Neural String Edit Distance

Jindřich Libovický

Alexander Fraser

Presented at the 6th Workshop on Structured Prediction for NLP May 27, 2022, Dublin

Levenshtein Distance

Neural Model

Cognate Detection

Transliteration & Grapheme-to-Phoneme

Levenshtein Distance

Black-box architectures vs. Levenshtein distance

- Char-level tasks use the same architectures as e.g., MT
- Overkill: large, hardly interpretable
- Levenshtein distance: transparent, interpretable...

...but weak and not flexible We fix that!

Levenshtein Distance Example

		k	i	t	t	е	n
	0	1	2	3	4	5	6
S	1	1	2	3	4	5	6
i	2	2	1	2	3	4	5
t	3	3	2	1	2	3	4
t	4	4	3	2	1	2	3
i	5	5	4	3	2	2	3
n	6	6	5	4	3	3	2
g	7	7	6	5	4	4	3

- empty string to empty string costs zero
- first column: empty string \rightarrow sitting
- first row: delete kitten
- substring kit \rightarrow sittin
 - we got rid of ki and have sitti change $\texttt{t} \rightarrow \texttt{n}$ cost 4 + 1 = 5
 - we have sitin and got rid of ki delete t $\label{eq:cost} \mbox{cost } 5\,+\,1\,=\,6$
 - already got rid of kit and have sitin add n cost $3 + 1 = 4 \leftarrow minimum$

Transliteration from latin to cyrilics: $\texttt{Praha} ightarrow \Pi \texttt{para}$

- All characters are equivalent, but diffent UTF characters
- Either an expert can write the rules for the characer costs
- Or we can try to learn the weights from data

Learnable Edit Distance (Ristad and Yianilos, 1998)

- Probabilistic formulation: one multimomial distribution over all possible operations
- Transcription probability (simple modification of the algorithm)
- Trained using Expectation-Maximization algorithm

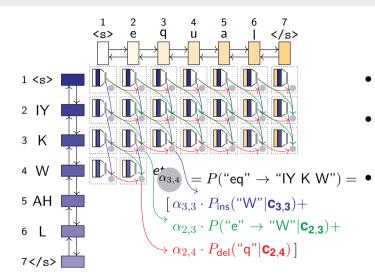
More flexible: weights are estimated from the data Rigid costs: do not depend on prefix or suffix

Neural Model

Do the same thing...

...and backpropagate the objective into a contextualized neural representation.

Model



- Get contextualized representation of input charaters
- Symbol pairs: contatenate their representation and apply projection
- Estimate the insert, delete and substitute operations probabilites from these representations

The original EM algorithm assumes a **discrete operation table**... ...but we have **continuous representations**.

- Expected distribution (forward-backard algorithm) compared to actual distribution optimize **KL divergence** between the predicted and expected distribution
- Directly optimize task-specific loss:
 - String-pair classification: optimize classification likelihood
 - String transduction: optimize output symbol negative log likelihood

Cognate Detection

Task

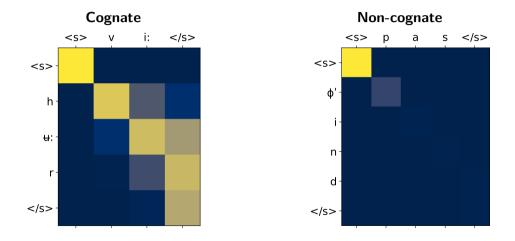
For a pair of IPA strings...

zeleni:	zɛ'łɛnɪj	\checkmark
'hrubi:	pyknós	×
tu	tam	\checkmark

...decide if they have the same diachronic origin.

- Databases for Indo-European and Austro-Asiatic languages (Rama et al., 2018)
- Sampled positive and negative pairs, F1-measure for hits
- Use neural string edit distance to estimate the cognate probability

Example: Scores in the dynamic programing table



Results

Method	# param.	Indo-European		Austro-Asiatic	
	// para	$F_1 \uparrow$	Time	$F_1 \uparrow$	Time
Learnable edit distanc	e 0.2M	32.8	0.4h	10.3	0.2h
Transformer [CLS]	2.7M	93.5	0.7h	78.5	0.6h
STANCE RNN	1.9M	80.6	0.3h	16.7	0.2h
س unigram	0.5M	80.1	1.5h	48.4	0.7h
CNN (3-gram)	0.7M	93.9	0.9h	77.9	0.5h
RNN	1.9M	97.1	1.9h	84.0	1.2h

Transliteration & Grapheme-to-Phoneme

String Transduction Tasks

• 13k training, 1.5k validation and testing (Rosca and Breuel, 2016)

Grapheme-to-Phoneme Conversion

- CMUDict dataset (Weide, 2005)
- 108k training, 5k valid., 13k test
- Multiple transcriptions, during evaluation, choose the closest one

PERRON	P EH R AH N
TABUCHI	T AA B UW CH IY
CUVELIER	K Y UW V L IY ER
CONSUMERS'	K AH N S UW M ER Z
KINGDOMS	K IH NG D AH M Z

Evaluation with Word Error Rate (WER) and Character Error Rate (CER)

- Unidirectional representation of the target
- Deletion probability must not depend on the last target character
- Dirty trick: Added attention from the target representaiton to source representation

Method		# Param.	CER↓	WER↓	Time
RNN Seq2seq		3.3M	22.0	75.8	12m
Transformer		3.1M	22.9	78.5	11m
ω u	nigram	0.7M	31.2	85.0	36m
suno	NN 3-gram	1.1M	24.5	80.1	41m
R	NN	2.9M	22.0	77.4	60m

Method		# Param.	CER↓	WER↓	$Align.\uparrow$	Time
RNN Seq2seq		3.3M	3.5	23.6	24.5	1.8h
Transformer		3.1M	6.5	26.6	33.2	1.1h
ours	unigram	0.7M	20.6	66.3	59.5	2.4h
	CNN 3-gram	1.1M	12.8	48.4	38.1	2.5h
	RNN	2.9M	7.3	31.9	38.9	2.3h

Summary

- Generalized learnable edit distance for neural representations
- Can be used for string-pair classification and string transduction
- Competitive performance, better interpertability

https://ufal.mff.cuni.cz/jindrich-libovicky

- Taraka Rama, Johann-Mattis List, Johannes Wahle, and Gerhard Jäger. Are automatic methods for cognate detection good enough for phylogenetic reconstruction in historical linguistics? In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pages 393–400, New Orleans, Louisiana, June 2018. Association for Computational Linguistics. doi: 10.18653/v1/N18-2063. URL https://aclanthology.org/N18-2063.
- Eric Sven Ristad and Peter N. Yianilos. Learning string-edit distance. IEEE Trans. Pattern Anal. Mach. Intell., 20(5):522-532, 1998. doi: 10.1109/34.682181. URL https://doi.org/10.1109/34.682181.
- Mihaela Rosca and Thomas Breuel. Sequence-to-sequence neural network models for transliteration. CoRR, abs/1610.09565, 2016. URL http://arxiv.org/abs/1610.09565.
- Robert Weide. The Carnegie-Mellon pronouncing dictionary [cmudict. 0.7]. Pittsburgh, PA, USA, 2005. Carnegie Mellon University. URL http://www.speech.cs.cmu.edu/cgi-bin/cmudict.