Neural Architectures for Character-level NLP

Jindřich Libovický

i February 28, 2022

Charles University Faculty of Mathematics and Physics Institute of Formal and Applied Linguistics

Outline

Why characters?

Neural String Edit Distance Model Cognate Detection Transliteration & Grapheme-to-Phoneme

Character-level Machine Translation Characters in literature and at WMT Curriculum Learning Architecture Innovations Architecture comparison

Why characters?

Tokenization examples

Diffe	Different numbers of BPEs, fitted on WMT14 en-de data			
plain text	The cat sleeps on a mat.			
tokenization	_The _cat _sleeps _on _a _mat .			
32k	_The _cat _sle eps _on _a _mat .			
8k	_The _c at _s le eps _on _a _m at .			
500	_The _c at _s le ep s _on _a _m at .			
0	_The_cat_sleeps_on_ a_mat.			

How could something like this work?

Subwords are sort of ugly

_The _c at _s le eps _on _a _m at .

Removing assumptions usually helps in neural models in NLP, but... subword segmentation seems to be a really good heuristic.

Wishful thinking: what we could get from the character-level

- Simpler processing pipelines
- Learn better segmentation

- Noise robustness
- Generalize towards morphology and domain-specific vocab

- Character sequences are long \rightarrow computationally expensive
- Works well for non-contextual word-level tasks: transliteration, morphological inflection, ...
- For semantically heavy tasks (such as MT), worse performance than subwords
- Most of the assumed advantages (domain, morphology) are not real

Neural String Edit Distance

Neural String Edit Distance

string, the learnable edit distance considers both

source and target symbols to be a subject of the

We reformulate the EM training used to train

edit operations.

Neural String Edit Distance

Jindřich Libovický

Alexander Fraser

Pre-print on arXiv. Rejected from EMNLP 2020. EACL 2021. ACL 2021. EMNI P 2021 and ACL 2022.

learnablevedit distance as a differentiable to find a strong function of the control of the strong s

Neural String Edit Distance Model

Black-box architectures vs. Levenshtein distance

- Char-level tasks use the same architectures as e.g, MT
- Overkill: large, hardly interpretable
- Levenshtein distance: transparent, interpretable...

...but weak and not flexible We fix that!

Wagner-Fischer Algorithm

String s of length n, t of length m, d is a table of $m \times n$

```
for j in range(n):
   d[0, j] := j
 for j in range(n):
   for i in range(m):
    if s[i] = t[j]:
      subs_cost = 0
    else:
      subs cost = 1
    d[i, j] = min(d[i-1, j] + 1, # deletion
                d[i, j-1] + 1, # insertion
                d[i-1, j-1] + subs_cost) # substitution
```

```
return d[m, n]
```

Levenshtein Distance Example

		k	i	t	t	е	n
	0	1	2	3	4	5	6
s	1	1	2	3	4	5	6
i	2	2	1	2	3	4	5
t	3	3	2	1	2	3	4
t	4	4	3	2	1	2	3
i	5	5	4	3	2	2	3
n	6	6	5	4	3	3	2
g	7	7	6	5	4	4	3

- empty string to empty string costs zero
- first column: empty string \rightarrow sitting
- first row: delete kitten
- substring kit \rightarrow sittin
 - we got rid of ki and have sitti change $\texttt{t} \rightarrow \texttt{n}$ cost 4 + 1 = 5
 - we have sitin and got rid of ki delete t $\label{eq:cost} \text{cost}\; 5\,+\,1\,=\,6$
 - already got rid of kit and have sitin add n cost $3 + 1 = 4 \leftarrow minimum$

Transliteration from latin to cyrilics: $\texttt{Praha} ightarrow \Pi \texttt{para}$

- All characters are equivalent, but diffent UTF characters
- Either an expert can write the rules for the characer costs
- Or we can try to learn the weights from data

Learnable Edit Distance: (Ristad and Yianilos, 1998)

- Probabilistic formulation: one multimomial distribution over all possible operations
- Transcription probability (simple modification of the algorithm)
 - Best derivation: Product of most probable opeartion costs (replace min with max and sum log-probabilities)
 - All derivations: Replace max with sum

Expectation – Ma

- Iterate over training data
- Do inference with curret model (data prob. increases)
- Get expected operation counts (forward-backward algorithm)

- Maximization

- Normalize the expected counts
- With new probability table probability of current derivations increases

More flexible: weights are estimated from the data Rigid costs: do not depend on prefix or suffix

Do the same thing...

