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Abstract—Training with synthetic data has been successfully
used in many domains of deep learning where authentic training
data is scarce. Optical Music Recognition (OMR), especially
recognition of handwritten music, greatly benefits from training
on synthetic data too. In this paper, we explore the challenges of
synthesizing images of sheets of music for training deep learning
OMR models and compare such synthesis to the process of digital
music engraving. We also contrast that with the architecture of
our synthesizer prototype, which was used to achieve state-of-
the-art results by training on the synthetic images only.

Index Terms—Optical Music Recognition, Synthetic Training
Data, Data Augmentation, Deep Learning

I. INTRODUCTION

Most recent advances in Optical Music Recognition (OMR)
have been possible thanks to the use of deep learning models
[1], [4]–[6]. These models, however, require large amounts of
annotated training data, which are difficult to obtain for this
task. Manual annotations in complex schemes, such as Music
Notation Graph (MuNG) [3], are very costly to be produced
in amounts required by supervised deep learning models [2].

In other domains, the exploitation of synthetic training data
has greatly helped with this problem, covering various areas of
computer vision, such as handwritten text recognition, natural
scene text recognition, or optical-flow estimation [10]–[16].
Synthetic data is generated by a computer simulation of a
real-world process. It can be used in situations where the data-
generating process can be accurately simulated.

This paper outlines the challenges of synthesizing training
data for OMR, both printed and handwritten. The second part
of this paper describes the inner workings of our handwritten
music synthesizer prototype Mashcima (Figure 1, top). We
evaluated suitability of our synthetic images for OMR model
training in our previous paper [24], where a model trained
on our synthetic data was compared to other previously
published state-of-the-art models, and the results indicated
superior performance of our approach.

II. SYNTHESIS OF MUSIC SCORES

The idea of using synthetic training data for OMR is not
completely new. Calvo-Zaragoza and Rizo [6] published the

This work described in this paper has been supported by the Czech Science
Foundation (grant no. 19-26934X), CELSA (project no. 19/018), and has been
using data provided by the LINDAT/CLARIAH-CZ Research Infrastructure
(https://lindat.cz), supported by the Ministry of Education, Youth and Sports
of the Czech Republic (project no. LM2018101).

Fig. 1. A sample image created by the Mashcima synthesizer using symbols
from single writer (41) from the MUSCIMA++ dataset (top) and a sample
image from the Camera-PrIMuS synthetic dataset (bottom).

PrIMuS dataset containing images of printed monophonic
music that were created digitally using the engraving tool
Verovio1. An augmentation of this dataset was introduced later,
called Camera-PrIMuS (Figure 1, bottom). It contains the same
music as PrIMuS but the images are distorted and blurred to
simulate the process of taking pictures of physical sheets of
music under various conditions [7]. A similar approach was
also used by Baró et al. [4] to produce images of historical
music documents. The DeepScores dataset of printed music
[8] was created in a similar way to the PrIMuS dataset but
was not constrained to monophonic music. DoReMi [9] is a
new synthetic dataset that also contains printed music and it
provides multiple annotation schemes, each best suitable to a
different stage of OMR.

In all of the above-mentioned works, the synthetic data was
produced using some music engraving tool – a software for
producing printed sheet music. There are no well-used datasets
of synthetic handwritten music, but efforts in such direction
exist. Baró et al. [5] introduced a data augmentation method
based on measure shuffling where a staff of handwritten music
from the MUSCIMA++ dataset [2] was sliced into individual
measures and those were then shuffled and joined again. Our
synthesizer prototype is based on the same idea taken further
– shuffling individual symbols [24].

The production of printed music is called engraving and
there is a variety of software tools available for this task
(MuseScore, Verovio, and Lilypond, to name a few). Using
them to produce synthetic training data is possible but requires
certain modifications. Training data should be diverse in style

1https://www.verovio.org/
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Fig. 2. Demonstration of various challenges of music engraving process.

so that the trained model learns to generalize to unseen music.
Such diversity can be increased e.g. by using multiple music
fonts [6], [8] or by distorting and blurring the produced images
to simulate imperfections introduced by scanning and paper
degradation [4], [7], [23].

