Simultaneous Multi-Source Speech Translation

TEL

Dominik Macháček, Dec 14 2022, NAIST

- 1. はじめまして
- 2. Book teaser: The reality of Multi-ling. MT
- 3. Simultaneous Multi-Source Speech Translation
- 4. Human Evaluation of Sim. ST (Continuous Rating)
- 5. MT Metrics Correlate with CR in Sim. Mode
- 6. Summary

Introduction

 Dominik Macháček (ドミニク マハーチェク) Email: machacek@ufal.mff.cuni.cz
 Web: ufal.cz/dominik-machacek

- Dominik Macháček (ドミニク マハーチェク)
 Email: machacek@ufal.mff.cuni.cz
 Web: ufal.cz/dominik-machacek
- 4th year PhD student at ÚFAL departement, Charles University (CUNI), Prague, Czech Republic
- my advisor: Ondřej Bojar

- Dominik Macháček (ドミニク マハーチェク)
 Email: machacek@ufal.mff.cuni.cz
 Web: ufal.cz/dominik-machacek
- 4th year PhD student at ÚFAL departement, Charles University (CUNI), Prague, Czech Republic
- my advisor: Ondřej Bojar
- my background: Computer Science and Computational Linguistics
- my topics: Machine Translation, Simultaneous Speech Translation

- Dominik Macháček (ドミニク マハーチェク)
 Email: machacek@ufal.mff.cuni.cz
 Web: ufal.cz/dominik-machacek
- 4th year PhD student at ÚFAL departement, Charles University (CUNI), Prague, Czech Republic
- my advisor: Ondřej Bojar
- my background: Computer Science and Computational Linguistics
- my topics: Machine Translation, Simultaneous Speech Translation
- On-site internship at NICT

- Dominik Macháček (ドミニク マハーチェク)
 Email: machacek@ufal.mff.cuni.cz
 Web: ufal.cz/dominik-machacek
- 4th year PhD student at ÚFAL departement, Charles University (CUNI), Prague, Czech Republic
- my advisor: Ondřej Bojar
- my background: Computer Science and Computational Linguistics
- my topics: Machine Translation, Simultaneous Speech Translation
- On-site internship at NICT
- Why here? Briefly: our work is related

- Ondřej Bojar, ass. prof. at ÚFAL advisor
- Peter Polák, PhD student at ÚFAL sim. end-to-end ASR and ST
- Dávid Javorský, PhD student at ÚFAL sim. ST evaluation, IWSLT22
- Raj Dabre consultant and mentor at NICT

D2 The Reality of Multi-Lingual MT

Book teaser

The Reality of Multi-Lingual MT

- Kocmi, Macháček, Bojar (2021) ufal.cz/books/2021-kocmi
- Benefits and perils of more than 2 langs. in MT
- Warnings against too optimistic and unjustified explanations!
- Transfer Learning
- Multi-ling. techniques survey
- Practical aspects of deploying
- Good computer cluster
- Inclusivity of research
- Ecological trace, ...

03 Simultaneous Multi-Source ST

lmage source: https://ec.europa.eu/education/knowledge-centre-interpretation/conference-interpreting/conference-interpreting-explained_en

lmage source: https://ec.europa.eu/education/knowledge-centre-interpretation/conference-interpreting/conference-interpreting-explained_en

Image source: https://ec.europa.eu/education/knowledge-centre-interpretation/conference-interpreting/conference-interpreting-explained_en

Image source: https://ec.europa.eu/education/knowledge-centre-interpretation/conference-interpreting/conference-interpreting-explained_en

Image source: https://ec.europa.eu/education/knowledge-centre-interpretation/conference-interpreting/conference-interpreting-explained_en



lmage source: https://ec.europa.eu/education/knowledge-centre-interpretation/conference-interpreting/conference-interpreting-explained_en

Outline

3. Simultaneous Multi-Source Speech Translation

- 3.1 Motivation
- 3.2 Specification
- 3.3 Interpreting in ST
- 3.4 SOTA: "Follow all, switch"
- 3.5 ESIC Evaluation Corpus
- 3.6 Mock ASR Results
- 3.7 Next Plans

3.1 Motivation

for Sim. Multi-Source ST

Quality

Desambiguation: Schloss + lock vs castle

Quality

- Desambiguation: Schloss + lock vs castle
- ASR errors complement each other across languages.

Quality

- Desambiguation: Schloss + lock vs castle
- ASR errors complement each other across languages.
- ▶ No human interaction for detecting and switching the optimal source.

- Quality
 - Desambiguation: Schloss + lock vs castle
 - ASR errors complement each other across languages.
- No human interaction for detecting and switching the optimal source.
- Possibly best from both options:
 - source word-for-word, faithful = too complex to perceive?, fast, not much controllable
 - interpreter brief, simpler, inter-culture transfer, but how reliable?, slower, controllable

- Quality
 - Desambiguation: Schloss + lock vs castle
 - ASR errors complement each other across languages.
- No human interaction for detecting and switching the optimal source.
- Possibly best from both options:
 - source word-for-word, faithful = too complex to perceive?, fast, not much controllable
 - interpreter brief, simpler, inter-culture transfer, but how reliable?, slower, controllable
 - \rightarrow We know little about what do the target users actually need.