...and backpropagate the objective into a contextualized neural representation.

Model

- Get contextualized representation of input charaters
- Symbol pairs: contatenate their representation and apply projection
- Estimate the insert, delete and substitute operations probabilites from these representations

The original EM algorithm assumes a **discrete operation table**... ...but we have **continuous representations**.

- Expected distribution (forward-backard algorithm) compared to actual distribution optimize **KL divergence** between the predicted and expected distribution
- Directly optimize task-specific loss:
 - String-pair classification: optimize classification likelihood
 - String transduction: optimize output symbol negative log likelihood

Neural String Edit Distance Cognate Detection

Task

For a pair of IPA strings...

zeleni:	zɛˈłɛnɪj	\checkmark
'firubi:	pyknós	×
tu	tam	\checkmark

...decide if they have the same diachronic origin.

- Databases for Indo-European and Austro-Asiatic languages (Rama et al., 2018)
- Sampled positive and negative pairs, F1-measure for hits
- Use neural string edit distance to estimate the cognate probability

Example: Scores in the dynamic programing table

Results

Method			Indo-European			Austro-Asiatic		
		# Param.	Plain	+ Int. loss	Time	Plain	+ Int. loss	Time
Lea Tra	nnable edit distance Insformer [CLS]	0.2M 2.7M	$\begin{array}{c} 32.8 \ \pm 1.8 \\ 93.5 \ \pm 2.1 \end{array}$	_	0.4h 0.7h	$\begin{array}{c} 10.3 \ \pm 0.5 \\ 78.5 \ \pm 0.8 \end{array}$	_	0.2h 0.6h
щ	unigram	0.5M	$46.2{\scriptstyle~\pm}4.9$	_	0.2h	$16.6 \ \pm 0.3$	_	0.1h
STANC	RNN Transformer	1.9M 2.7M	$\begin{array}{c} 80.6 \ \pm 1.2 \\ 76.7 \ \pm 1.3 \end{array}$	_	0.3h 0.3h	$\begin{array}{c} 15.9 \ \pm 0.2 \\ 16.7 \ \pm 0.3 \end{array}$	_	0.2h 0.2h
S	unigram CNN (3-gram)	0.5M 0.7M	$\begin{array}{c} 78.5 \ \pm 1.0 \\ 94.0 \ \pm 0.7 \end{array}$	$\begin{array}{c} 80.1 \ \pm 0.8 \\ 93.9 \ \pm 0.8 \end{array}$	1.5h 0.9h	$\begin{array}{c} 47.8 \ \pm 0.7 \\ 77.9 \ \pm 1.5 \end{array}$	$\begin{array}{r} 48.4 \ \pm 0.6 \\ 76.2 \ \pm 1.9 \end{array}$	0.7h 0.5h
по	RNN Transformer	1.9M 2.7M	$\begin{array}{c} 96.9 \ \pm 0.6 \\ 87.2 \ \pm 1.6 \end{array}$	$\begin{array}{c} \textbf{97.1} \ \pm \textbf{0.6} \\ 87.3 \ \pm 1.8 \end{array}$	1.9h 1.6h	$\begin{array}{c} \textbf{84.0} \ \pm \textbf{0.4} \\ \textbf{69.9} \ \pm \textbf{1.0} \end{array}$	$\begin{array}{c} 83.7 \ \pm 0.5 \\ 70.7 \ \pm 1.1 \end{array}$	1.2h 1.0h

Loss functions	F_1
Complete loss	$97.1{\scriptstyle \pm 0.6}$
— binary XENT for $lpha_{m,n}$	$96.1 {\scriptstyle \pm 0.3}$
— expectation-maximization	$96.3{\scriptstyle~\pm 0.7}$

