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Why characters?



Different numbers of BPEs, fitted on WMT14 en-de data

plain text The cat sleeps on a mat.
tokenization _The cat sleeps on _a mat .

32k _The cat _sleeps _on _a mat .

8k _The cat _sleeps _on _a mat.

500 _The cat _sleeps _on_a mat.

0 _The_cat_sleeps_on_ a_mat.

How could something like this work?
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Subwords are sort of ugly

_The cat _sleeps _on _a _mat .

Removing assumptions usually helps in neural models in NLP, but...

subword segmentation seems to be a really good heuristic.

Wishful thinking: what we could get from the character-level

® Simpler processing pipelines ® Noise robustness

® | earn better segmentation ® Generalize towards morphology and
domain-specific vocab
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Char-level: Harsh reality

Character sequences are long — computationally expensive

Works well for non-contextual word-level tasks:
transliteration, morphological inflection, ...

® For semantically heavy tasks (such as MT), worse performance than subwords

Most of the assumed advantages (domain, morphology) are not real
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Neural String Edit Distance
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Abstract

e propose e Mm\ string edit distance
ir classifcation and se-

We <how that we can trade off betwien per.
formance and interpretabiliy i a single frame-
work. Using contextual epresentations, which
are diff cult to interpret, we can match the per-
formance of state-of-the-art string-pair classi-
fcation models. Using static embeddings and
 minor modif cation of the loss funcion, we
can force interpretabilty, at the expense of an
accuracy drop.

I Introduction

State-of-the-art models for sring-pair classif cation
and sequence generation employ powerful neural
architectures that lack interpretability. E... BERT
(Devlinet sl 2019 interally compares al ot
symbols with cach other via 96 attention he
hos functons et el o ntrpret. Moreocr,
attention itself can be hard to interpret (Jain and
Wallace, 2019; Wiegreffe and Pinter, 2019).

In many cases, such as in transliteration. a rela-

o bt o sins an be teprted more
simply as edit operations (Levenshtei
edit operations def ne the alignment vetween e
mmp and provide an interpretation of how one.

stin is transcribed into another. Learable cdi

Neural Archltectures for Character level NLP

@ Pulq'lc2a) ]

Figure 1: An example of applying the dynamic pro-
emnninglgorhm sl o comut he i bl

t score. It gradually f s the table of probailties that
et xe of th word“cqual ansebe o prf e of
phoneme sequence “IY K W AH L. The probability
(gray circles) depends on the probabiltis of the pre-
Fxes and probabilitcs of plausible edit operations: in-
st (blue arrows), substiute (green arrows) and delete
(red arrows).

and Berrada, 2018; Hoover et al., 2020; Lipton,
018), the restricted set of edit operations allows
direct interpretation of the model operation. Unlike
hard attention (Mnih et al., 2014; Indurthi et al.,
2019) which also provides a discrete alignment be-
tween input and output, the edit distance explicitly
says how the input symbols are processed. Also,
unlike models like Levenshtein Transformer (Gu
1., 2019) which uses edit operation to model
intermediate generation steps only within the target
string, the leamable edit distance considers both
source and target symbols to be a subject of the

edit operations.
e reformulate the EM lminmg used to train

Neural String Edit Distance

IS s on larmed g et 1y e

o distance. We modify the original expectation-

o masimization leamed cdit distance algorithm LK IUIH l\‘ i I\‘ mt [IU

= intoa diffreniabl los fnction allowing ws ——, \, gut )| [ . v . . ,
E e e PANPI Jind¥ich Lib k
T Cmemtmosmmwwoins 0 AR indrich Libovic

© tsth et o cognte e, sl gt

- ation, and grapheme-to-phoneme cor oL 22-P (e 2

=

&}

@ Alexander Fraser

Pre-print on arXiv. Rejected from

EMNLP 2020, EACL 2021, ACL 2021,

EMNLP 2021 and ACL 2022.
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Neural String Edit Distance

Model




Black-box architectures vs. Levenshtein distance

® Char-level tasks use the same architectures as e.g, MT
® Qverkill: large, hardly interpretable

® | evenshtein distance: transparent, interpretable..