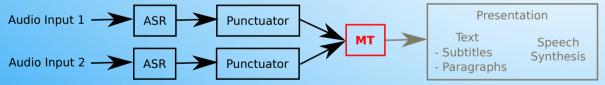
- Quality
 - Desambiguation: Schloss + lock vs castle
 - ASR errors complement each other across languages.
- No human interaction for detecting and switching the optimal source.
- Possibly best from both options:
 - source word-for-word, faithful = too complex to perceive?, fast, not much controllable
 - interpreter brief, simpler, inter-culture transfer, but how reliable?, slower, controllable
 - \rightarrow We know little about what do the target users actually need.
- Risk of no room for improvement in practice:
 - One source always good enough / more sources never good enough.

3.2 Specification

of Sim. Multi-Source ST

Cascaded Speech Translation (ST)

I focus on MT part in cascaded ST with unspecified output modality



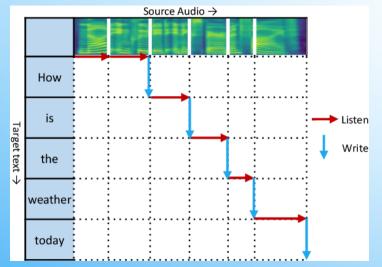
Long-Form Monologue

Authentic use-case

- Often need for simultaneity
- Challenges:
 - Read or spontaneous
 - Disfluencies
 - Native/Non-native
 - Interruptions
 - ...etc.
- No clear sentence boundaries

Image source: https://www.europarl.europa.eu/

Simultaneous



Re-translation vs. Stre

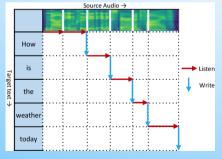
- Re-translate from beginning of sentence each time: rewrite + append
 - Latency vs stability. Top quality.

Source	Output								Erasure
1: Neue	New								-
2: Arzneimittel	New	Medicines							0
könnten	New	Medicines							0
4: Lungen-	New	drugs	may	be	lung				1
5: und	New	drugs	could	be	lung	and			3
6: Eierstockkrebs	New	drugs	may	be	lung	and	ovarian	cancer	4
7: verlangsamen	New	drugs	may	slow	lung	and	ovarian	cancer	5
Content Delay	1	4	6	7	7	7	7	7	

Streaming

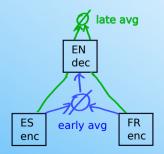
 MT alternates between reading from ASR and translating: no rewrites, only append

Latency vs quality. Top stability.



Multi-Source NMT Models

- one encoder, concat sources to one sequence (Dabre et al., 2017), e.g. Hello Bonjour Namaskar Kamusta Hallo → konnichiwa
- multi-encoder NMT (Firat et al., 2016)



3.3 Interpreting

in Sim. Multi-Source ST

Interpreting Analysis

Shortening: sim. interpreting is by 13% shorter than offline manual translation

Interpreting Analysis

- Shortening: sim. interpreting is by 13% shorter than offline manual translation
 - En-Cs, average document length in number of syllables, ESIC test

Interpreting Analysis

- Shortening: sim. interpreting is by 13% shorter than offline manual translation
 - En-Cs, average document length in number of syllables, ESIC test
- Simplification: words with significantly lower rank in corpus

Interpreting Analysis

- Shortening: sim. interpreting is by 13% shorter than offline manual translation
 - En-Cs, average document length in number of syllables, ESIC test
- Simplification: words with significantly lower rank in corpus
- **Latency**: inpt. 4 sec. behind src, intp+MT appx. 9.8 sec.

Interpreting Analysis

- Shortening: sim. interpreting is by 13% shorter than offline manual translation
 - En-Cs, average document length in number of syllables, ESIC test
- Simplification: words with significantly lower rank in corpus
- **Latency**: inpt. 4 sec. behind src, intp+MT appx. 9.8 sec.
 - \rightarrow similar to relay interpreting, acceptable

These results are from Macháček et al., INTERSPEECH 2021: Lost in Interpreting: Speech Translation from Source or Interpreter?

- Segmentation to sentences: prefer simple sentences, avoid long distance dependencies
 - \rightarrow not 1:1 sentence alignment as in text-to-text translation

- Segmentation to sentences: prefer simple sentences, avoid long distance dependencies
 - \rightarrow not 1:1 sentence alignment as in text-to-text translation
- Language economy: redundancy reduction (ehm), short variants

- Segmentation to sentences: prefer simple sentences, avoid long distance dependencies
 - \rightarrow not 1:1 sentence alignment as in text-to-text translation
- **Language economy**: redundancy reduction (ehm), short variants
- ► Generalization: cats and dogs → pets ... short a carp → a freshwater fish ... when forgot translation Hallwang → some village ... foreign audience doesn't know it anyway

- Segmentation to sentences: prefer simple sentences, avoid long distance dependencies
 - \rightarrow not 1:1 sentence alignment as in text-to-text translation
- **Language economy**: redundancy reduction (ehm), short variants
- ► Generalization: cats and dogs → pets ... short a carp → a freshwater fish ... when forgot translation Hallwang → some village ... foreign audience doesn't know it anyway
- Grammar constructions: e.g. passivisation in En-Jap. to overcome word-order diff. (He et al., 2016)