Neural String Edit Distance Transliteration & Grapheme-to-Phoneme

String Transduction Tasks

• 13k training, 1.5k validation and testing (Rosca and Breuel, 2016)

Grapheme-to-Phoneme Conversion

- CMUDict dataset (Weide, 2005)
- 108k training, 5k valid., 13k test
- Multiple transcriptions, during evaluation, choose the closest one

P EH R AH N
T AA B UW CH IY
K Y UW V L IY ER
K AH N S UW M ER Z
K IH NG D AH M Z

Evaluation with Word Error Rate (WER) and Character Error Rate (CER)

- Unidirectional representation of the target
- Deletion probability must not depend on the last target character
- Dirty trick: Added attention from the target representaiton to source representation

Results: Transliteration

		ш.	$Arabic \to English$						
Method		Para	Pla	ain	+ Interpret. loss		Time		
		#	CER	WER	CER	WER	i iiiic		
RΝ	IN Seq2seq	3.3M	$22.0{\scriptstyle \pm 0.2}$	$75.8{\scriptstyle~\pm 0.6}$	_		12m		
Tra	ansformer	3.1M	$22.9{\scriptstyle~\pm 0.2}$	$78.5{\scriptstyle~\pm 0.4}$	—	—	11m		
	unigram	0.7M	$31.7{\scriptstyle~\pm 1.8}$	$85.2{\scriptstyle~\pm 0.9}$	$31.2{\scriptstyle~\pm 1.4}$	$85.0{\scriptstyle~\pm 0.5}$	36m		
urs	CNN (3-gram)	1.1 M	$24.6{\scriptstyle~\pm 0.6}$	$80.5{\scriptstyle~\pm 0.3}$	$24.5{\scriptstyle~\pm 0.9}$	$80.1 \pm 0.9 $	41m		
0	Deep CNN	3.0M	$24.4{\scriptstyle~\pm 0.5}$	$80.0{\scriptstyle \pm 0.7}$	$23.8 {\ \pm 0.3}$	$79.3{\scriptstyle~\pm 0.1}$	52m		
	RNN	2.9M	$24.1 {\scriptstyle \pm 0.2 $	$77.0{\scriptstyle~\pm 2.0}$	$22.0{\scriptstyle \pm 0.3}$	$77.4{\scriptstyle~\pm 0.8}$	60m		
	Transformer	3.2M	$24.3{\scriptstyle~\pm 0.9}$	$79.0{\scriptstyle \pm 0.7}$	$23.9{\scriptstyle~\pm 1.6}$	$78.6{\scriptstyle~\pm1.3}$	1.2h		

Results: Grapheme-To-Phoneme

Method		Ë	CMUDict						
		Para		Plain		+ Interpret. loss			Time
		#	CER	WER	Align.	CER	WER	Align.	
RN	IN Seq2seq	3.3M	5.8 ±0.1	23.6 ±0.9	24.5	—	_	_	1.8h
	ansformer	3.11	0.5 ± 0.1	20.0 ±0.3	33.2				1.11
	unigram	0.7M	$20.9 \ \pm 0.3$	$67.5 \ \pm 1.0$	55.7	$20.6 \ \pm 0.3$	$66.3 \pm 0.2 $	59.5	2.4h
nrs	CNN (3-gram)	1.1M	$12.8 \ \pm 1.0$	$48.4{\scriptstyle~\pm}3.1$	35.4	$12.8 \ \pm 0.2$	$48.4 \pm 0.6 $	38.1	2.5h
0	Deep CNN	3.0M	$10.8 \ \pm 0.5$	$41.4 {\pm} 1.9 $	23.3	$10.8 \ \pm 0.5$	$42.1 \pm 1.6 $	28.8	2.5h
	RNN	2.9M	$7.8 \ \pm 0.3$	$31.9{\scriptstyle~\pm1.3}$	44.7	$7.3 \pm 0.4 $	$33.3 \pm 1.5 $	48.9	2.3h
	Transformer	3.2M	$10.7 \ \pm 1.0$	$41.8 \ \pm 3.1$	33.3	$10.2 \ \pm 1.1$	$43.6 \ \pm 3.2$	37.9	2.3h

graphemes	phonemes	edit operations
GOELLER	G OW L ER	G→G -O -E -L L→OW +L -E R→ER
VOGAN	V OW G AH N	V→V -O G→OW +G +AH -A N→N
ENDLER	EH N D L ER	+EH -E N→N D→D L→L -E R→ER
SWOOPED	S W UW P T	S→S W→W +UW -O -O P→P -E D→T