...but weak and not flexible
We fix that!
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Wagner-Fischer Algorithm

String s of length n, t of length m, d is a table of m x n

for j in range(n):
aro, jl := j

for j in range(n):
for i in range(m):
if s[i] = t[j]:
subs_cost = 0
else:
subs_cost = 1

dfi, j] = min(d[i-1, j] + 1, # deletion
dfi, j-1]1 + 1, # insertion
d[i-1, j-1] + subs_cost) # substitution

return d[m, n]
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Levenshtein Distance Example

Transcribe | kitten | to | sitting

® empty string to empty string costs zero

ki t e n
0)1 2 3 4 5 6 ® first column: empty string — sitting
s|lj1 2 3 45 6 e first row: delete kitten
L g g ; i g g i ® substring kit — sittin
® we got rid of ki and have sitti —changet — n

t|4/4 3 2 1 2 3 cost 4+ 1—5
i [5]5 4 3 2 2 3 ® we have sitin and got rid of ki — delete t
nf 6|6 5 3 3 2 costb+1=06
g| 7|7 6 5 4 4 3

® already got rid of kit and have sitin — add n
cost 3 + 1 = 4 < minimum
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Problem of setting the operation costs

Transliteration from latin to cyrilics: Praha — Ilpara

® All characters are equivalent, but diffent UTF characters
® FEither an expert can write the rules for the characer costs

® Or we can try to learn the weights from data

Neural Architectures for Character-level NLP Why characters? Neural String Edit Distance Character-level Machine Translation 9/ 49



® Probabilistic formulation: one multimomial distribution over all possible operations

® Transcription probability (simple modification of the algorithm)
® Best derivation: Product of most probable opeartion costs (replace min with max and sum
log-probabilities)
® All derivations: Replace max with sum

Expectation — Maximization
® |terate over training data ® Normalize the expected counts
® Do inference with curret model ® With new probability table
(data prob. increases) probability of current derivations
increases

® Get expected operation counts
(forward-backward algorithm)

More flexible: weights are estimated from the data
Rigid costs: do not depend on prefix or suffix

Neural String Edit Distance 10/ 49



Do the same thing..

...and backpropagate the objective into a
contextualized neural representation.
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Model

1<s> m\ @\ @\g \@ ® Get contextualized

| \ \ \ \ representation of input charaters
2 1Y [[I\TLLI:I}(@ @g}f QD}‘/ ® Symbol pairs: contatenate their
3 K M\M\\L @ |]:|§< ﬂ;l;i Qll\l representation and apply
‘W mlﬂll\k’ ol \ — P("eq” — "IY K W") = e Estimate the insert, delete and

===

projection

i substitute operations
5 AH [@3,3 - Pins("W"|C33)+ e op
Per oy probabilites from these
azz- P("e" = representations

24 - Pyei("q"|C24) ]

6 L C23)+

7</s>
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The original EM algorithm assumes a discrete operation table...
..but we have continuous representations.

® Expected distribution (forward-backard algorithm) — compared to actual distribution —
optimize KL divergence between the predicted and expected distribution
® Directly optimize task-specific loss:

® String-pair classification: optimize classification likelihood
® String transduction: optimize output symbol negative log likelihood

Neural String Edit Distance 13/ 49



Neural String Edit Distance

Cognate Detection




Task

For a pair of IPA strings...

'zeleni:  ze'tenj v
'irubi:  pykndés  x
tu tam v

..decide if they have the same diachronic origin.

® Databases for Indo-European and Austro-Asiatic languages (Rama et al., 2018)
® Sampled positive and negative pairs, F1-measure for hits

® Use neural string edit distance to estimate the cognate probability

Neural Architectures for Character-level NLP Why characters? Neural String Edit Distance Character-level Machine Translation
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Cognate

<s> Y, i </s>

<S>

</s>

Neural String Edit Distance

<S>

</s>

Non-cognate
p

<S>

a

S

</s>
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Indo-European

Austro-Asiatic

Method # Param. Plain + Int. loss Time Plain + Int. loss Time
Learnable edit distance 0.2M 32.8 +1.8 — 0.4h 10.3 0.5 — 0.2h
Transformer [CLS] 2.7M 93.5 :2.1 — 0.7h  78.5 :0.8 — 0.6h
W unigram 0.5M 46.2 +4.9 — 0.2h  16.6 +0.3 — 0.1h
@]
Z RNN 1.9M 80.6 +1.2 — 0.3h  15.9 :0.2 — 0.2h
(',_, Transformer 2.7M 76.7 +1.3 — 0.3h 16.7 +0.3 — 0.2h
unigram 0.5M 78.5 +1.0 80.1 =0.8 1.5h  47.8 :0.7 48.4 10.6 0.7h
w  CNN (3-gram) 0.7M 94.0 +0.7 93.9 :0.8 0.9h 77.9 115 76.2 £1.9 0.5h
=)
° RNN 1.9M 96.9 +0.6 97.1 +0.6 1.9h 84.0 :0.4 83.7 :0.5 1.2h
Transformer 2.7M 87.2 +1.6 87.3 £1.8 1.6h 69.9 1.0 70.7 +1.1 1.0h
Neural String Edit Distance
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Ablation: |ELex

