt 50.07 57.37 54.84 42.28 21.37 12.30 25.36 17.81

Table 7: CoNLL F1 score evaluated only on entities with heads of a given UPOS. In both the gold and prediction
files we deleted some entities before running the evaluation. We kept only entities with at least one mention with a
given head UPOS (universal part of speech tag). For the purpose of this analysis, if the head node had deprel=flat
children, their UPOS tags were considered as well, so for example in “Mr./NOUN Brown/PROPN” both NOUN
and PROPN were taken as head UPOS, so the entity with this mention will be reported in both columns NOUN and
PROPN. Otherwise, the CoNLL F1 scores are the same as in the primary metric, i.e. an unweighted average over all
datasets, partial-match, without singletons. Note that when distinguishing entities into events and nominal entities,
the VERB column can be considered as an approximation of the performance on events. One of the limitations of
this approach is that copula is not treated as head in the Universal Dependencies, so e.g. phrase She is nice is not
considered for the VERB column, but for the ADJ column (head of the phrase is nice).



15

system NOUN PRON PROPN DET ADJ VERB ADV NUM

CorPipe 63.51 65.25 63.85 52.93 49.85 50.48 51.24 50.30
Anonymous 57.32 59.16 57.80 49.09 46.65 46.39 46.02 46.08
Ondfa 56.39 58.32 57.08 45.55 42.93 42.79 42.64 42.48
McGill 53.13 55.73 52.97 42.50 39.46 39.50 38.79 38.94
DeepBlueAI 50.43 51.93 49.63 40.39 37.60 38.02 37.36 37.14
DFKI-Adapt 48.56 50.95 50.60 34.66 32.05 32.32 31.76 31.59
Morfbase 47.08 48.93 49.23 36.41 33.90 33.92 33.36 33.19
BASELINE 40.50 43.28 45.60 30.62 27.74 28.48 27.74 27.65
DFKI-MPrompt 39.56 43.31 42.67 29.20 26.53 26.64 26.22 26.33

Table 8: CoNLL F1 score evaluated only on mentions with heads of a given UPOS. In both the gold and prediction
files we deleted some mentions before running the evaluation. We kept only mentions with a given head UPOS
(again considering also deprel=flat children).

C Statistics of the submitted systems on concatenation of all test sets

entities distribution of lengths

system total per 1k length 1 2 3 4 5+

count words max avg. [%] [%] [%] [%] [%]

gold 44,806 107 509 2.0 61.7 22.0 6.7 3.2 6.5
Anonymous 46,367 110 232 2.0 64.0 20.3 6.7 3.0 6.0
BASELINE 14,059 33 237 3.8 0.0 57.7 17.3 7.6 17.4
CorPipe 47,054 112 540 2.0 62.6 21.0 6.8 3.2 6.3
DFKI-Adapt 14,808 35 230 3.8 0.0 56.6 17.7 8.0 17.7
DFKI-MPrompt 12,884 31 85 3.7 0.0 55.5 18.2 8.6 17.7
DeepBlueAI 14,635 35 165 3.9 0.0 54.1 18.4 8.4 19.1
McGill 44,059 105 425 1.9 67.8 17.7 5.8 2.7 6.0
Morfbase 15,118 36 92 3.6 0.0 56.9 18.2 8.2 16.8
Ondfa 55,232 131 135 1.8 70.8 16.3 5.2 2.4 5.3

Table 9: Statistics on coreference entities. The total number of entities and the average number of entities per 1000
tokens in the running text. The maximum and average entity “length”, i.e., the number of mentions in the entity.
Distribution of entity lengths (singletons have length = 1). The systems are sorted alphabetically. We can see that the
Ondfa system notably overgenerates, i.e. predicts more entities than in the gold data. On the contrary, DeepBlueAI,
DFKI-Adapt, BASELINE, DFKI-MPrompt, and Morfbase undergenerate and predict on average longer entities (i.e.
with more mentions) than in the gold data. The best two systems, CorPipe and Anonymous, have the statistics
similar to the gold data.
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mentions distribution of lengths

system total per 1k length 0 1 2 3 4 5+

count words max avg. [%] [%] [%] [%] [%] [%]

gold 66,520 158 100 3.1 8.3 45.1 18.7 8.0 3.9 15.9
Anonymous 87,664 209 101 3.3 6.7 41.5 20.5 9.3 4.7 17.3
BASELINE 53,063 126 29 2.2 9.9 50.0 19.0 7.2 3.3 10.6
CorPipe 91,081 217 163 3.2 6.5 41.4 20.8 9.5 4.8 16.9
DFKI-Adapt 56,749 135 29 2.3 9.4 49.0 19.2 7.4 3.5 11.5
DFKI-MPrompt 47,796 114 71 2.9 10.7 50.2 17.2 5.8 2.7 13.2
DeepBlueAI 57,329 136 26 2.3 9.2 48.3 19.5 7.7 3.7 11.7
McGill 81,989 195 20 2.3 7.1 43.8 21.8 9.8 5.0 12.5
Morfbase 54,668 130 29 2.3 9.6 48.8 19.0 7.4 3.5 11.6
Ondfa 97,081 231 29 2.6 6.0 49.7 17.6 7.8 4.3 14.5