Viterbi decoding with a RNN-based model.

Ablation: RNN model on transliteration

Loss functions	CER	WER
Complete loss — expectation maximization — next symbol NLL	$22.5 \pm 0.3 \\ 68.2 \pm 7.4 \\ 27.2 \pm 1.4$	77.4 ±0.8 93.5 ±1.0 81.1 ±2.2
— $\alpha_{m,n}$ maximization	23.5 ± 1.3	79.2 ±2.5

Character-level Machine Translation

Curriculum Learning for Character-level MT

Towards Reasonably-Sized Character-Level Transformer NMT by Finetuning Subword Systems

> Jindřich Libovický and Alexander Fraser Center for Information and Speech Processing Ludwig Maximilian University of Munich Munich, Germany {libovicky, fraser}@cis.lmu.de

Abstract

Applying the Transformer architecture on the character level usually requires very deep architectures that are diff-cult and slow to train. These problems can be partially overcome by incorporating a segmentation into tokens in the model. We show that by initially training a subword model and then f netuning it on characters, we can obtain a neural machine translation model that works at the character level without requiring token segmentation. We use only the vanilla 6-layer Transformer Base architecture. Our character-level models better conture morphological phenomena and show more robustness to noise at the expense. of somewhat worse overall translation quality. Our study is a signif cant step towards highperformance and easy to train character-based models that are not extremely large

1 Introduction

State-of-the-art neural machine translation (NMT) models operate almost end-to-end except for input and output text segmentation. The segmentation is done by f rst employing rule-based tokenization and then splitting into subword units using statistical heuristics such as byte-pair encoding (BPE; Sennich et al., 2016) or SentencePiece (Kudo and Richardson, 2018).

Recurrent sequence-to-sequence (523) models can learn translation end-to-end (at the character level) without changes in the architecture (Cherry et al., 2018), given suff cient model depth. Training character-level Transformer 523 models (vaswani et al., 2017) is more complicated because the selfattention size is quadratic in the sequence length. In this paper, we empirically evaluate Transexplicit segmentation. Our character-level models show slightly worse translation quality, but have better robustness towards input noise and better capture morphological phenomena. Our approach is important because previous approaches have relied on very large transformers, which are out of reach for much of the research community.

2 Related Work

Character-level decoding scenario to be relatively any with recentrent S25 models (Chang et al., 2016). But early attempts a adhering generation for Rev MWT with recurrent networks, used reput labor starks 2017; Charay et al. (2014) where the stark of the stark and t

Training character-level transformers is more challenging. Choe et al. (2019) successfully trained a character-level left-to-right Transformer language model that performs on par with a subword-level model. However, they needed a large model with 40 layers trained on a billion-word corpus, with prohibitive computational costs.

In the most related work to ours, Gupta et al. (2019) managed to train a character-level NMT with the Transformer model using Transparent Attention (Bapna et al., 2018). Transparent attention attends to all encoder layers simultaneously, making thesmodel more densely, connected but also

Towards Reasonably-Sized Character-Level Transformer NMT by Finetuning Subword Models

Jindřich Libovický

Alexander Fraser

Short paper at EMNLP 2020.

ing the under more densely connected by a big String Edit Distance Character-level Machine Translation

Meta-survey and experiments with architectures

Why don't people use character-level machine translation?