While these modifications let us better synthesize printed
music, synthesis of handwritten music requires much more
control over the process. There are music fonts that mimic a
handwritten style, such as the Petaluma font family2, but the
resulting image still contains the same symbol shape in all of
its occurrences. Similarly, the layout system will not introduce
any variability to symbol placement. This is what motivated
us to build a dedicated handwritten music synthesizer, instead
of modifying an existing engraving tool [24].

Straightforward candidates for data synthesis are generative
deep learning models, such as Generative Adversarial Net-
works (GANs) [17] that were successfully used to generate
synthetic images of faces, text, or even cuneiforms [11],
[18], [19]. While GANs are typically suitable for generating
individual symbols, synthesizing entire sheets of music is very
difficult. They also have limited control over their output and
require large amounts of training data. For all these reasons,
GANs seem as not a solution for synthesizing OMR data.

A. Complexities of Digital Music Engraving

This section provides a brief overview of music engraving,
because engravers are currently used for printed music syn-
thesis and we believe most of their architecture will likely be
reused in a handwritten music synthesizer.

The defining problem of music engraving is the positioning
of musical symbols on a blank page. An empty music docu-
ment contains only stafflines and these also define the spatial
unit – the staff space (Figure 3).

Fig. 3. Definition of the staff space (sp) unit (image from CVC-MUSCIMA).

There are many ways to draw a graph-like structure, for
example, a force-directed layout could in-theory be used [20].
In practise, though, a more bottom-up approach is typical.

2https://www.smufl.org/fonts/

MuseScore places objects called segments from left to right
onto the staff. The horizontal size of each segment is computed
based on its type and content, e.g. a chord, rest, barline, clef.
While this segment approach solves the high-level horizontal
placement, there are lots of specialized systems and rules that
handle various edge-cases within and in-between segments.
The complexity of music engraving stems from the unexpected
interactions of these systems, resulting in awkward spacing or
symbol collisions. Below, we provide a list of some of the
challenges and illustrate them in Figure 2.

• Horizontal spacing: more space for longer notes and
distributing evenly the remaining staff space3

• Note clusters: placing notes in a chord to not overlap
• Stem orientation: note orientation in general (pointing

up or down)
• Accidentals and ornaments: allocating additional space

for accidentals, preventing multiple accidentals from
overlapping, placing dots in spaces and not on stafflines

• Beam placement: stretching stems to meet the beam,
tilting the beam

• Slurs and ties: shaping a slur to not intersect notes, yet
stay close to them

• Multiple voices: simultaneous notes from all voices
should be horizontally aligned, two nearby voices must
have stems pointing away from each other

• Lyrics: width of lyrics may influence note positioning
• Tuplets: tuplet markings and numbers interact with

beams and slurs
• Grace notes: share features of notes and ornaments
• Dynamics: hairpins, dynamics, piano pedal marking
• Text: other text around the music, chord names, chord

fingering diagrams, etc.

The precise documentation of how these subsystems are
implemented by the existing tools is usually not available.
However, most of the engraving systems we mentioned are
open-source and the technical details can be inferred from their
code. Some of them feature active forums and communities
willing to answer questions (e.g., MuseScore, see Engraving
improvements in MuseScore 4.04).

The vector shapes of the symbols come from a Music Font
where the very basic musical symbols (noteheads, stems, flags)
are mapped onto Unicode characters and stored in a font file,

3https://musescore.org/en/node/299741 at 13th of October 2022
4https://musescore.org/en/node/330793 at 13th of October 2022
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such as OTF5. The mapping from musical symbols to Unicode
characters is standardized as SMuFL (Standard Music Font
Layout)6.

B. Technical Differences in Handwritten Synthesis

Most existing handwritten music datasets contain images
in raster form because they come from scanned physical
documents. It is therefore convenient to have the synthesizer
use and produce images in raster form as well. This is in op-
position to engraving systems which work with vector images
only. The consequence of this is that we need to harmonize
the data resolution throughout the synthesis process.