- Segmentation to sentences: prefer simple sentences, avoid long distance dependencies
 - \rightarrow not 1:1 sentence alignment as in text-to-text translation
- **Language economy**: redundancy reduction (ehm), short variants
- ► Generalization: cats and dogs → pets ... short a carp → a freshwater fish ... when forgot translation Hallwang → some village ... foreign audience doesn't know it anyway
- Grammar constructions: e.g. passivisation in En-Jap. to overcome word-order diff. (He et al., 2016)

(Resource: Interpreting training and theory, e.g. Čeňková, Ešnerová, Olsen)

- Segmentation to sentences: prefer simple sentences, avoid long distance dependencies
 - \rightarrow not 1:1 sentence alignment as in text-to-text translation
- **Language economy**: redundancy reduction (ehm), short variants
- ► Generalization: cats and dogs → pets ... short a carp → a freshwater fish ... when forgot translation Hallwang → some village ... foreign audience doesn't know it anyway
- Grammar constructions: e.g. passivisation in En-Jap. to overcome word-order diff. (He et al., 2016)

 \Rightarrow Let's use: supervised learning, multi-sequence to sequence processing, NMT across sentence boundaries.

Example

- 1. Segmentation into sentences
- 2. Shorter, simpler, removed disfluencies
- 3. "Cultural independence"

Source (En)	Interpreting (En $ ightarrow$ Cs)	Gloss to Interpreting
And we try to compare the municipalities with the class of municipalities with the same size,	Zde máme srovnání obcí které mají srovnatelnou velikost.	Here we-have a-comparison of-municipalities, which have a-comparable size.
so we are not comparing Vienna to Hallwang ,	Nesrovnáváme tedy nějakou vesnici s Vídní	We-are-not-comparing thus some village with Vienna
so we are trying to find similar municipalities so em so it will be a fair	kupříkladu, aby to bylo spravedlivé.	for-instance, so-that it was fair.
compare, comparison.		From Ondřej Bojar, 8. 12. 2022, WMT.

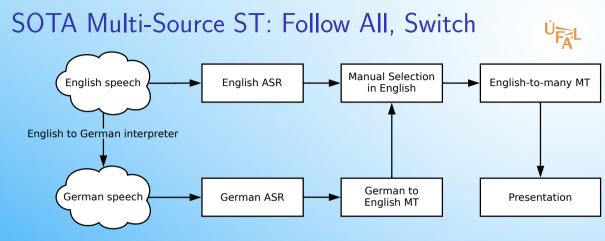
Controllable Speech and Sound

ELITR demo: A debate after the premiere of GPT-2-written play (theAltre.com).

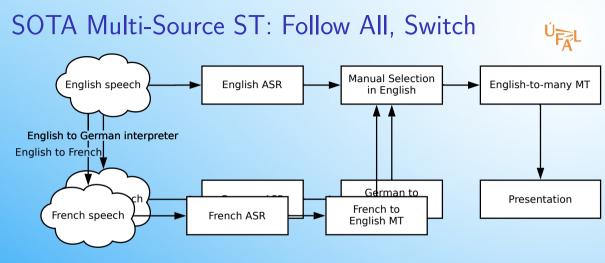
- Orig.: face masks + far microphones + spontaneous speech
- ► Interpreter instructed to make proper sent. boundaries + good sound → saved the sim. ST performance

3.4 "Follow All, Switch"

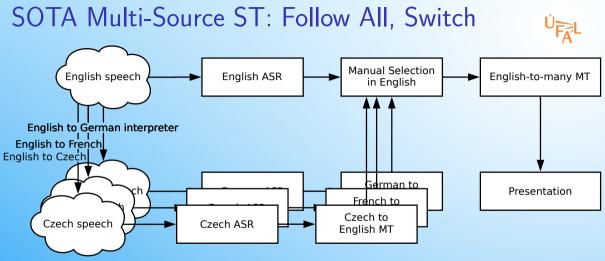
as SOTA Sim. Multi-Source ST



More details in Bojar et al. (2021), **Operating a Complex SLT System with Speakers** and Human Interpreters; https://aclanthology.org/2021.mtsummit-asltrw.3/



More details in Bojar et al. (2021), **Operating a Complex SLT System with Speakers** and Human Interpreters; https://aclanthology.org/2021.mtsummit-asltrw.3/



More details in Bojar et al. (2021), **Operating a Complex SLT System with Speakers** and Human Interpreters; https://aclanthology.org/2021.mtsummit-asltrw.3/

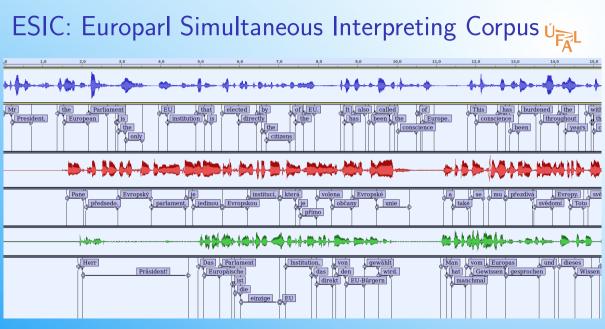
3.5 ESIC Evaluation Corpus

for Sim. Multi-Source ST

ESIC: Europarl Simultaneous Interpreting Corpus UFAL

10 hours, 370 authentic recordings from European Parliament

- 2008-2011: EP publishes both translations and interpreting of plenary sessions into all 23 EU langs.
- original English + simultaneous interpreting into Czech + German
- manual transcriptions, word-level timestamps