Anonymous ACL submission

Abstract

001	We present a literature and empirical survey
200	that critically assesses the state of the art in
003	character-level modeling for machine trans-
0.04	lation (MT). Despite evidence in the litera-
005	ture that character-level systems are compa-
005	rable with subword systems, they are virtu-
097	ally never used in competitive setups in WMT
000	competitions. We empirically show that even
040	with recent modeling innovations in character-
010	level natural language processing, character-
	level MT systems still struggle to match their
	subword-based counterparts. Character-level
	MT systems show neither better domain ro-
014	bustness, nor better morphological generaliza-
	tion, despite being often so motivated. How-
015	ever, we are able to show robustness towards
048	does not deerade with increasing beam size at
010	decoding time.
	account and
0.1.0	1 Introduction
021	The progress in natural language processing (NLP)
0.22	brought by deep learning is often narrated as remov-
023	ing assumptions about the input data and letting the
0.24	models learn everything end-to-end. One of the as-
025	sumptions about input data that seems to resist this
0.28	trend is (at least partially) linguistically motivated
027	segmentation of input data in machine translation
0.26	(MT) and NLP in general.
029	For NMT, several papers have claimed parity
030	of character-based methods with subword models,
031	highlighting advantageous features of such systems.
0.3/2	Very recent examples include Gao et al. (2020); Ba-
033	nar et al. (2020); Li et al. (2021). Despite this,
034	character-level methods are rarely used as strong
035	baselines in research papers and shared task sub-

missions, suggesting that character-level models

Neural Architectures for Character-level NLP

input segmentation methods used in WMT shared task submissions. We then systematically compare the most recent character-processing architectures. some of them taken from general NLP research. and used for the first time in MT. Further, we propose an alternative two-step decoder architecture that unlike standard decoders does not suffer from a slow-down due to the length of character sequences. Following the recent findings on MT decoding, we evaluate different decoding strategies in the character-level context

0.42

0.65

0.45

0.07

59.0

0.03

0.55

055

057

0.5.0

0.0.4

830

Many previous studies on character-level MT drew their conclusions from experiments on rather small datasets and focused only on quantitatively assessed translation quality without further analysis. To compensate for this, we revisit and systematically evaluate the state-of-the-art approaches to character-level neural MT and identify their major strengths and weaknesses on large datasets

2 Character-Level Neural MT

The original sequence-to-sequence models used word-based vocabularies of a limited size and thus relatively frequent occurrence of out-of-yocabulary tokens. A typical solution to that problem is subword segmentation (Sennrich et al., 2016; Kudo and Richardson. 2018), which keeps frequent tokens intact and splits less frequent ones into smaller units.

Modeling language on the character level is attractive because it can beln overcome several problems of subword models. One-hot representations of words or subwords do not refect systematic character-level relations between words, potentially harming morphologically rich languages. With subwords, minor typos on the source side lead to radically different input representations resulting in low

Why don't people use character-level machine translation?

Jindřich Libovický

Helmut Schmid

Accepted to Findings of ACL 2022.

robusties weak anacter-level Machine Translation

Character-level Machine Translation Characters in literature and at WMT

Character-level MT in time

• RNN MT • Transformer MT • Transformer repr.

- Research papers often report parity or outperforming subwords
- The results of research papers got never confirmed in the competitive WMT setup
- Suspected reasons: worse quality, $5-6 \times$ slower

	2018	2019	2020
Subwords	92%	93%	97%
Morphological	4%	2%	3%
Words	2%	3%	
Character	2%	2%	

Vocabulary size in WMT submissions

Decreases in time because of low-resource languages...

Character-level Machine Translation Curriculum Learning

Main Idea

1. Train a subword model first ...so the model knows what words are

2. Finetune it to only use characters

Language Pairs

- WMT14 data, 4.5M training sentences
- Both Germanic languages, German with more inflection than English

\mathbf{I} English \rightarrow **b** Czech

- CzEng 1.7, 15.8M training sentences, tested on WTM18
- Slavic (but still Indo-European) language, rich morphological inflection

\mathbf{M} English o \mathbf{C} Turkish

- SETMITES2, 207k training sentences, tested on WMT18
- Turkic language, agglutinative morphology

Results: \blacksquare English \rightarrow \blacksquare German

Results: \blacksquare German \rightarrow \blacksquare English

Results: Solution Example 1 Czech

Neural Architectures for Character-level NLP Why characters? Neural String Edit Distance Character-level Machine Translation

Results: \mathbf{R} English \rightarrow \mathbf{C} Turkish

Noise sensitivity

Semantically rich units are crutial during training

(can be unlearned eventually)

If we want to avoid subwords, we should ge such units from characters.

