
Long-form Simultaneous Speech Translation∗

Thesis Proposal

Peter Polák
Charles University

Faculty of Mathematics and Physics
Institute of Formal and Applied Linguistics

polak@ufal.mff.cuni.cz

Abstract

Simultaneous speech translation (SST) aims
to provide real-time translation of spoken lan-
guage, even before the speaker finishes their
sentence. Traditionally, SST has been ad-
dressed primarily by cascaded systems that
decompose the task into subtasks, including
speech recognition, segmentation, and machine
translation. However, the advent of deep learn-
ing has sparked significant interest in end-to-
end (E2E) systems. Nevertheless, a major limi-
tation of most approaches to E2E SST reported
in the current literature is that they assume
that the source speech is pre-segmented into
sentences, which is a significant obstacle for
practical, real-world applications. This the-
sis proposal addresses end-to-end simultaneous
speech translation, particularly in the long-form
setting, i.e., without pre-segmentation. We
present a survey of the latest advancements in
E2E SST, assess the primary obstacles in SST
and its relevance to long-form scenarios, and
suggest approaches to tackle these challenges.

1 Introduction

In today’s highly globalized world, communication
among individuals speaking different languages is
gaining importance. International conferences and
multinational organizations like the European Par-
liament often rely on human interpreters. However,
in many scenarios, employing human interpreters
can be impractical and costly. In such cases, simul-
taneous speech translation1 (SST) offers a viable
solution by enabling real-time translation before
the speaker completes their sentence.

∗The literature on simultaneous speech translation often
uses the word “streaming” as an equivalent of “simultane-
ous” to refer to the translation of an unfinished utterance. In
other literature, however, the term “streaming” refers to in-
put spanning several sentences. To avoid confusion, we use
“simultaneous” to refer to the translation of an unfinished ut-
terance and “long-form” to refer to input spanning several
sentences.

1We consider only the speech-to-text variant in this work.

Traditionally, both offline speech translation
(ST) and simultaneous speech translation (SST)
have relied predominantly on cascaded systems that
decompose the task into multiple subtasks, includ-
ing speech recognition, speech segmentation, and
machine translation (Osterholtz et al., 1992; Fügen
et al., 2007; Bojar et al., 2021). However, recent
advancements in deep learning and the availability
of abundant data (Tan and Lim, 2018; Sperber and
Paulik, 2020) have led to a significant paradigm
shift towards end-to-end (E2E) models. While the
cascaded approach continues to dominate offline
ST, the opposite is true for SST (Anastasopoulos
et al., 2022; Agarwal et al., 2023).

Despite the recent popularity of end-to-end SST,
the vast majority of research focuses on the “short-
form” setting, which assumes that the speech input
is already pre-segmented into sentences. Critically,
this assumption poses an obstacle to deployment
in the wild. Therefore, we aim to achieve a “true”
long-form simultaneous speech translation in our
thesis. We break down our efforts into three steps:

Quality-latency tradeoff in SST The first step
of our research concentrates on enhancing the
quality-latency tradeoff, mainly in the traditional
“short-form” regime. We will evaluate different
approaches and architectures.

Towards the long-form SST In the next step, we
will explore the feasibility of long-form simulta-
neous speech translation by adopting segmented
inference.

True long-form SST The final goal of our work
is to explore the potential of end-to-end modeling
for true long-form SST. We will focus on identify-
ing an appropriate model architecture and effective
training procedures to achieve seamless and reli-
able long-form simultaneous speech translation.

The next section introduces some important as-
pects of simultaneous speech translation.



2 Simultaneous Speech Translation

The ultimate goal of SST is to enable real-time
communication between people speaking different
languages. To achieve this goal, SST systems must
meet two important criteria. First, they must be
computationally efficient to ensure timely transla-
tion during ongoing speech. Second, SST systems
must be capable of handling unfinished sentences.
Working with unfinished sentences allows for more
timely translations, particularly when waiting for
sentences to be completed is impractical, such as
matching slides or presenters’ gestures. However,
translating unfinished sentences increases the risk
of translation errors since translation usually re-
quires re-ordering that benefits from a more com-
plete sentence context. Thus, there exists a quality-
latency tradeoff. This means that given a certain
latency constraint, we want the model to produce as
good translations as possible. Ideally, we want the
model to “predict” the future context without the
risk of an incorrect translation. The quality-latency
tradeoff is one of the main topics of our research.