ESIC: Europarl Simultaneous Interpreting Corpus UFRL

- video, audio, metadata, parallel translations
- usable by many ways (e.g. interpreting analysis, speech reconstruction, analyzing non-native, fluent vs read speech, ASR, MT, SLT, simultaneous MT evaluation, SOV vs SVO MT...)
- download link: http://hdl.handle.net/11234/1-3719
- please cite as Macháček et al., 2021, Lost in Interpreting: Speech Translation from Source or Interpreter?, INTERSPEECH 2021

3.6 Mock ASR Results

Sim. Multi-Source ST

one source may be always good enough / more sources never enough. Is there any space between, where multi-sourcing is beneficial?

- one source may be always good enough / more sources never enough. Is there any space between, where multi-sourcing is beneficial?
- possibly, multi-sourcing might work only with ASRs of e.g. 10-15 % WER, but not < 10% and > 15%

- one source may be always good enough / more sources never enough. Is there any space between, where multi-sourcing is beneficial?
- possibly, multi-sourcing might work only with ASRs of e.g. 10-15 % WER, but not < 10% and > 15%
- we may not have such ASRs

- one source may be always good enough / more sources never enough. Is there any space between, where multi-sourcing is beneficial?
- possibly, multi-sourcing might work only with ASRs of e.g. 10-15 % WER, but not < 10% and > 15%
- ▶ we may not have such ASRs \rightarrow "corrupt" test sources to X% WER

- one source may be always good enough / more sources never enough. Is there any space between, where multi-sourcing is beneficial?
- possibly, multi-sourcing might work only with ASRs of e.g. 10-15 % WER, but not < 10% and > 15%
- ▶ we may not have such ASRs → "corrupt" test sources to X% WER Lexical Modeling of ASR Errors for Robust Speech Translation, Martucci et al., INTERSPEECH 2021

- one source may be always good enough / more sources never enough. Is there any space between, where multi-sourcing is beneficial?
- possibly, multi-sourcing might work only with ASRs of e.g. 10-15 % WER, but not < 10% and > 15%
- ▶ we may not have such ASRs → "corrupt" test sources to X% WER Lexical Modeling of ASR Errors for Robust Speech Translation, Martucci et al., INTERSPEECH 2021
 - learn Cp/Sub/Del/Ins on (gold; ASR transcript) pairs
 - rewrite unigrams

Multi-Sourcing

Offline Mode

- En+De→Cs multi-way Transf. NMT, bilingual training
- Marian training, PyTorch decoding
- late averaging as ensembling, sources need to be parallel sent.!
- two checkpoints from the same training

Simultaneous Mode

- finetuned for stability and quality
- Streaming with LocalAgreement-n
 - ref. CUNI-KIT IWSLT22
 - internally decode every token, commit tgt. prefix of last n
- proportional alignment of src.
- Average Lagging: count only En

Both evaluated on paralell ESIC translations, not on orig+intp. audio!

Results: Offline Mode

		En WER								
	single-src.	0 %	5 %	10 %	15 %	20 %	25 %	30 %	35 %	40 %
s-src.		33.00 ± 0.00	29.40 ± 0.26	$26.30 {\pm} 0.35$	22.97 ± 0.45	20.40 ± 0.44	$18.00 {\pm} 0.46$	$15.90 {\pm} 0.10$	$13.93 {\pm} 0.23$	12.13 ± 0.06
0 %					26.58 ± 0.47				20.57 ± 0.19	19.63 ± 0.19
5 %	23.53 ± 0.12	$30.70 {\pm} 0.10$	$28.85 {\pm} 0.17$	27.47 ± 0.29	25.75±0.47	$\underline{24.20{\pm}0.36}$	$22.80 {\pm} 0.36$	21.07 ± 0.13	$19.70{\pm}0.14$	$18.68 {\pm} 0.13$
	21.50 ± 0.10									
🚰 15 %	18.93 ± 0.42	$28.63 {\pm} 0.21$	$27.02{\pm}0.15$	25.65 ± 0.17	23.85 ± 0.44	22.52 ± 0.48	21.05 ± 0.40	$19.48 {\pm} 0.26$	$17.90{\pm}0.14$	$16.80 {\pm} 0.24$
	17.23 ± 0.25									
	15.50 ± 0.26									
- 30 %	$13.93 {\pm} 0.21$	26.23 ± 0.45	24.70 ± 0.23	$23.35 {\pm} 0.33$	21.20 ± 0.24	19.73 ± 0.34	18.57 ± 0.29	16.52 ± 0.13	15.10 ± 0.20	14.03 ± 0.05
35 %	12.53 ± 0.32	24.60 ± 0.36	$22.65 {\pm} 0.17$	$21.10{\pm}0.12$	$19.30{\pm}0.35$	$18.20{\pm}0.24$	$16.83 {\pm} 0.38$	15.32 ± 0.21	14.10 ± 0.16	12.90 ± 0.12
40 %	10.80 ± 0.26	23.33 ± 0.15	$21.57 {\pm} 0.15$	$20.00 {\pm} 0.14$	$18.30 {\pm} 0.20$	$16.90{\pm}0.38$	$15.83{\pm}0.38$	14.60 ± 0.12	13.00 ± 0.24	$11.98 {\pm} 0.24$