Character-level Machine Translation Architecture Innovations

Existing Character-Level Architectures: Convolutional

- Long character-level sequence to word-like units (Lee et al., 2017)
- Convolutions of different kernel sizes, highway layers, max-pooling
- Succesfully used with RNNs and matched BPE performance (not with Transformers)

Existing Character-Level Architectures: CANINE

Source: Clark et al. (2021); from Google, pre-print only

- Architecture for pre-trained BERT-like (encoder-only) models; strong multilingual capabilities
- Similar with more modern building blocks

Existing Character-Level Architectures: Charformer

(a) Formation of subword blocks to be scored by F_R . Offsets and/or pre-GBST convolutions not shown.

(b) Block scores that have been expanded back to length L. Softmax is taken over block scores at each position i to form block weights for constructing latent subword representations.

Source: Tay et al. (2021); from Google, to appear to ICLR'22

- Parameter-efficient: One convolution and a lot of averaging
- Also for pre-trained representations (encoder-only), matches subwords

State-shrinking and Two-step decoding

- IWSLT'14 data for: English \leftrightarrow { Arabic, French, German }
- 200k training sentences, 1.5k validation and test
- Our own implementation in PyTorch

Result: BLEU

Model	Enc	Dec	Char. proc. params	Fr	om Engl	ish	Into English			
	Line.	Dec.		ar	de	fr	ar	de	fr	
	down	sample		BLEU	BLEU	BLEU	BLEU	BLEU	BLEU	
BF	BPE 16k			11.2	27.7	36.4	29.7	31.6	36.2 +0.3	
Va	nilla ch	ar.	658	$\underset{\pm 0.4}{13.5}$	$\underset{\pm 0.7}{25.6}$	34.6 ±0.7	27.7 ±0.8	29.4 ±0.7	34.7 ±0.4	
	3	_	9672	$\underset{\pm 0.5}{13.1}$	25.9 ±0.7	35.2 ±0.4	28.0 ±0.4	30.2 ±0.5	35.3 ±0.2	
tyle	5	—	9672	12.5 ±0.1	25.0 ±0.4	33.2 ±0.1	24.9 ±4.4	28.9 ±0.3	34.4 ±0.3	
ee-s	3	3	9646	$11.0_{\pm 0.2}$	23.4 ±0.4	31.7 ±0.5	25.6 ±0.3	28.0 ±0.3	33.3 ±0.4	
_	5	5	9646	$9.4 \\ \scriptstyle \pm 0.5$	$\underset{\pm 0.3}{21.8}$	$\underset{\pm^{1.7}}{28.7}$	23.7 ±0.3	$\underset{\pm 0.3}{25.5}$	30.9 ±0.5	
	3	_	1320	13.3	25.9	32.9	27.3	29.9 +0.3	35.1	
mer	5	_	1320	12.2	24.2	31.3	25.1	28.1	33.7	
arfoi	3	3	1165	10.3 ±0.5	23.2 ±0.5	30.6 ±0.4	24.5 ±0.4	27.5 ±0.5	32.6 ±0.3	
сh	5	5	1165	8.4 ±0.2	$\underset{\pm 0.2}{19.9}$	27.4 ±0.7	$\underset{\pm 3.1}{18.4}$	$\underset{\pm 0.5}{23.5}$	29.2 ±0.7	
Canine	3	_	6446	12.6 ±0.3	25.4 ±0.5	33.2 ±0.6	26.1 ±0.5	29.1 ±0.4	34.5 ±0.4	
	5	_	7470	11.2	22.5	30.5	22.1	27.3	32.5	
	3	3	6291	10.3 ±0.5	22.4 ±0.3	30.2 ±0.5	23.7 ±0.9	25.9 ±1.0	32.5 ±0.3	
	5	5	7444	$\underset{\pm 0.4}{6.9}$	$\underset{\pm 0.4}{19.1}$	27.9 ±0.6	15.4 ±0.3	$\underset{\pm 0.2}{23.2}$	27.9 ±0.6	
chrF and COMET are consistent (in the paper)										