2.1 Re-Translation vs. Incremental SST

SST can be classified as either re-translation or
incremental. Re-translation SST (Niehues et al.,
2016, 2018) can revise the hypothesis or re-rank
the set of hypotheses as more speech input is read.
Revising the translation allows the re-translation
SST to have comparable final translation quality
with the offline speech translation (Arivazhagan
et al., 2020). This design approach arguably in-
troduces challenges for the user in processing the
translation and makes it impossible to use in real-
time speech-to-speech translation. Additionally, it
also complicates the latency evaluation.

In fact, several SST latency metrics (Ma et al.,
2020) were originally developed specifically for in-
cremental translation scenarios.2 Incremental SST
(Cho and Esipova, 2016; Dalvi et al., 2018) dif-
fers from the re-translation system in that it prunes
all hypotheses to a common prefix, which is then
shown to the user. For the user, the translation
changes only by incrementally getting longer; none
of the previously displayed outputs are ever modi-
fied. In our work, we focus on incremental SST.

2IWSLT shared tasks (Ansari et al., 2020; Anastasopoulos
et al., 2021, 2022) also follow this evaluation standard.

2.2 Cascaded vs. End-to-End

Traditionally, offline speech translation and SST
were achieved as a cascade of multiple systems:
automatic speech recognition (ASR), inverse tran-
script normalization, which includes punctuation
prediction and true casing, and machine translation
(MT, Osterholtz et al., 1992; Fügen et al., 2007;
Bojar et al., 2021). The advantage of the cascade
approach is that we can optimize models for each
subtask independently. Also, ASR and MT tasks
typically have access to larger and more diverse
corpora than direct speech translation.

However, using a cascade system introduces sev-
eral challenges (Sperber and Paulik, 2020). The
most important among them is error propagation
(Ruiz and Federico, 2014). Further, MT mod-
els might suffer from mismatched domains when
trained on written language. Furthermore, as the
source is transformed into a textual form, it loses
crucial information about prosody, i.e., the rhythm,
intonation, and emphasis in speech (Bentivogli
et al., 2021). Finally, many languages, especially
endangered ones, have no written form, which
makes the cascade approach impractical or impos-
sible for such languages (Harrison, 2007; Duong
et al., 2016).

As of the latest findings, the current state-of-
the-art for offline speech translation continues to
be based on a cascaded approach (Anastasopoulos
et al., 2022; Agarwal et al., 2023). In simultaneous
speech translation, however, both approaches yield
competitive performance. The advantage of the
end-to-end models in SST may be that they avoid
the extra delay caused by ASR-MT collaboration
in the cascade (Wang et al., 2022).

In our work, we focus on end-to-end models.

3 Long-form Simultaneous Speech
Translation

Most of the contemporary research on SST assumes
speech pre-segmented into short utterances with
segmentation following the sentence boundaries.
However, in any real application, there is no such
segmentation available. This section places long-
form SST within the broader context of long-form
ASR, MT, and offline ST. Subsequently, we explore
the current literature on long-form SST.

3.1 Long-Form ASR

In terms of input and output modalities, long-form
ASR and ST face similar issues. There are two



types of strategies for long-form processing: (1)
the segmented approach, which divides the input
into smaller chunks, and (2) the true long-form
approach, which handles the entire long-form input
as a single unit.