Table 5: BLEU (avg±stddev) with transcription noise on ESIC dev set. Green-backgrounded area is where the English single-source outperforms German single-source. <u>Black underlined</u> numbers indicate the area where multi-sourcing achieves higher score than both single-sourcing options. In **bold** is near maximum gap from single-source, more than 2.1 BLEU. <u>Red-colored</u> numbers are where at least one single-source scores higher.

Results: Simultaneous Mode

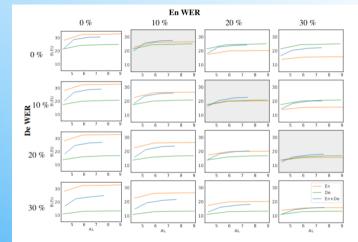


Figure 1: Single-sourcing vs multi-sourcing with different level of artificial ASR noise of the sources (% WER) in simultaneous mode on ESIC dev set. The results are depicted as quality (BLEU) and latency (AL) trade-off of the candidate systems. The plots highlighted by grey background show noise levels where multi-sourcing (En+De, blue line) outperforms both single sources in BLEU at least for AL>5.5.

- it depends, from which language the reference was translated
- not realistic use-case, but "Robustness of Multi-Source MT to Transcription Errors"
- paper under review
- ...work in progress

3.7 Nearest Plans

with Sim. Multi-Source ST

Nearest plan: Realistic use-case

Briefly: focus to multi-source for sim. speech + interpreting

- original + interpreting (not parallel sent.-aligned translations)
- time offsets
- 1. evaluation method
- 2. baseline late averaging of parallel sources
- 3. improve baseline:
 - multi-parallel training
 - training with synthetic interpreting?
 - training with ASR noise?
 - quality estimation

04 uman Evaluati

Human Evaluation of Simultaneous ST

aka Continuous Rating

Challenges in MT Evaluation

Ú_F≩L

Offline text-to-text MT:

Challenges in MT Evaluation

- Offline text-to-text MT:
 - MT quality \rightarrow direct assessment (DA)

Challenges in MT Evaluation

- Offline text-to-text MT:
 - MT quality \rightarrow direct assessment (DA)
 - competent evaluators \rightarrow bilinguals

Offline text-to-text MT:

- MT quality \rightarrow direct assessment (DA)
- competent evaluators \rightarrow bilinguals
- different opinions \rightarrow repetitions, statistics

Offline text-to-text MT:

- MT quality \rightarrow direct assessment (DA)
- competent evaluators \rightarrow bilinguals
- different opinions \rightarrow repetitions, statistics
- Offline ST: Speech as input modality

- Offline text-to-text MT:
 - MT quality \rightarrow direct assessment (DA)
 - competent evaluators \rightarrow bilinguals
 - different opinions \rightarrow repetitions, statistics
- Offline ST: Speech as input modality
- Simultaneous ST:

- Offline text-to-text MT:
 - MT quality \rightarrow direct assessment (DA)
 - competent evaluators \rightarrow bilinguals
 - ▶ different opinions → repetitions, statistics
- Offline ST: Speech as input modality
- Simultaneous ST:
 - Simultaneity

Offline text-to-text MT:

- MT quality \rightarrow direct assessment (DA)
- competent evaluators \rightarrow bilinguals
- ► different opinions → repetitions, statistics
- Offline ST: Speech as input modality

Simultaneous ST:

- Simultaneity
 - only one access to document \rightarrow human memory

Offline text-to-text MT:

- MT quality \rightarrow direct assessment (DA)
- competent evaluators \rightarrow bilinguals
- ► different opinions → repetitions, statistics
- Offline ST: Speech as input modality

Simultaneous ST:

- Simultaneity
 - only one access to document \rightarrow human memory
 - high demands on concentration

Offline text-to-text MT:

- MT quality \rightarrow direct assessment (DA)
- competent evaluators \rightarrow bilinguals
- ► different opinions → repetitions, statistics
- Offline ST: Speech as input modality

Simultaneous ST:

- Simultaneity
 - only one access to document \rightarrow human memory
 - high demands on concentration
 - left-only context, document context

Offline text-to-text MT:

- MT quality \rightarrow direct assessment (DA)
- competent evaluators \rightarrow bilinguals
- ► different opinions → repetitions, statistics
- Offline ST: Speech as input modality

Simultaneous ST:

- Simultaneity
 - only one access to document \rightarrow human memory
 - high demands on concentration
 - left-only context, document context

Presentation options influence latency and readability (in re-translating)

Offline text-to-text MT:

- MT quality \rightarrow direct assessment (DA)
- competent evaluators \rightarrow bilinguals
- ► different opinions → repetitions, statistics
- Offline ST: Speech as input modality

Simultaneous ST:

- Simultaneity
 - only one access to document \rightarrow human memory
 - high demands on concentration
 - left-only context, document context

Presentation options influence latency and readability (in re-translating)

Offline text-to-text MT:

- MT quality \rightarrow direct assessment (DA)
- competent evaluators \rightarrow bilinguals
- different opinions \rightarrow repetitions, statistics
- Offline ST: Speech as input modality

Simultaneous ST:

- Simultaneity
 - only one access to document \rightarrow human memory
 - high demands on concentration
 - left-only context, document context

Presentation options influence latency and readability (in re-translating)

Let's simulate and collect ratings = **Continuous Rating**.