- Two-step architecture as fast as BPEs, but low quality
- Downsampling 3 much better than downsampling 5

BPE > Lee-style > Vanilla char. > everything else

- Lee-style encoder works the best
- Two-step decoding matches the speed, but worse quality

Let's try the best option in a competitive setup.

Character-level Machine Translation Architecture comparison

Competitive data setup

Previous work makes optimistic conclusions based on small and old datasets... ...let's do it properly

- CzEng 2.0 corpus (Kocmi et al., 2020)
- 61M authentic parallel sentences 50M back-translated

- Data mix Edinburgh used for WMT'21 submission (Chen et al., 2021)
- 66M authentic parallel sentence 52M back-translated

...data almost comparable to best WMT submissions (tagged back-translation, Transformer BIG architecture, FairSeq)

Character-level methods often motivated by morphological generalization and noise robustness.

- Quality: BLEU, chrF, COMET in News, IT and medical domain
- Gender dataset
- Morpheval: Specific morphological phenomena
- Recall of novel forms and lemmas (in news)
- Quality under sampled noise

Results: English-Czech

	News		IT		Medical		Gender	Avg.	Recall of novel		Noisy
	BLEU	Сомет	BLEU	Сомет	BLEU	Сомет	Acc.	pheval	Forms	Lemmas	chrF
BPE 16k	30.8 ±0.8	.672 ±.022	$\underset{{}^{\pm1.3}}{34.5}$.889 ±.022	26.4 ±1.4	.734 ±.037	71.3	86.6	33.7 vs. 63.7	48.5 vs. 71.1	.436 ±.002
BPE to char.	$\underset{\pm 0.8}{28.4}$.597 ±.024	$\underset{{}^{\pm1.2}}{31.4}$.821 ±.025	$\underset{\pm 1.3}{23.6}$.674 ±.039	68.9	87.0	34.3 vs.	47.4 vs.	.436 ±.001
Vanilla char.	27.7 ±0.7	.550 ±.026	$\underset{\pm 1.2}{30.0}$.778 ±.028	$\underset{\pm 1.3}{23.3}$.663 ±.039	70.2	86.4	34.4 vs. 61.0	47.4 vs. 68.7	.493 ±.001
Lee-style enc.	$\underset{\pm 0.8}{28.8}$	$.609 \\ \scriptstyle \pm.024$	$\underset{{}^{\pm1.3}}{31.7}$.849 ±.024	$\underset{\pm 1.3}{24.3}$.696 ±.038	65.6	86.6	34.1 vs. 61.7	48.5 vs. 69.2	. 497 ±.001

- Characters worse in everything, incl. domain robustness
- No signs of better morphological generalization
- Strictly better for noisy inputs

Results: English-German

	News		IT		Medical		Gender	Avg.	Recall of novel		Noisy
	BLEU	Сомет	BLEU	Сомет	BLEU	Сомет	Acc.	pheval	Forms	Lemmas	chrF
BPE 16k	$\underset{\pm 0.9}{31.5}$.418 ±.021	$\underset{{}^{\pm1.3}}{45.6}$.622 ±.021	$\underset{\pm 1.6}{38.7}$.569 ±.034	66.5	90.6	40.2 vs. 72.3	51.0 vs. 67.0	.464 ±.002
BPE to char.	$\underset{\pm 0.8}{29.1}$	$.360 \\ \scriptstyle \pm.022$	$\underset{{}^{\pm1.3}}{46.5}$.617 ±.021	$\underset{\pm 1.4}{36.0}$	$\underset{\pm.035}{.513}$	71.2	91.3	45.1 vs. 71.1	50.8 vs. 65.5	.465
Vanilla char.	27.8 ±0.8	.321 ±.023	$\underset{{}^{\pm1.3}}{45.3}$.600 ±.022	$\underset{\scriptstyle \pm 1.4}{35.6}$.496 ±.036	71.2	91.4	50.7 vs. 64.3	45.1 vs. 70.2	.504 ±.001
Lee-style enc.	$\underset{\pm 0.8}{29.1}$	$.363 \\ \scriptstyle \pm.022$	$\underset{\pm 1.3}{46.5}$	$.619 \\ \scriptstyle \pm.022$	$\underset{\scriptstyle \pm 1.4}{36.5}$.500 ±.037	74.0	91.5	44.5 vs. 77.1	50.8 vs. 65.5	$.515 \\ {\scriptstyle \pm.001}$