Most of the literature focuses on the seg-
mented approach. A typical solution involves pre-
segmenting the audio using voice activity detection
(VAD). However, VAD segmentation may not be
optimal for real-world speech since it might fail
to handle hesitations or pauses in sentences that
must be treated as undivided units. More sophis-
ticated approaches leverage latent alignments ob-
tained from CTC (Graves et al., 2006) and RNN-T
(Graves, 2012) for better segmentation (Yoshimura
et al., 2020; Huang et al., 2022). Alternatively,
segmentation into fixed segments is also popular
(Chiu et al., 2019, 2021). To reduce low-quality
transcripts close to the segment boundaries, they
typically perform overlapped inference and use la-
tent alignments to merge the transcripts correctly.
The chunking approach is also adopted by the atten-
tional model Whisper in the offline (Radford et al.,
2023) and simultaneous regime (Macháček et al.,
2023).

Another line of work focused on long-form mod-
eling directly. For example, Chiu et al. (2019) con-
ducted a comprehensive study comparing differ-
ent architectures, including RNN-T and attention-
based models. The findings indicate that only RNN-
T and CTC architectures can generalize to unseen
lengths. To further improve the true long-form
ASR, Narayanan et al. (2019) suggest simulation
of long-form training by LSTM state passing.

While the previously mentioned research was
predominantly based on RNNs, more recent work
has transitioned to utilizing Transformer models.
Zhang et al. (2023) compared a chunk-wise atten-
tion encoder, which involves an encoder with a
limited attention span, in combination with the
attention-based decoder (AD) and CTC. We note
that while the encoder has a limited attention span,
the attention-based decoder sees the entire encoder
representation. The model employing AD could
not function without chunking, whereas the CTC
model processed the entire speech at once and still
outperformed the AD model.

3.2 Long-Form MT

The primary objective of long-form MT is to en-
hance textual coherence, as conventional MT sys-

tems assume sentence independence. Early work
explored a concatenation of previous (Tiedemann
and Scherrer, 2017; Donato et al., 2021) and fu-
ture sentences (Agrawal et al., 2018). These works
showed that MT models benefit from the extra con-
text and better handle the inter-sentential discourse
phenomena. However, the benefits diminish if the
context grows beyond a few sentences (Agrawal
et al., 2018; Kim et al., 2019; Fernandes et al.,
2021). This can be attributed to the limitations of
attention mechanisms, where an extensive volume
of irrelevant information can lead to confusion.

Other body of work tries to model very long
sequences directly. Dai et al. (2019) introduced
a recurrence mechanism and improved positional
encoding scheme in the Transformer. Later work
proposed an explicit compressed memory realized
by a few dense vectors (Feng et al., 2022).

3.3 Long-Form Offline ST

Unlike written input text in long-form MT, speech
input in the ST task lacks explicit information about
segmentation. Therefore, the research in the area of
long-form offline speech translation concentrates
on two separate issues: (1) improving segmenta-
tion into sentences, and (2) enhancing robustness
through the use of larger context.

In the traditional cascaded approach with sep-
arate speech recognition and machine translation
models, the work focused on segmentation strate-
gies for the ASR transcripts.3 The methods are
usually based on re-introducing punctuation to the
transcript (Lu and Ng, 2010; Rangarajan Sridhar
et al., 2013; Cho et al., 2015, 2017). However,
these approaches suffer from ASR error propaga-
tion and disregard the source audio’s acoustic in-
formation. This was addressed by Iranzo-Sánchez
et al. (2020a), however, the approach still requires
an intermediate ASR transcript that is unavailable
in E2E models.

An alternative approach involves source-speech-
based segmentation. The early work focused on
VAD segmentation. This is usually sub-optimal as
speakers place pauses inside sentences, not neces-
sarily between them (e.g., hesitations before words
with high information content, Goldman-Eisler,
1958). To this end, researchers tried considering
not only the presence of speech but also its length
(Potapczyk and Przybysz, 2020; Inaguma et al.,

3ASR transcripts are traditionally normalized, i.e., they
consist of lowercase words without punctuation.



2021; Gaido et al., 2021). Later studies tried to
avoid VAD and focused on more linguistically-
motivated approaches, e.g., ASR CTC to predict
voiced regions Gállego et al. (2021) or directly
modeling the sentence segmentation (Tsiamas et al.,
2022b; Fukuda et al., 2022).