We should mention that some datasets of music symbols
contain richer information. For instance, HOMUS [22] con-
tains symbols that are stored as a path, traced by a stylus or a
finger, as it was drawn. This opens doors for sophisticated pen
models that could learn specific handwriting styles. However,
to the best of our knowledge, no such attempts have been
published so far and we will focus on raster-based generation
pipelines.

C. Understanding the Style of Handwriting

The most important difference between printed and hand-
written music synthesis is the need to model the diverse
visual style of handwritten music. We identify three areas that
together compose the handwritten style:

• Layout style
• Symbol style
• Environment style
Layout style is the way in which the writer positions musical

symbols relative to each other. In the previous section we
described how engraving systems focus heavily on achieving
the perfect layout. Such level of precision is not necessary
for handwritten music synthesis because the hand is not as
precise as a printer. While the layout style can, and should,
be modeled, Figure 4 shows that our synthesizer with fixed
layout rules still preserves most of the overall style of the
source writer. To learn the layout style for future synthesizers,
we can leverage the dataset MUSCIMA++ [2].

Fig. 4. A synthetic image with the sloppy handwriting style of writer 49 of
the MUSCIMA++ dataset.

Engraving systems usually justify the staff to fit the width
of the paper. Some human writers do this as well, first laying
out measures and then filling them in, while others just write
eagerly from left to right and leave empty space at the end of
the staff when no more measures fit.

5http://www.microsoft.com/en-us/Typography/OpenTypeSpecification.aspx
6https://www.smufl.org/

TABLE I
SYNTHESIS STAGES IN MASHCIMA

Phase Tasks
1. Input parsing Building internal representation,

adding cross-references (beams, slurs)
2. Symbol synthesis Selecting symbol images
3. Layout synthesis Placing notes (with ornaments),

orienting stems, placing beams,
placing slurs

4. Render Building the final image

Symbol style describes shapes of individual symbols, such
as noteheads, stems, accidentals. A music font cannot be used,
because each instance of the same symbol has slightly different
appearance. This is probably the most interesting area of hand-
written music synthesis and a lot of research can be performed
here. Smaller symbols like noteheads and accidentals can be
synthesized by convolutional models, elongated symbols like
stems, slurs, and beams could benefit from sequential models.
These sequential models could be trained on online symbol
datasets, such as HOMUS [22]. We would argue that a pen
model also belongs to this category, as certain pens affect the
way a music symbol is drawn.

We define the environment style as all the influences that
turn an ideal binarized image to the actual scanned or pho-
tographed image. This includes paper degradation, camera
distortions, blur, noise, stains, etc. Erosion and dilation can
also be used to alter the pen style. These methods have
been used before in printed music recognition and more
general document recognition [4], [7], [23]. We can call this
environment simulation process postprocessing.

III. PROTOTYPING A HANDWRITTEN MUSIC SYNTHESIZER

In this section, we present a prototype implementation of
a handwritten music synthesizer that can be used to generate
training data for OMR. It is called Mashcima and is available
on GitHub7. Initially, we tried to modify existing tools to pro-
duce handwritten-like music scores, however the particularities
of handwritten music described in the previous section lead us
to build a new tool. Our experiments show that training with
synthetic data produced by Mashcima lead to the state-of-the-
art model for handwritten OMR [24].

A. Synthesizer Pipeline

The synthesizer accepts as input a sequential encoding
containing some monophonic music. This encoding is very
similar to the PrIMuS Agnostic Encoding [6]. Agnostic means
the encoding contains note positions, rather than note pitches,
making the recognition task slightly easier. Then, four stages
shown in Table I process this input and build the resulting
image. This image contains only one staff, as seen in all ex-
amples in this paper. Mashcima was designed for monophonic
music because it simplified the synthesis and allowed us to use
the PrIMuS dataset as a source of input sequences [6].

