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はじめまして

▶ Dominik Macháček (ドミニク マハーチェク)
Email: machacek@ufal.mff.cuni.cz
Web: ufal.cz/dominik-machacek

▶ 4th year PhD student at ÚFAL departement, Charles University
(CUNI), Prague, Czech Republic

▶ my advisor: Onďrej Bojar

▶ my background: Computer Science and Computational Linguistics

▶ my topics: Machine Translation, Simultaneous Speech Translation

▶ On-site internship at NICT

▶ Why here? Briefly: our work is related
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▶ Onďrej Bojar, ass. prof. at ÚFAL – advisor
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The Reality of Multi-Lingual MT
Kocmi, Macháček, Bojar (2021)
ufal.cz/books/2021-kocmi

▶ Benefits and perils of more than 2 langs. in MT

▶ Warnings against too optimistic and unjustified explanations!

▶ Transfer Learning

▶ Multi-ling. techniques survey

▶ Practical aspects of deploying

▶ Good computer cluster

▶ Inclusivity of research

▶ Ecological trace, ...
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Speech Translation from Source AND Interpreter

Image source: https://ec.europa.eu/education/knowledge-centre-interpretation/conference-interpreting/conference-interpreting-explained_en
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Outline
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3.1
Motivation

for Sim. Multi-Source ST

11 / 57



Benefits and Risks of Source+Interpreter ST
▶ Quality

▶ Desambiguation: Schloss + lock vs castle

▶ ASR errors complement each other across languages.

▶ No human interaction for detecting and switching the optimal source.
▶ Possibly best from both options:

▶ source – word-for-word, faithful = too complex to perceive?, fast,
not much controllable

▶ interpreter – brief, simpler, inter-culture transfer, but how reliable?, slower,
controllable

→ We know little about what do the target users actually need.
▶ Risk of no room for improvement in practice:

▶ One source always good enough / more sources never good enough.
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3.2
Specification

of Sim. Multi-Source ST
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Cascaded Speech Translation (ST)

▶ I focus on MT part in cascaded ST with unspecified output modality

Audio Input 1 ASR Punctuator

MT

Presentation

Text Speech 
Synthesis- Subtitles

- ParagraphsAudio Input 2 ASR Punctuator

14 / 57



Long-Form Monologue

▶ Authentic use-case

▶ Often need for simultaneity
▶ Challenges:

▶ Read or spontaneous
▶ Disfluencies
▶ Native/Non-native
▶ Interruptions
▶ ...etc.

▶ No clear sentence boundaries
Image source: https://www.europarl.europa.eu/
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Simultaneous

Reprinted from Ren et al., 2020; SimulSpeech: End-to-End Simultaneous Speech to Text Translation
16 / 57



Re-translation vs. Streaming

▶ Re-translate from beginning of
sentence each time:
rewrite + append

▶ Latency vs stability. Top quality.

▶ MT alternates between reading
from ASR and translating:
no rewrites, only append

▶ Latency vs quality. Top stability.

17 / 57



Multi-Source NMT Models

▶ one encoder, concat sources to one sequence (Dabre et al., 2017), e.g.
Hello Bonjour Namaskar Kamusta Hallo → konnichiwa

▶ multi-encoder NMT (Firat et al., 2016)

ES
enc

FR
enc

EN
dec

early avg

late avg
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3.3
Interpreting

in Sim. Multi-Source ST
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Interpreting Analysis

▶ Shortening: sim. interpreting is by 13% shorter than offline manual
translation

▶ En-Cs, average document length in number of syllables, ESIC test

▶ Simplification: words with significantly lower rank in corpus

▶ Latency: inpt. 4 sec. behind src, intp+MT appx. 9.8 sec.
→ similar to relay interpreting, acceptable

These results are from Macháček et al., INTERSPEECH 2021: Lost in
Interpreting: Speech Translation from Source or Interpreter?
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Interpreting Strategies
(Resource: Interpreting training and theory, e.g. Čeňková, Ešnerová, Olsen)

▶ Segmentation to sentences: prefer simple sentences, avoid
long distance dependencies
→ not 1:1 sentence alignment as in text-to-text translation

▶ Language economy: redundancy reduction (ehm), short variants
▶ Generalization: cats and dogs → pets ... short

a carp → a freshwater fish ... when forgot translation
Hallwang → some village ... foreign audience doesn’t know it anyway

▶ Grammar constructions: e.g. passivisation in En-Jap. to overcome
word-order diff. (He et al., 2016)