To address the problem of inadequate segmenta-
tion, Gaido et al. (2020) showed that context-aware
ST is less prone to segmentation errors. In an exten-
sive study of context-aware ST, Zhang et al. (2021)
observed that context improves quality, but this
holds only for a limited number of utterances.

3.4 Long-Form Simultaneous ST
Research focusing on direct long-form simultane-
ous speech translation remains relatively scarce.
The closest works are in long-form simultane-
ous MT. Schneider and Waibel (2020) proposed
a streaming MT model capable of translating un-
segmented text input. This model could be the-
oretically adapted for speech input. However, it
was later shown that this model exhibits huge
latency (Iranzo Sanchez et al., 2022). Another
work (Iranzo Sanchez et al., 2022) explored the
extended context and confirmed the findings from
long-form MT and offline ST, demonstrating that
using the previous context significantly enhances
performance. They also confirmed that a too-long
context leads to decreased translation quality.

Finally, the only direct SST model that claims
to work on a possibly unbounded input is Ma et al.
(2021). The model utilizes a Transformer encoder
with a restriction on self-attention, allowing it to at-
tend solely to a memory bank and a small segment.
Unfortunately, based on the reported experiments,
whether the model was specifically evaluated in the
long-form setting remains unclear.

3.5 Evaluation
Evaluation of SST is a complex problem as we
have to consider not only the translation quality
but also the latency. Additionally, in the long-form
regime, segmentation becomes another obstacle.

The most commonly used metric for translation
quality in speech translation is BLEU (Papineni
et al., 2002; Post, 2018). Other metrics such as
chrF++ (Popović, 2017) and a neural-based metric
COMET (Rei et al., 2020) can be applied, too.

The other important property of an SST sys-
tem is latency. There are two main types of laten-
cies: computation-unaware (CU) and computation-
aware (CA) latency. The computation-unaware

latency measures the delay in emitting a translation
token relative to the source, regardless of the actual
computation time. Hence, CU latency allows for a
fair comparison regardless of the hardware infras-
tructure. However, CU latency cannot penalize the
evaluated system for extensive computation; hence,
CA latency can offer a more realistic assessment.

Measuring latency relative to the source or ref-
erence in SST is quite difficult because of the re-
ordering present in translation. Historically, latency
metrics were first developed for simultaneous ma-
chine translation (i.e., the source is text rather than
speech). The most common are average lagging
(AL; Ma et al., 2019) and differentiable average
lagging (DAL; Cherry and Foster, 2019). Broadly
speaking, they measure “how much of the source
was read by the system to translate a word”. The
latency unit is typically a word. The speech com-
munity quickly adopted these metrics. Unfortu-
nately, these metrics assume a uniform distribution
of words and uniform length of these words in the
speech source. Alternatively, Ansari et al. (2021)
proposed to use a statistical word alignment of the
candidate translation with the corresponding source
transcript. This theoretically allows for more pre-
cise latency evaluation, but it is unclear how the
alignment errors impact the reliability.

In the unsegmented long-form setting, additional
issues arise. In a typical “short-form” segmented
setup, the SST model does inference on a pre-
segmented input. However, the candidate and ref-
erence segmentation into sentences might differ
in the long-form unsegmented regime. Tradition-
ally, this issue was addressed by re-segmenting
the hypothesis based on the reference (Matusov
et al., 2005). After the re-segmentation, a standard
sentence-level evaluation of translation quality and
latency is done. It should be noted that the com-
monly used latency metrics (AL, DAL) cannot be
used in the long-form regime (Iranzo-Sánchez et al.,
2021) without the re-segmentation. Yet, recent
work observed that the re-segmentation introduces
errors (Amrhein and Haddow, 2022). This poses a
risk of incorrect translation and quality assessment
and remains an open research question.

4 Thesis Goals

The goal of our thesis is to achieve a “true” long-
form simultaneous speech translation. This section
outlines the steps we will take to accomplish this
goal.