7https://github.com/Jirka-Mayer/Mashcima
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The first stage converts the input encoding into the internal
representation. The core object is the Canvas, which acts
as a container for Canvas Items and implements the layout
synthesis logic. Canvas Items are larger groups of symbols
that take up horizontal space on the staff, for example a
quarter note with accidental and a duration dot; a clef; or a
key signature. A staff is represented as a sequence of Canvas
Items that are placed next to each other, similar to how text
characters are arranged by a word processor (Figure 5). In this
phase we also construct representations of beams and slurs,
which break the sequential nature of the representation.

Fig. 5. Canvas Items (the red boxes) form the basis of horizontal spacing.
The red crosses denote key positioning points, such as notehead centers and
stem tops.

The second stage performs symbol synthesis. In the previous
section of this paper we described various symbol synthesis
approaches, but our synthesizer uses the simplest approach
possible – printing symbol bitmaps from symbol datasets
with no modifications. Specifically, we use symbol masks
from the MUSCIMA++ dataset [2], including the empty staff
image onto which other symbols are placed. This makes the
synthesized images have similar style as the dataset. In the
future we plan to utilize additional symbol datasets [22], [25],
[26].

The bitmap sampling can be restricted to a subset of
writers, giving us control over the handwriting style. The only
modification we do to the sampled bitmaps is the vertical
stretching of stems so that they meet the beam. Also, beams
and slurs are not sampled due to their varied appearance and
complex shape (they should align well with other symbols).
Instead, they are rendered as straight lines and parabolic arcs,
respectively. They are the least believable parts of the synthetic
score, but a dedicated synthesizer would be too costly for a
prototype.

The third synthesis stage is responsible for positioning
symbols relative to each other. It is performed eagerly from
left to right, where each Canvas Item requires some space and
variable padding is added in between. Before a Canvas Item is
placed, we first calculate its internal layout depending on its
content, for example, accidentals and dots around notes make
the Canvas Item wider.

Most of the layout rules determining a symbol position
have the form of a fixed offset plus a random offset drawn
from a uniform distribution. This introduces variability into the
final score, however, this variability has the same hardcoded
distribution for all writers. We do not perform any layout style
learning.

In the final rendering phase, bitmaps are copied onto the
output image. These bitmaps are binarized, but their position

Fig. 6. A synthetic image with staves above and below the main staff
mimicking the looks of a cropped image.

is non-integer, causing interpolation, so the resulting image is
grayscale.

In the previous section of this paper we defined the environ-
ment style and called postprocessing the stage that simulates it.
Our synthesizer can perform only minor affine transformations
of the image. We plan to add a more capable postprocessing
stage in the future.

B. Miscelaneous

In our experiments [24], we noticed that our model did not
learn to output empty sequence when it was given an empty
staff. For this reason, we started inserting random gaps in
the synthetic music, which our model has to learn to ignore.
This spacing algorithm modification was however disabled for
images shown in this paper.

The synthesizer can also render three staves into one image
(possibly using tall barlines), thus further improving the feel
of a cropped image (Figure 6). It also helps the trained model
to learn to ignore the surroundings.

A major assumption we made is the separation of symbol
synthesis from layout synthesis into two stages. When a human
creates a score, they interleave these two stages constantly –
they can, for example, draw notes smaller and tighter when not
enough space is available because of symbols already drawn.
This would require feeding the spatial constraints into the
symbol synthesizer, which makes it only more complicated.

IV. CONCLUSION

A sheet music image synthesizer consists of many smaller,
semi-independent subsystems (notehead synthesis, slur syn-
thesis, beam placement, horizontal spacing). For this reason,
developing a synthesizer is very costly. However, contrasting
that with the cost of annotating enough music sheets in the
MuNG scheme, it becomes a viable alternative, especially
given the promising results shown by our relatively simple
synthesizer. While professional music engraving is, in certain
situations, needlessly complex, we can focus our efforts on the
average case. In such settings, synthetic data becomes a viable
way of building OMR systems. We believe that training data
synthesis will play a crucial role in solving the task of optical
music recognition.
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