⇒ Let’s use: supervised learning, multi-sequence to sequence processing,
NMT across sentence boundaries.
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Example
1. Segmentation into sentences
2. Shorter, simpler, removed disfluencies
3. “Cultural independence”

Source (En) Interpreting (En→Cs) Gloss to Interpreting

And we try to compare the Zde máme srovnáńı obćı Here we-have a-comparison
municipalities with the které maj́ı srovnatelnou of-municipalities, which
class of municipalities with velikost. have a-comparable size.
the same size,
so we are not comparing Nesrovnáváme tedy We-are-not-comparing thus
Vienna to Hallwang, nějakou vesnici s V́ıdńı some village with Vienna
so we are trying to find kup̌ŕıkladu, aby to bylo for-instance, so-that it was
similar municipalities spravedlivé. fair.
so em so it will be a fair
compare, comparison. From Onďrej Bojar, 8. 12. 2022, WMT.
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Controllable Speech and Sound

▶ ELITR demo: A debate after the premiere of GPT-2-written play
(theAItre.com).

▶ Orig.: face masks + far microphones + spontaneous speech
▶ Interpreter instructed to make proper sent. boundaries + good sound

→ saved the sim. ST performance
23 / 57
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3.4
“Follow All, Switch”

as SOTA Sim. Multi-Source ST
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SOTA Multi-Source ST: Follow All, Switch

English speech English ASR

English to German interpreter

Manual Selection
in English

German speech German ASR
German to
English MT Presentation

English-to-many MT

More details in Bojar et al. (2021), Operating a Complex SLT System with Speakers
and Human Interpreters; https://aclanthology.org/2021.mtsummit-asltrw.3/

25 / 57
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3.5
ESIC Evaluation Corpus

for Sim. Multi-Source ST
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ESIC: Europarl Simultaneous Interpreting Corpus

▶ 10 hours, 370 authentic recordings from European Parliament
▶ 2008-2011: EP publishes both translations and interpreting of plenary

sessions into all 23 EU langs.

▶ original English + simultaneous interpreting into Czech + German

▶ manual transcriptions, word-level timestamps

27 / 57



ESIC: Europarl Simultaneous Interpreting Corpus
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ESIC: Europarl Simultaneous Interpreting Corpus

▶ video, audio, metadata, parallel translations

▶ usable by many ways (e.g. interpreting analysis, speech reconstruction, analyzing

non-native, fluent vs read speech, ASR, MT, SLT, simultaneous MT evaluation, SOV vs SVO MT...)

▶ download link: http://hdl.handle.net/11234/1-3719

▶ please cite as
Macháček et al., 2021, Lost in Interpreting: Speech Translation from Source or
Interpreter?, INTERSPEECH 2021

29 / 57
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3.6
Mock ASR Results

Sim. Multi-Source ST
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Mock ASR for Evaluation

▶ one source may be always good enough / more sources never enough.
Is there any space between, where multi-sourcing is beneficial?

▶ possibly, multi-sourcing might work only with ASRs of e.g. 10-15 %
WER, but not < 10% and > 15%

▶ we may not have such ASRs → “corrupt” test sources to X% WER
Lexical Modeling of ASR Errors for Robust Speech Translation, Martucci et al.,
INTERSPEECH 2021
▶ learn Cp/Sub/Del/Ins on (gold; ASR transcript) pairs
▶ rewrite unigrams
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Multi-Sourcing

Offline Mode

▶ En+De→Cs multi-way Transf.
NMT, bilingual training

▶ Marian training, PyTorch
decoding

▶ late averaging – as ensembling,
sources need to be parallel sent.!

▶ two checkpoints from the same
training

Simultaneous Mode

▶ finetuned for stability and quality
▶ Streaming with

LocalAgreement-n
▶ ref. CUNI-KIT IWSLT22
▶ internally decode every token,

commit tgt. prefix of last n

▶ proportional alignment of src.