Continuous Rating captures current satisfaction of users.

- Continuous Rating captures
 current satisfaction of users.
- 4 buttons below the audio/video document.

- Continuous Rating captures
 current satisfaction of users.
- 4 buttons below the audio/video document.
- The scores of the rating ranged between 0 (the worst) and 3 (the best).

- Continuous Rating captures
 current satisfaction of users.
- 4 buttons below the audio/video document.
- The scores of the rating ranged between 0 (the worst) and 3 (the best).
- First published by Macháček and Bojar, 2020. Presenting simultaneous translation in limited space. ITAT

Reliability of Continuous Rating (CR)

Javorský, Macháček, Bojar, Continuous Rating as Reliable Human Evaluation of Simultaneous Speech Translation, WMT 2022

- Let's evaluate CR on a downstream task: Comprehension. Factual questions:
 - **open style**, instead of yes/no or multiple choice
 - prepared from every 30 seconds of the source document
 - evaluated manually against reference key

Reliability of Continuous Rating (CR)

Javorský, Macháček, Bojar, Continuous Rating as Reliable Human Evaluation of Simultaneous Speech Translation, WMT 2022

- Let's evaluate CR on a downstream task: Comprehension. Factual questions:
 - **open style**, instead of yes/no or multiple choice
 - prepared from every 30 seconds of the source document
 - evaluated manually against reference key

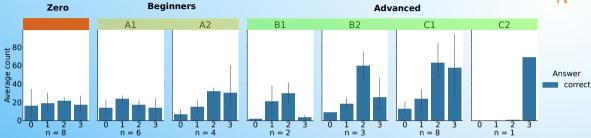
Collected feedback:

- correct/partially correct/incorrect answer
- or "unknown" answer (no guessing), or "forgot"
- ...etc.

Documents, ST and judges

- ► German→Czech, one re-translating Sim. ST system
- I5 German docs., 5-10 min. each, 2h total, informative content, not too technical, audios or videos
- 32 judges, native Czech speakers, different levels of German proficiency

CR vs Answer Correctness



CR vs Answer Correctness

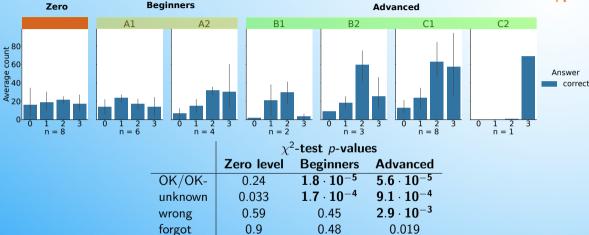


Table: **Bold**: CR and answers are significantly dependent (p < 0.01).

CR means satisfaction with subtitling

CR means satisfaction with subtitlingadvanced bilinguals:

CR means satisfaction with subtitlingadvanced bilinguals:

CR is dependent to comprehension

- CR means satisfaction with subtitling
 advanced bilinguals:
 - CR is dependent to comprehension
 - they can listen to speech and rate adequacy by CR

44 / 57

CR means satisfaction with subtitling advanced bilinguals: CR is dependent to comprehension

they can listen to speech and rate adequacy by CR

 $\triangleright \Rightarrow CR$ can be used to reliably assess satisfaction with subtitling (no questionnaires needed)

Conclusion

Comprehension levels: Users understand a foreign lang. document...

Comprehension levels: Users understand a foreign lang. document...
 33% with re-translating sim. ST

- Comprehension levels: Users understand a foreign lang. document...
 - ▶ 33% with re-translating sim. ST
 - ▶ 36% in sim. mode, without re-translations (oracle)

- Comprehension levels: Users understand a foreign lang. document...
 - ▶ 33% with re-translating sim. ST
 - ▶ 36% in sim. mode, without re-translations (oracle)
 - ▶ 59% (signif.) with MT in offline mode

- Comprehension levels: Users understand a foreign lang. document...
 - 33% with re-translating sim. ST
 - 36% in sim. mode, without re-translations (oracle)
 - ▶ 59% (signif.) with MT in offline mode
 - 81% (signif.) with MT in offline mode in a team (at least one of two persons is correct)

- Comprehension levels: Users understand a foreign lang. document...
 - 33% with re-translating sim. ST
 - 36% in sim. mode, without re-translations (oracle)
 - ▶ 59% (signif.) with MT in offline mode
 - 81% (signif.) with MT in offline mode in a team (at least one of two persons is correct)
 - ▶ 100% (assumingly) if the language is not foreign = no MT, offline access

- Comprehension levels: Users understand a foreign lang. document...
 - 33% with re-translating sim. ST
 - 36% in sim. mode, without re-translations (oracle)
 - ▶ 59% (signif.) with MT in offline mode
 - 81% (signif.) with MT in offline mode in a team (at least one of two persons is correct)
 - ▶ 100% (assumingly) if the language is not foreign = no MT, offline access
- Subtitling layout gives negligible difference on understanding

- Comprehension levels: Users understand a foreign lang. document...
 - 33% with re-translating sim. ST
 - ▶ 36% in sim. mode, without re-translations (oracle)
 - ▶ 59% (signif.) with MT in offline mode
 - 81% (signif.) with MT in offline mode in a team (at least one of two persons is correct)
 - ▶ 100% (assumingly) if the language is not foreign = no MT, offline access
- Subtitling layout gives negligible difference on understanding
- Advanced bilinguals understand more with low latency despite high flicker (sign.)