Table 10: Statistics on non-singleton mentions. The total number of mentions and the average number of mentions
per 1000 words of running text. The maximum and average mention length, i.e., the number of nonempty nodes
(words) in the mention. Distribution of mention lengths (zeros have length = 0). We can see that Ondfa, CorPipe,
and Anonymous notably overgenerate mentions, i.e. predict more mentions than in the gold data, but these are
the three best systems, so it seems a reasonable strategy. Note that CorPipe is the only system that has higher
Recall than Precision in MUC and CEAF-e, according to Table 4. The average length of mentions predicted by
Ondfa is lower than in the gold data (and it is caused by the single-word mentions in some datasets). CorPipe and
Anonymous are the only two systems that predict long mentions (5+ words) more frequently than in the gold data.

mentions distribution of lengths

system total per 1k length 0 1 2 3 4 5+

count words max avg. [%] [%] [%] [%] [%] [%]

gold 24,961 59 81 3.5 1.3 30.7 25.1 13.6 7.4 21.9
Anonymous 3,088 7 57 3.9 0.0 31.2 25.3 12.3 7.8 23.4
BASELINE 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
CorPipe 2,674 6 78 3.7 0.1 31.5 25.7 12.2 8.2 22.4
DFKI-Adapt 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
DFKI-MPrompt 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
DeepBlueAI 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
McGill 3,160 8 15 2.9 0.0 33.7 27.3 12.7 7.6 18.7
Morfbase 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Ondfa 3,226 8 21 3.3 0.1 32.5 26.1 12.2 7.2 21.9

Table 11: Statistics on singleton mentions. See the caption of Table 10 for details. Only four systems (Anonymous,
CorPipe, McGill, and Ondfa) attempt to predict singletons and none of them as frequently as in the gold data. Note
that singletons are not annotated in all the (gold) datasets.
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mention type [%] distribution of head UPOS [%]

system w/empty w/gap non-tree NOUN PRON PROPN DET ADJ VERB ADV NUM other

gold 10.5 0.6 2.0 44.1 23.3 14.7 7.1 2.7 4.2 1.2 0.5 2.2
Anonymous 8.5 0.0 3.4 51.9 19.1 13.6 5.8 2.5 3.6 1.0 0.6 1.8
BASELINE 11.2 0.0 1.8 39.0 26.6 16.1 8.4 2.5 3.8 1.2 0.3 2.1
CorPipe 8.1 0.0 2.6 52.9 18.6 13.8 5.7 2.6 3.2 0.9 0.6 1.7
DFKI-Adapt 10.8 0.0 1.8 40.3 25.8 15.9 8.0 2.5 3.9 1.2 0.4 2.0
DFKI-MPrompt 12.6 0.0 2.0 37.7 29.0 14.7 9.1 1.7 4.0 1.1 0.2 2.5
DeepBlueAI 10.6 0.0 1.9 41.4 25.2 15.3 7.9 2.7 3.8 1.3 0.4 2.0
McGill 8.0 0.0 2.1 51.5 20.4 13.6 6.3 2.4 2.6 1.0 0.6 1.6
Morfbase 11.0 0.0 1.8 40.1 26.1 16.1 8.1 2.4 3.8 1.1 0.4 1.9
Ondfa 7.3 0.1 2.0 54.1 17.6 14.2 5.4 2.5 2.8 1.0 0.9 1.5

Table 12: Detailed statistics on non-singleton mentions. The left part of the table shows the percentage of: mentions
with at least one empty node (w/empty); mentions with at least one gap, i.e. discontinuous mentions (w/gap); and
non-treelet mentions, i.e. mentions not forming a connected subgraph in the dependency tree (non-tree). Note
that these three types of mentions may be overlapping. We can see that none of the systems attempts to predict
discontinuous mentions (the 0.1% of such mentions in Ondfa seems to be rather a technical error). The right
part of the table shows the distribution of mentions based on the universal part-of-speech tag (UPOS) of the head
word. Note that this distribution has to be interpreted with the total number of non-singleton mentions predicted
(as reported in Table 10) in mind. For example, only 18.6% of mentions predicted by CorPipe are pronominal
(head=PRON), while there are 23.3% of pronominal mentions in the gold data. However, UDPipe predicts actually
more pronominal mentions (16941) than in the gold data (15500).