Loss functions Fq

Complete loss 97.1 06
— binary XENT for o, p, 96.1 203
— expectation-maximization 96.3 0.7

17/ 49
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Neural String Edit Distance

Transliteration & Grapheme-to-Phoneme




Arabic—English Transliteration

® 13k training, 1.5k validation and
testing (Rosca and Breuel, 2016)

&0l sandy
Zg‘g\z daye
;;5})\& saronni
%;gpil);.j abercromby
Sy kurt

Grapheme-to-Phoneme Conversion

¢ CMUDict dataset (Weide, 2005)
® 108k training, 5k valid., 13k test

® Multiple transcriptions, during
evaluation, choose the closest one

PERRON PEHRAHN
TABUCHI TAABUWCHIY
CUVELIER KYUWVLIYER

CONSUMERS’ KAHNSUWMERZ
KINGDOMS KIHNGD AH M Z

Evaluation with Word Error Rate (WER) and Character Error Rate (CER)

Neural String Edit Distance
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Model modifications

® Unidirectional representation of the target
® Deletion probability must not depend on the last target character

® Dirty trick: Added attention from the target representaiton to source representation
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Arabic — English

£
Method c% Plain + Interpret. loss Time
F= CER WER CER WER
RNN Seq2seq 33M 22002 75.8 106 — — 12m
Transformer 3.IM 229 .02 78.5 04 — — 11m
unigram 0.7M 31.7 :18 852109 31.2:14 850505 36m
£ CNN (3-gram) L1LIM 24.6:06 80503 245:09 80.1:09 4Im
°  Deep CNN 3.0M 244 .05 80.0:07 23.8:03 79.3:01 52m
RNN 29M 241 .02 77.0:20 22.0:03 77.4:08 60m
Transformer 32M 243 09 79.0:07 239:16 78.6:13 1.2h

Neural String Edit Distance
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Results: Grapheme-To-Phoneme

£ CMUDict
Method o .
S Plain + Interpret. loss Time
RIS CER WER Align. CER WER Align.
RNN Seq2seq 3.3M 58101 236109 245 — — — 1.8h
Transformer 3.1M 6.51+0.1 26.6 :03 33.2 — — — 1.1h
unigram 0.7M 209 03 675 +1.0 557 20.6 03 663102 595 2.4h
£ CNN (3-gram) 11M 12810 48431 354 128:02 48406 381 25h
<]
Deep CNN 3.0M 108105 414:19 233 108105 421:16 2838 2.5h
RNN 2.9M 7.8 £03 319113 447 7304 333115 489 2.3h
Transformer 32M 10.7 £1.0 41.8 +3.1 33.3 10.2 1.1 43.6 +3.2 37.9 2.3h

Neural Architectures for Character-level NLP Why characters? Neural String Edit Distance Character-level Machine Translation
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Example: Grapheme-to-Phoneme

graphemes  phonemes edit operations

GOELLER G OW LER G>G L-OW R-ER
VOGAN VOWGAHN V-V G-0OW N-N
ENDLER  EHNDLER N-N' D-D L-L EE] R-ER
SWOOPED SWUWPT  S5S W-W PP EE D-T

Viterbi decoding with a RNN-based model.
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Ablation: RNN model on transliteration

Loss functions CER WER

Complete loss 225103 77.4 108
— expectation maximization 68.2 +7.4 93.5 11.0
— next symbol NLL 27.2 114 811 122
— Qm,n Maximization 235 +1.3 79.2 125

Neural Architectures for Character-level NLP

Why characters? Neural String Edit Distance Character-level Machine Translation
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Curriculum Learning for Character-level MT

Towards

former NMT

d Character-Level Trans

by Finetuning Subword Systems

Jindfich Libovicky and Alexander Fraser

Center for Information and Speech Processing

Ludwig Maximilian University of Munich
Munich, Germany

{ibovicky,

Abstract

Applying the Transformer archiecture on the

models that are not extremely large.