- Comprehension levels: Users understand a foreign lang. document...
 - 33% with re-translating sim. ST
 - ▶ 36% in sim. mode, without re-translations (oracle)
 - ▶ 59% (signif.) with MT in offline mode
 - 81% (signif.) with MT in offline mode in a team (at least one of two persons is correct)
 - > 100% (assumingly) if the language is not foreign = no MT, offline access
- Subtitling layout gives negligible difference on understanding
- Advanced bilinguals understand more with low latency despite high flicker (sign.)
- Published: data, subtitler implem., evaluation campaign web app

05 MT Metrics Correlate with CR in Sim. Mode

Why CR vs MT Metrics?

Why CR vs MT Metrics?

► CR is expensive

Ú F_AL

- CR is expensive
- MT Metrics are designed for offline text-to-text MT, not Sim. ST. Differences:

- CR is expensive
- MT Metrics are designed for offline text-to-text MT, not Sim. ST. Differences:
 - no document context, no left only context

- CR is expensive
- MT Metrics are designed for offline text-to-text MT, not Sim. ST. Differences:
 - no document context, no left only context
 - no speech modality

Ú_F≩L

- CR is expensive
- MT Metrics are designed for offline text-to-text MT, not Sim. ST. Differences:
 - no document context, no left only context
 - no speech modality
 - no simultaneity = one access, limited time

Ú F_AL

- CR is expensive
- MT Metrics are designed for offline text-to-text MT, not Sim. ST. Differences:
 - no document context, no left only context
 - no speech modality
 - no simultaneity = one access, limited time
 - no latency, reading comfort, frequency of updates

- CR is expensive
- MT Metrics are designed for offline text-to-text MT, not Sim. ST. Differences:
 - no document context, no left only context
 - no speech modality
 - no simultaneity = one access, limited time
 - no latency, reading comfort, frequency of updates
 - no other than translation aspects (if there are any)

- CR is expensive
- MT Metrics are designed for offline text-to-text MT, not Sim. ST. Differences:
 - no document context, no left only context
 - no speech modality
 - no simultaneity = one access, limited time
 - no latency, reading comfort, frequency of updates
 - no other than translation aspects (if there are any)
 - ...but easy, cheap, automatic

- CR is expensive
- MT Metrics are designed for offline text-to-text MT, not Sim. ST. Differences:
 - no document context, no left only context
 - no speech modality
 - no simultaneity = one access, limited time
 - no latency, reading comfort, frequency of updates
 - no other than translation aspects (if there are any)
 - ...but easy, cheap, automatic

MT Metrics are good for translation quality.

- CR is expensive
- MT Metrics are designed for offline text-to-text MT, not Sim. ST. Differences:
 - no document context, no left only context
 - no speech modality
 - no simultaneity = one access, limited time
 - no latency, reading comfort, frequency of updates
 - no other than translation aspects (if there are any)
 - ...but easy, cheap, automatic
 - MT Metrics are good for translation quality.

Translation is important in Sim. ST.

- CR is expensive
- MT Metrics are designed for offline text-to-text MT, not Sim. ST. Differences:
 - no document context, no left only context
 - no speech modality
 - no simultaneity = one access, limited time
 - no latency, reading comfort, frequency of updates
 - no other than translation aspects (if there are any)
 - ...but easy, cheap, automatic
 - MT Metrics are good for translation quality.
 - Translation is important in Sim. ST.
 - Can we replace CR by MT Metrics?

- CR is expensive
- MT Metrics are designed for offline text-to-text MT, not Sim. ST. Differences:
 - no document context, no left only context
 - no speech modality
 - no simultaneity = one access, limited time
 - no latency, reading comfort, frequency of updates
 - no other than translation aspects (if there are any)
 - ...but easy, cheap, automatic
 - MT Metrics are good for translation quality.
 - Translation is important in Sim. ST.
 - Can we replace CR by MT Metrics?

- CR is expensive
- MT Metrics are designed for offline text-to-text MT, not Sim. ST. Differences:
 - no document context, no left only context
 - no speech modality
 - no simultaneity = one access, limited time
 - no latency, reading comfort, frequency of updates
 - no other than translation aspects (if there are any)
 - ...but easy, cheap, automatic
 - MT Metrics are good for translation quality.

Translation is important in Sim. ST.

Can we replace CR by MT Metrics? If yes, why?