4.1 Data and Evaluation

In our future research, we will mainly use the
setup similar to the IWSLT shared tasks (Ansari
et al., 2020; Anastasopoulos et al., 2021, 2022), i.e.,
mostly single speaker data. Identical to the IWSLT,
we will treat the TED data as an in-domain setting.
We will consider domains such as parliamentary
speeches (e.g., Europarl-ST Iranzo-Sánchez et al.,
2020b) for the out-of-domain setting. As for the
languages, we will include a diverse set of lan-
guage pairs. A good inspiration might be again the
IWSLT, i.e., English-to-{German, Japanese, Chi-
nese}. Challenging will be the long-form setting,
as to the best of our knowledge, none of the avail-
able data is strictly long-form. Our preliminary
review found that the original TED talks can be re-
constructed from the MuST-C (Cattoni et al., 2021)
development and test set available for English-to-
{German, Japanese, Chinese} language pairs.

As highlighted in the literature review in Sec-
tion 3.5, evaluating the long-form SST remains an
open problem. The quality and latency evaluation
metrics currently used are designed for sentence-
level evaluation. We must re-segment the long hy-
potheses into sentences based on their word align-
ment with provided references to use these metrics
in the long-form regime. Unfortunately, the re-
segmentation introduces errors, which poses a risk
to the evaluation reliability. To tackle this, we will
investigate alternative evaluation strategies. One
potential approach for reducing the alignment error
could be to move the alignment to the sentence
level rather than the word level and allow an m-
to-n mapping between the reference and proposed
sentences, similar to the Gale–Church alignment
algorithm (Gale et al., 1994), with a reasonably
small m and n (e.g., 0 ≤ m,n ≤ 2). To verify the
effectiveness of this method, we need to compare
its correlation with human evaluations.

4.2 Quality-latency tradeoff in SST

The first step of our research concentrates on en-
hancing the quality-latency tradeoff, mainly in the
traditional “short-form” simultaneous speech trans-
lation. We hope the insights and improvements
from the short-form regime will translate into the
long-form regime.

In the research done so far, we already suc-
cessfully reviewed the possibility of “onlinizing”
state-of-the-art offline speech translation models
in Polák et al. (2022). Our observations indicated

that the attention-based encoder-decoder (AED)
models tend to over-generate. This not only affects
the resulting quality but also negatively impacts
the AL latency evaluation reliability. Therefore,
we proposed an improved version of the AL met-
ric, which was later independently proposed un-
der name length-adaptive average lagging (LAAL;
Papi et al., 2022). To remedy the over-generation
problem, we proposed an improved version of the
beam search algorithm in Polák et al. (2023b).
While this led to significant improvements in the
quality-latency tradeoff, the decoding still relied
on label-synchronous decoding. In Polák et al.
(2023a), we proposed a novel SST policy dubbed
“CTC policy” that uses the output of an auxiliary
CTC layer to guide the decoding. The proposed
CTC policy led to even greater improvements in
quality and reduced the real-time factor to 50 %.

Thus far, our research has focused primarily on
the AED architecture. Nonetheless, recent findings
(Anastasopoulos et al., 2022; Agarwal et al., 2023)
suggest that other approaches, such as transducers
(Graves, 2012), yield competitive results. Never-
theless, it remains unclear which approach is the
most advantageous for SST. Our goal will be to
compare these architectures for SST. We will put
a particular emphasis on architectures with latent
alignments (e.g., transducers). Generally, the la-
tent alignment models make a strong monotonic
assumption on the mapping between the source
and the target, which might be problematic for the
translation, typically involving word reordering.
Therefore, we will assess the alignment quality and
potential applications (such as segmentation).

4.3 Towards the Long-Form SST via
On-the-Fly Segmentation

In the second stage, we will concentrate on the long-
form SST by utilizing on-the-fly segmentation and
short-form models from the previous stage.

