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Figure 5: Cross-Domain Robustness

» We propose a novel approach, RMLNMT (Robust Meta-Learning Framework

for Neural Machine Translation Domain Adaptation), which improves the ro- %
bustness of existing meta-learning models.
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NMT domain adaptation reaching both high domain adaptability and domain
robustness (both in the seen domains and unseen domains).

« Previous meta-learning approaches (Sharaf et al., 2020; Zhan et al., 2021)
are based on token-size based sampling, which proved be not balanced
since some tasks did not contain all seen domains, especially in the early 30 -

Figure 3: Different Sampling Strategy
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e « We found that domain robustness dominates the results compared to do-
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 Following the balanced sampling, the process of meta-training is to update
the current model parameter from 6 to 6’ using a MAML (Finn et al., 2017)
objective with the traditional sentence-level meta-learning loss £+ (fy) and
the word-level loss 't (fy) (L™ of T).

Figure 4: Different Fine-tuning Strategy
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Code: https://github.com/lavine-Imu/RMLNMT Blog: https://lavine-Imu.github.io/lavine_blog
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