- Same results as for Czech
- Slightly better morphological generalization

The only thing where characters are better is noise robustness

Neural Architectures for Character-level NLP

Summary

- Neural String Edit Distance can be a viable alternative for character-level tasks
- Machine translation needs semantically rich units and shorter sequences
- Modern architectures that work elsewhere are to weak for MT
- The best character-level architecture: Lee-style encoding
- Many research papers about character-level MT tend to overclaim
- The only advantage of character-level: noise robustness

https://ufal.mff.cuni.cz/jindrich-libovicky

References I

- Pinzhen Chen, Jindřich Helcl, Ulrich Germann, Laurie Burchell, Nikolay Bogovchev, Antonio Valerio Miceli Barone, Jonas Waldendorf, Alexandra Birch, and Kenneth Heafield. The University of Edinburgh's English-German and English-Hausa submissions to the WMT21 news translation task. In Proceedings of the Sixth Conference on Machine Translation. Association for Computational Linguistics, 2021.
- Jonathan H. Clark, Dan Garrette, Iulia Turc, and John Wieting. CANINE: pre-training an efficient tokenization-free encoder for language representation. CoRR, abs/2103.06874, 2021. URL https://arxiv.org/abs/2103.06874.
- Tom Kocmi, Martin Popel, and Ondřej Bojar. Announcing czeng 2.0 parallel corpus with over 2 gigawords. CoRR, abs/2007.03006, 2020. URL https://arxiv.org/abs/2007.03006.
- Jason Lee, Kyunghyun Cho, and Thomas Hofmann. Fully character-level neural machine translation without explicit segmentation. Transactions of the Association for Computational Linguistics, 5:365–378, 2017. doi: 10.1162/tacl_a_00067. URL https://aclanthology.org/Q17-1026.
- Taraka Rama, Johann-Mattis List, Johannes Wahle, and Gerhard Jäger. Are automatic methods for cognate detection good enough for phylogenetic reconstruction in historical linguistics? In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pages 393–400, New Orleans, Louisiana, June 2018. Association for Computational Linguistics. doi: 10.18653/v1/N18-2063. URL https://aclanthology.org/N18-2063.
- Eric Sven Ristad and Peter N. Yianilos. Learning string-edit distance. IEEE Trans. Pattern Anal. Mach. Intell., 20(5):522-532, 1998. doi: 10.1109/34.682181. URL https://doi.org/10.1109/34.682181.
- Mihaela Rosca and Thomas Breuel. Sequence-to-sequence neural network models for transliteration. CoRR, abs/1610.09565, 2016. URL http://arxiv.org/abs/1610.09565.
- Yi Tay, Vinh Q. Tran, Sebastian Ruder, Jai Prakash Gupta, Hyung Won Chung, Dara Bahri, Zhen Qin, Simon Baumgartner, Cong Yu, and Donald Metzler. Charformer: Fast character transformers via gradient-based subword tokenization. CoRR, abs/2106.12672, 2021. URL https://arxiv.org/abs/2106.12672.
- Robert Weide. The Carnegie-Mellon pronouncing dictionary [cmudict. 0.7]. Pittsburgh, PA, USA, 2005. Carnegie Mellon University. URL http://www.speech.cs.cmu.edu/cgi-bin/cmudict.