Drawing inspiration from offline long-form ST,
which primarily emphasizes segmentation, we
consider direct segmentation modeling the most
promising approach (Tsiamas et al., 2022a; Fukuda
et al., 2022). The limitation of these approaches
is that they do not allow out-of-the-box simulta-
neous inference. However, we believe their adap-
tation to the simultaneous regime should be rela-
tively straightforward (e.g., using a unidirectional
encoder) and a custom decoding strategy. The main
challenge here will be integrating this segmenta-



tion with existing models, especially considering
the quality-latency tradeoff.

Our hopes go even further: Can we train a model
to translate and predict the segmentation at the
same time? The translation already contains punc-
tuation marks (full stop, exclamation, and question
marks), so if we knew the alignment between the
translation and the source speech, we could use
this information to segment the utterances directly.
Therefore, we will experiment with various align-
ment approaches and asses their applicability to the
segmentation. The results of our initial investiga-
tion on on-the-fly separation with CTC outputs are
available in Polák and Bojar (2023).

However, we see another valuable use of direct
speech-to-translation alignments — dataset cre-
ation. Today, ST datasets are created using the cas-
caded approach (Iranzo-Sánchez et al., 2020b; Cat-
toni et al., 2021; Salesky et al., 2021). The source
transcript is first forced-aligned to the speech, then
the transcript is word-aligned to the translations,
and finally, these two alignments are used to seg-
ment the source speech into sentences based on the
punctuation in the translation. In fact, this approach
has a critical drawback: it virtually eliminates all
data without a source transcript, preventing the re-
search community from utilizing potentially valu-
able data sources. It is also worth noting that some
languages do not have a writing system, which
makes the direct speech-to-translation alignment
even more attractive. Therefore, if the alignments
show promising results, we will explore the feasi-
bility of E2E speech-to-translation dataset creation.

An additional question is how to accommo-
date long context in the simultaneous regime. As
pointed out in Sections 3.2 to 3.4, the performance
usually drops with a context longer than a few sen-
tences. Some solutions have been suggested (Kim
et al., 2019; Feng et al., 2022), but it remains un-
clear how to adapt these approaches for SST with
the specifics of SST in mind (e.g., computational
constraints, speech input).

4.4 True Long-Form SST

The ultimate goal of our work is to achieve true
long-form simultaneous speech translation. In
other words, we aim to develop an architecture
capable of processing a potentially infinite stream
of speech input without any segmentation or spe-
cial inference algorithm, translating the speech di-
rectly into the target language in real time. Ad-

mittedly, this is a very ambitious goal. However,
there is plenty of evidence that it is feasible. For
example, in long-form ASR, related work has al-
ready observed that the RNN-T and CTC archi-
tectures are capable of long-form regime (Chiu
et al., 2019; Narayanan et al., 2019; Lu et al., 2021;
Zhang et al., 2023; Rekesh et al., 2023). Arguably,
speech recognition is simpler than speech transla-
tion because it monotonically transcribes speech
without reordering. However, the literature also
shows that an architecture like RNN-T can be used
in the “short-form” offline and simultaneous ST
(Yan et al., 2023).

Therefore, based on the previous work in speech
recognition and translation, we will propose a novel
architecture that will allow simultaneous speech
translation of a possibly infinite stream of speech.
We will take inspiration from the existing archi-
tectures but revise them for the specific needs of
simultaneous ST. This will require a particular fo-
cus on speech-to-translation alignment so that the
source speech and target translation do not get out
of sync. This architecture will also contain a “for-
getting” mechanism that will allow the storage of
essential bits of context while preventing mem-
ory issues. Finally, we will address the train-test
mismatch because current hardware and training
methods do not permit models to fit long inputs.

5 Conclusion

In conclusion, this thesis proposal presents an
overview of the challenges involved in simulta-
neous speech translation (SST). The literature re-
view highlighted the limited research on long-form
speech translation. Our research sets out three
main goals with an emphasis on long-form speech
translation. These include improving the general
quality-latency tradeoff in SST, exploring long-
form SST through segmented inference, and ul-
timately achieving true long-form SST modeling.
We placed these goals in the context of related work
and outlined a clear strategy for achieving them.
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