Introduction

State-of-the-art neural machine translation (NMT)
models operate almost end-to-¢nd except for input
and output text segmentation. The segmentation
is done by f rst employing rule-based tokenization
and then splitting into subword units using statis-
tical heuristics such as byte-pair encoding (BPE;
Sennrich et al. 2016) or SentencePicce (Kudo and
Richardson, 2018).

nt sequence-to-sequence (S25) models
can leam translation end-to-end (at the character
level) without changes in the architecture (Cherry
etal., 018), given sulf

fraser)ecis.lmu.de

explicit segmentation. Our character-level models
show slightly worse translation q.mmy. bm have
better robustness towards input noi bett «
capture morphological phenomena. o Jpp

i important because previous approaches vere.
lied on very large transformers, which are out of
reach for much of the research community.

2 Related Work

Character-level decoding seemed to be rela-
ith recurrent $25 models (Chung
et s, 3006, Bt early atempts at schicving
segmentation-free NMT with recurrent networks
used input hidden states covering a constant char-
acter span (Lee et al., 2017). Cherry etal. (2018)
showed that with a suff ciently deep recurrent
model, no changes in the model are necessary, and
they can sill reach translation quality that
with subword models. Luong and Manning (2016)
and Ataman et al. (2019) can leverage character-
level information but they require tokenized text as
an input and only have access to the character-level
embeddings of predef ned tokens.

Training character-level transformers is more
challenging. Choe etal. (2019) successfully trained
acharacter-level left-to-right Transformer language
model that performs on par with a subword-level
model. However, they needed a large model with
40 layers trained on a billion-word corpus, with

character-level Transformer 528 models
etal., 2017) is more complicated becau
ateonsis s e he scgucnes engh

bis pape, we enpirically evalate Trans-

Neural Archltectures for Character-level NLP

In the most related work to ours, Gupta et al.
(2019) managed to train a character-level NMT
with the Transformer model using Transparent At-
tention (Bapna et al., 2018). Transparent atention
nncnds toall encoder layers umuhanco\hly mak

R

mme pen 1y épenisive: During training,

String E

Towards Reasonably-Sized
Character-Level Transformer NMT
by Finetuning Subword Models

Short paper at EMNLP 2020.

lit Distance Character-level Machine Translation

24/ 49



Why don’t people use character-level machine translation?

Anonymous ACL submission

Abstract

We present a literature and empirical survey
that eritcally assesses the state of the art in
character-level modeling for machine trans-
lation (MT). Despite evidence in the liera-
twre that character-level systems are compa-
rable with subword systems, they are virtu-

bustness, nor better morphological generaliza-
tion, despite being often so motivated. How-
ever, we are able to show robusiness owards
source side noise and that translation quality
docs not degrade with increasing beam size at
decoding time.

1 Introduction

“The progress in natural language processing (NLP)
brought

input segmentation methods used in WMT shared
task submissions. We then systematically compare.
the most recent character-processing architectures,
some of them taken from general NLP rescarch
and used for the frst time in MT.  Further, we
propose an alternative two-step decoder architec-
ture that unlike standard decoders does not suffer
slow-down due o the length of character
sequences. Following the recent f nding
decoding, we evaluate different decoding strategies
in the character-level context
lany previous studies on character-level MT
drew their conclusions from experiments on rather
small datasets and focused only on quantitatively
assessed translation quality without further analy-
sis. To compensate for this, we revisit and system-
atically evaluate the state-of-the-art approaches to
character-level neural MT and identify their major
strengths and weaknesses on large datasels.

2 Character-Level Neural MT

‘The original models used

g
ing assumptions about the input data and leting the
models learn everything end-to-end. One of the as-
sumptions about input data that seems to resist this
trend s (at least partially) linguistically motivated
segmentation of input data in machine translation
(MT) and NLP in general
For NMT, several papers have claimed parity
of character-based methods with subword models,
highlighting advantageous features of such systems.
nt examples include Gao et al. (2020); B:
el (020 Lt sl QO Despitc
Characterevel methods e rarely wsed s sroms
baselines in rescarch papers and o ek i
ions, suggesting that character-level models

Vcry re

missi

Neural Architectures for Character-level NLP

word-based vocabulries n(a limited size and thus
relativly frequent occurrence of out-of-vocabulary
Kemn. A typiedl sluton o tht problen s -
word segmentation (Sennrich et al., 2016; Kudo
and Richardson, 2018), which keeps frequent to-
Kens intact and splis less frequent ones into smaller
unts.