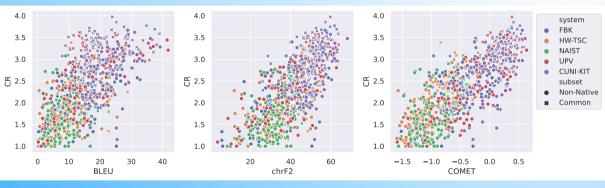
CR in IWSLT22 En-De Sim. ST

Macháček, Bojar, Dabre (2022): MT Metrics Correlate with Human Ratings of Simultaneous Speech Translation. arxiv.org/abs/2211.08633

FBK, NAIST, UPV, HW-TSC, CUNI-KIT, each in 3 latency regimes

- 2 subsets: Common TED talks, Non-Native, 60 documents
- in total 900 document candidate translations
- 1584 rating sessions each is one evaluator, one document, one system and latency candidate

Doc-Level Correlation

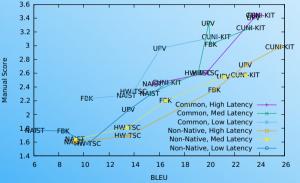


Averaged document ratings

subsets	num.	BLEU	chrF2	COMET
both	823	0.65	0.73	0.80
Common	228	0.42	0.63	0.76
Non-native	595	0.70	0.70	0.75

Table: Pearson correlation coefficients for CR vs MT metrics BLEU, chrF2 and COMET for averaged document ratings by all 5 SST systems and 3 latency regimes. When the coefficient is less than 0.6 (in gray), the correlation is not considered as strong. Significance values are p < 0.01 in all cases, meaning strong confidence.

Test-Level Correlation



Slide from Ondřej Bojar, WMT22. Available in Findings IWSLT22.

- BLEU correlates very well with continuous rating on each test set part.
 - Pearson across systems and latency regimes is:
 - .898 for the Common part.
 - .933 for the Non-native part.
 - .858 when considered together.

Conclusion on CR vs MT Correlation

- BLEU, chrF2 and COMET can be used to assess CR at least on the level of test sets
- COMET also on level of documents

Conclusion on CR vs MT Correlation

- BLEU, chrF2 and COMET can be used to assess CR at least on the level of test sets
- COMET also on level of documents

Limitations:

- En-De only, 5 systems from IWSLT 2022 only
- maybe future Sim. ST systems show divergence of CR and offline MT metrics

Remark: Unfair Comparison

- ▶ 900 document candidate transl., 823 document CR ⇒ some are not rated at all!
- It is unfair to put them on one scale:

	Common			Non-native		
System	Low	Medium	High	Low	Medium	High
CUNI-KIT	3.13	3.26	3.44	2.46	2.57	2.98
UPV	2.96	3.32	3.40	2.07	2.55	2.72
FBK	2.23	3.02	3.44	1.76	2.20	2.36
HW-TSC	2.34	2.60	2.60	1.58	1.81	1.69
NAIST	2.28	2.31	2.44	1.77	1.64	1.60
Avg±Std.d.	$2.59{\pm}0.38$	$2.90{\pm}0.39$	$3.06 {\pm} 0.45$	$1.93{\pm}0.31$	$2.15{\pm}0.38$	$2.27{\pm}0.55$
Interpreting		2.99			3.22	

Table: Test-level aggregated En-De CR scores from IWSLT22 Findings. It is unfair comparison because it is not ensured that all systems are rated on the same documents.

Reference for Sim. ST: translation, or interpreting?

Reference for Sim. ST: translation, or interpreting? What correlates better to CR.

 Reference for Sim. ST: translation, or interpreting? What correlates better to CR.
 Probably depends on domain.

- Reference for Sim. ST: translation, or interpreting? What correlates better to CR.
 Probably depends on domain.
- Candidate-reference sent. segm. mismatch how to use BLEU and chrF2?

- Reference for Sim. ST: translation, or interpreting? What correlates better to CR.
 Probably depends on domain.
- Candidate-reference sent. segm. mismatch how to use BLEU and chrF2? mwerSegmenter? doc-level sequences?

- Reference for Sim. ST: translation, or interpreting? What correlates better to CR.
 Probably depends on domain.
- Candidate-reference sent. segm. mismatch how to use BLEU and chrF2? mwerSegmenter? doc-level sequences? What correlates better to CR.

06 Summary

- Book: The reality of Multi-lingual MT
- Simultaneous Multi-Source Speech Translation
- Continuous Rating, MT Metrics Correlate in Sim. Mode



- Book: The reality of Multi-lingual MT
- Simultaneous Multi-Source Speech Translation
- Continuous Rating, MT Metrics Correlate in Sim. Mode

User satisfaction



- Book: The reality of Multi-lingual MT
- Simultaneous Multi-Source Speech Translation
- Continuous Rating, MT Metrics Correlate in Sim. Mode

User satisfaction > Comprehension questionnaires



- Book: The reality of Multi-lingual MT
- Simultaneous Multi-Source Speech Translation
- Continuous Rating, MT Metrics Correlate in Sim. Mode

User satisfaction > Comprehension questionnaires > > Continuous Rating



- Book: The reality of Multi-lingual MT
- Simultaneous Multi-Source Speech Translation
- Continuous Rating, MT Metrics Correlate in Sim. Mode

User satisfaction > Comprehension questionnaires > > Continuous Rating > MT Metrics

Thank you!