▶ Average Lagging: count only En

Both evaluated on paralell ESIC translations, not on orig+intp. audio!
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Results: Offline Mode

33 / 57



Results: Simultaneous Mode
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Limitations

▶ it depends, from which language the reference was translated

▶ not realistic use-case, but
”Robustness of Multi-Source MT to Transcription Errors”

▶ paper under review

▶ ...work in progress

35 / 57



3.7
Nearest Plans

with Sim. Multi-Source ST
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Nearest plan: Realistic use-case

▶ Briefly: focus to multi-source for sim. speech + interpreting
▶ original + interpreting (not parallel sent.-aligned translations)
▶ time offsets

1. evaluation method

2. baseline – late averaging of parallel sources
3. improve baseline:

▶ multi-parallel training
▶ training with synthetic interpreting?
▶ training with ASR noise?
▶ quality estimation

37 / 57



04
Human Evaluation
of Simultaneous ST

aka Continuous Rating
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Challenges in MT Evaluation

▶ Offline text-to-text MT:

▶ MT quality → direct assessment (DA)
▶ competent evaluators → bilinguals
▶ different opinions → repetitions, statistics

▶ Offline ST: Speech as input modality
▶ Simultaneous ST:

▶ Simultaneity

▶ only one access to document → human memory
▶ high demands on concentration
▶ left-only context, document context

▶ Presentation options influence latency and readability (in re-translating)

Let’s simulate and collect ratings = Continuous Rating.
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Continuous Rating

▶ Continuous Rating captures
current satisfaction of users.

▶ 4 buttons below the audio/video
document.

▶ The scores of the rating ranged
between 0 (the worst) and 3 (the
best).

▶ First published by Macháček and Bojar,

2020. Presenting simultaneous translation in

limited space. ITAT
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Reliability of Continuous Rating (CR)

Javorský, Macháček, Bojar, Continuous Rating as Reliable Human
Evaluation of Simultaneous Speech Translation, WMT 2022

▶ Let’s evaluate CR on a downstream task: Comprehension.
Factual questions:
▶ open style, instead of yes/no or multiple choice
▶ prepared from every 30 seconds of the source document
▶ evaluated manually against reference key

Collected feedback:
▶ correct/partially correct/incorrect answer
▶ or “unknown” answer (no guessing), or “forgot”
▶ ...etc.
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Javorský, Macháček, Bojar, Continuous Rating as Reliable Human
Evaluation of Simultaneous Speech Translation, WMT 2022

▶ Let’s evaluate CR on a downstream task: Comprehension.
Factual questions:
▶ open style, instead of yes/no or multiple choice
▶ prepared from every 30 seconds of the source document
▶ evaluated manually against reference key

Collected feedback:
▶ correct/partially correct/incorrect answer
▶ or “unknown” answer (no guessing), or “forgot”
▶ ...etc.

41 / 57



Documents, ST and judges

▶ German→Czech, one re-translating Sim. ST system

▶ 15 German docs., 5-10 min. each, 2h total, informative content,
not too technical, audios or videos

▶ 32 judges, native Czech speakers, different levels of German proficiency
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CR vs Answer Correctness
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Answer

correct

Beginners AdvancedZero

χ2-test p-values
Zero level Beginners Advanced

OK/OK- 0.24 1.8 · 10−5 5.6 · 10−5

unknown 0.033 1.7 · 10−4 9.1 · 10−4

wrong 0.59 0.45 2.9 · 10−3

forgot 0.9 0.48 0.019

Table: Bold: CR and answers are significantly dependent (p < 0.01).
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Conclusion

▶ CR means satisfaction with subtitling

▶ advanced bilinguals:

▶ CR is dependent to comprehension
▶ they can listen to speech and rate adequacy by CR

▶ ⇒ CR can be used to reliably assess satisfaction with subtitling
(no questionnaires needed)
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Other Results in Jávorský et al., WMT22

▶ Comprehension levels: Users understand a foreign lang. document...

▶ 33% with re-translating sim. ST
▶ 36% in sim. mode, without re-translations (oracle)
▶ 59% (signif.) with MT in offline mode
▶ 81% (signif.) with MT in offline mode in a team

(at least one of two persons is correct)
▶ 100% (assumingly) if the language is not foreign = no MT, offline access

▶ Subtitling layout gives negligible difference on understanding

▶ Advanced bilinguals understand more with low latency despite high
flicker (sign.)

▶ Published: data, subtitler implem., evaluation campaign web app
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05
MTMetrics Correlate
with CR in Sim. Mode
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Why CR vs MT Metrics?

▶ CR is expensive

▶ MT Metrics are designed for offline text-to-text MT, not Sim. ST.
Differences:

▶ no document context, no left only context
▶ no speech modality
▶ no simultaneity = one access, limited time
▶ no latency, reading comfort, frequency of updates
▶ no other than translation aspects (if there are any)
▶ ...but easy, cheap, automatic

MT Metrics are good for translation quality.

Translation is important in Sim. ST.