D Statistics of the submitted systems on cs_pcedt

entities distribution of lengths

system total per 1k length 1 2 3 4 5+

count words max avg. [%] [%] [%] [%] [%]

gold 2,533 45 84 3.2 7.2 60.1 13.8 6.2 12.8
Anonymous 2,804 50 74 2.9 21.0 47.5 14.2 5.4 11.8
BASELINE 1,963 35 77 3.5 0.0 61.7 16.4 6.9 15.0
CorPipe 2,918 52 81 3.0 20.5 47.5 13.4 5.8 12.7
DFKI-Adapt 2,034 36 73 3.6 0.0 60.4 16.2 7.5 15.9
DFKI-MPrompt 1,767 32 36 3.4 0.0 58.7 18.8 8.1 14.3
DeepBlueAI 2,069 37 71 3.6 0.0 60.7 15.9 7.2 16.3
McGill 2,627 47 83 2.8 33.4 39.4 11.2 4.5 11.5
Morfbase 2,038 36 37 3.4 0.0 60.7 17.0 8.0 14.3
Ondfa 2,844 51 74 3.0 23.9 45.4 13.0 5.3 12.3

Table 13: Statistics on coreference entities in cs_pcedt.
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mentions distribution of lengths

system total per 1k length 0 1 2 3 4 5+

count words max avg. [%] [%] [%] [%] [%] [%]

gold 7,905 141 61 3.7 19.8 27.9 18.0 8.8 3.9 21.5
Anonymous 7,594 135 60 3.7 20.5 28.7 17.8 8.1 3.8 21.1
BASELINE 6,931 124 23 2.6 21.1 29.6 19.5 9.1 4.0 16.7
CorPipe 8,083 144 59 3.7 19.0 28.5 18.3 9.0 4.3 21.0
DFKI-Adapt 7,292 130 23 2.7 20.3 29.2 19.7 9.4 4.2 17.2
DFKI-MPrompt 6,050 108 61 3.5 23.7 31.1 16.7 6.0 2.9 19.4
DeepBlueAI 7,420 132 21 2.8 20.3 28.5 19.4 9.3 4.5 18.0
McGill 6,448 115 16 2.2 22.8 29.2 19.8 10.0 4.8 13.5
Morfbase 6,843 122 26 2.7 21.4 29.5 18.9 9.2 4.2 16.8
Ondfa 7,745 138 22 3.0 19.6 28.7 19.1 9.4 4.5 18.7

Table 14: Statistics on non-singleton mentions in cs_pcedt.

mentions distribution of lengths

system total per 1k length 0 1 2 3 4 5+

count words max avg. [%] [%] [%] [%] [%] [%]

gold 182 3 34 3.3 20.9 21.4 18.1 11.0 8.2 20.3
Anonymous 590 11 47 4.5 9.0 18.3 24.9 15.6 7.3 24.9
BASELINE 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
CorPipe 598 11 30 4.0 12.4 13.4 26.1 14.0 9.2 24.9
DFKI-Adapt 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
DFKI-MPrompt 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
DeepBlueAI 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
McGill 877 16 15 2.0 15.5 40.7 19.4 8.4 5.4 10.6
Morfbase 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Ondfa 679 12 22 3.7 12.8 21.8 19.0 12.7 7.7 26.1

Table 15: Statistics on singleton mentions in cs_pcedt.

mention type [%] distribution of head UPOS [%]

system w/empty w/gap non-tree NOUN PRON PROPN DET ADJ VERB ADV NUM other

gold 25.9 0.7 4.5 46.2 25.5 6.7 13.2 0.9 2.7 1.6 0.7 2.5
Anonymous 26.3 0.0 2.4 46.6 24.2 7.0 15.9 1.2 2.4 1.5 0.5 0.7
BASELINE 24.7 0.0 1.9 47.1 24.8 7.6 15.4 1.1 1.5 1.6 0.6 0.2
CorPipe 24.6 0.0 1.7 48.9 22.5 7.2 15.3 1.3 2.1 1.6 0.6 0.5
DFKI-Adapt 24.0 0.0 1.8 48.1 24.2 7.4 15.0 1.1 1.8 1.7 0.7 0.2
DFKI-MPrompt 29.0 0.0 2.1 42.8 28.3 6.7 17.7 1.1 1.4 1.3 0.3 0.3
DeepBlueAI 24.2 0.0 1.6 48.2 23.9 7.3 15.2 1.1 2.1 1.6 0.5 0.2
McGill 25.9 0.0 1.3 48.1 26.7 6.7 15.0 0.9 0.8 1.2 0.6 0.1
Morfbase 25.1 0.0 1.8 46.9 25.3 7.2 15.4 1.3 1.7 1.6 0.5 0.1
Ondfa 23.9 0.0 1.7 49.2 23.2 7.4 15.0 1.2 1.4 1.7 0.6 0.3

Table 16: Detailed statistics on non-singleton mentions in cs_pcedt.