Can we replace CR by MT Metrics? If yes, why?
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CR in IWSLT22 En-De Sim. ST

Macháček, Bojar, Dabre (2022): MT Metrics Correlate with Human Ratings of

Simultaneous Speech Translation. arxiv.org/abs/2211.08633

▶ FBK, NAIST, UPV, HW-TSC, CUNI-KIT, each in 3 latency regimes

▶ 2 subsets: Common TED talks, Non-Native, 60 documents

▶ in total 900 document candidate translations

▶ 1584 rating sessions – each is one evaluator, one document, one system
and latency candidate

48 / 57
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Doc-Level Correlation
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Doc-Level Correlation

Averaged document ratings
subsets num. BLEU chrF2 COMET
both 823 0.65 0.73 0.80
Common 228 0.42 0.63 0.76
Non-native 595 0.70 0.70 0.75

Table: Pearson correlation coefficients for CR vs MT metrics BLEU, chrF2 and COMET for
averaged document ratings by all 5 SST systems and 3 latency regimes. When the
coefficient is less than 0.6 (in gray), the correlation is not considered as strong. Significance
values are p < 0.01 in all cases, meaning strong confidence.
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Test-Level Correlation
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▶ BLEU correlates very well with
continuous rating on each test
set part.

▶ Pearson across systems and
latency regimes is:
▶ .898 for the Common part.
▶ .933 for the Non-native part.
▶ .858 when considered together.

Slide from Onďrej Bojar, WMT22. Available in Findings IWSLT22.
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Conclusion on CR vs MT Correlation

▶ BLEU, chrF2 and COMET can be used to assess CR at least on the
level of test sets

▶ COMET also on level of documents

Limitations:
▶ En-De only, 5 systems from IWSLT 2022 only
▶ maybe future Sim. ST systems show divergence of CR and offline MT metrics
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Remark: Unfair Comparison
▶ 900 document candidate transl., 823 document CR

⇒ some are not rated at all!
▶ It is unfair to put them on one scale:

Common Non-native
System Low Medium High Low Medium High
CUNI-KIT 3.13 3.26 3.44 2.46 2.57 2.98
UPV 2.96 3.32 3.40 2.07 2.55 2.72
FBK 2.23 3.02 3.44 1.76 2.20 2.36
HW-TSC 2.34 2.60 2.60 1.58 1.81 1.69
NAIST 2.28 2.31 2.44 1.77 1.64 1.60
Avg±Std.d. 2.59±0.38 2.90±0.39 3.06±0.45 1.93±0.31 2.15±0.38 2.27±0.55
Interpreting 2.99 3.22

Table: Test-level aggregated En-De CR scores from IWSLT22 Findings. It is unfair
comparison because it is not ensured that all systems are rated on the same documents.

53 / 57



Next Ideas with CR from IWSLT22

▶ Reference for Sim. ST: translation, or interpreting?

What correlates better to CR.
Probably depends on domain.

▶ Candidate-reference sent. segm. mismatch – how to use BLEU and
chrF2?
mwerSegmenter? doc-level sequences?
What correlates better to CR.
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06
Summary
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Summary

▶ Book: The reality of Multi-lingual MT

▶ Simultaneous Multi-Source Speech Translation

▶ Continuous Rating, MT Metrics Correlate in Sim. Mode

User satisfaction > Comprehension questionnaires >
> Continuous Rating > MT Metrics

56 / 57



Summary

▶ Book: The reality of Multi-lingual MT

▶ Simultaneous Multi-Source Speech Translation

▶ Continuous Rating, MT Metrics Correlate in Sim. Mode

User satisfaction

> Comprehension questionnaires >
> Continuous Rating > MT Metrics

56 / 57



Summary

▶ Book: The reality of Multi-lingual MT

▶ Simultaneous Multi-Source Speech Translation

▶ Continuous Rating, MT Metrics Correlate in Sim. Mode

User satisfaction > Comprehension questionnaires

>
> Continuous Rating > MT Metrics

56 / 57



Summary

▶ Book: The reality of Multi-lingual MT

▶ Simultaneous Multi-Source Speech Translation

▶ Continuous Rating, MT Metrics Correlate in Sim. Mode

User satisfaction > Comprehension questionnaires >
> Continuous Rating

> MT Metrics

56 / 57



Summary

▶ Book: The reality of Multi-lingual MT

▶ Simultaneous Multi-Source Speech Translation

▶ Continuous Rating, MT Metrics Correlate in Sim. Mode

User satisfaction > Comprehension questionnaires >
> Continuous Rating > MT Metrics

56 / 57



Thank you!
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