Modsling angusge on the charcc el st
tract an help overcome several prob-
lem f saword el O ot representations
of words or subwords do not ref ect systematic
character-level relations between words, potentially
harming morphologically rich languages. With sub-
words, minor typos on the source side lead to radi-
cally different input representations resuling in low

thadd

mamﬁms&« «N@u@l String E

Meta-survey and experiments with architectures

Why don’t people use
character-level machine
translation?

g JindFich Libovicky

4' Helmut Schmid

Q Alexander Fraser

Accepted to Findings of ACL 2022.

it Distance Character-level Machine Translation
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Character-level Machine Translation

Characters in literature and at WMT




Character-level MT in time

Research papers
0 o0 o o® @0 a® e
WMT System Description papers
@ ([ o
2016 2017 2018 2019 2020 2021

® RNN MT @ Transformer MT O Transformer repr.

® Research papers often report parity
or outperforming subwords 2018 2019 2020
® The results of research papers got Subwords 2% 93% 97%
never confirmed in the competitive Morphological 4% 2% 3%
WMT setup Words 2% 3% —
Character 2% 2% —

® Suspected reasons: worse quality,
5-6x slower

Neural Architectures for Character-level NLP Why characters? Neural String Edit Distance Character-level Machine Translation
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Vocabulary size in WMT submissions

[0}

N 60k - T
>

& 40k A

>

0

>

0

I I I
2018 2019 2020

Decreases in time because of low-resource languages...
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Character-level Machine Translation

Curriculum Learning




]. « Train a subword model first

..so the model knows what words are

2 =« Finetune it to only use characters

Character-level Machine Translation 28/ 49



E= English <+ BZ German

® WMT14 data, 4.5M training sentences
® Both Germanic languages, German with more inflection than English

E= English — bm Czech
® CzEng 1.7, 15.8M training sentences, tested on WTM18

¢ Slavic (but still Indo-European) language, rich morphological inflection

E= English — EH Turkish
e SETMITES2, 207k training sentences, tested on WMT18

® Turkic language, agglutinative morphology

Character-level Machine Translation
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Results: &2 English — B= German

N BLEU s chrF3

26.9 .569 269 568 . . .568 .568 564 564

32k 16k 8k 4k 2k 1k 500 Char

I BLEU B chrF3
Neural Architectures for Character-level NLP Wgéaharacters? ge‘_yéal String Edit Distance Character-level Machine Translation 30/ 49



Results: B2 German — && English

I BLEU I chrF3

30.1 573
298 27 568

32k 16k 8k 4k 2k 1k 500 Char Finetuned

Neural Architectures for Character-level NLP Why characters? Neural String Edit Distance Character-level Machine Translation 31/ 49



Results: %2 English — hmw Czech

I BLEU I chrF3

21.1 489 488 0.0 .49 487

32k 16k 8k 4k 2k 1k 500 Char Finetuned

Neural Architectures for Character-level NLP Why characters? Neural String Edit Distance Character-level Machine Translation 32/ 49



Results: && English — Turkish

I BLEU I chrF3

13.1 .462
.459 401 .459

32k 16k 8k 4k 2k 1k 500 Char Finetuned

Neural Architectures for Character-level NLP Why characters? Neural String Edit Distance Character-level Machine Translation 33/ 49



Noise sensitivity

0.0 0.2

Neural Architectures for Character-level NLP

0.4

0.6 08 1.0

Noise probability

Why characters?

Neural String Edit Distance

Character-level Machine Translation

BPE 32k
BPE 16k
BPE 8k
BPE 4k
BPE 2k
BPE 1k
BPE 500
Character
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Semantically rich units are

crutial during training
(can be unlearned eventually)

If we want to avoid subwords, we should ge such units from characters.

Character-level Machine Translation 35/ 49



Character-level Machine Translation

Architecture Innovations




Existing Character-Level Architectures: Convolutional

The _cat _s1leeps ® | ong character-level sequence to
word-like units (Lee et al., 2017)
CNN + highway layers ® Convolutions of different kernel

s NG by o sizes, highway layers, max-pooling
® Succesfully used with RNNs and
matched BPE performance (not with

Transformers)

Neural Architectures for Character-level NLP Why characters? Neural String Edit Distance Character-level Machine Translation 36/ 49



Existing Character-Level Architectures: CANINE

Position 0
D D D Used as [GLS] D
representation
D D D for classification D
Pl
D Hash Single [:] Downsample D .
Embedding Local . (Strided Upsa:"leg [:] Conv +
D D Transformer D =, Convolution) D H Single

D Transformer

0O o o0 - /B
o o o Y>>/ 0

Codepoint Character Contextualized
Integers Embeddings Characters

0000

0Qoo

0o0d
UO0000uog

.. Deep Transformer Stack / Concatenated Final
. Representations Character
Representation
S for Sequence Tasks

Source: Clark et al. (2021); from Google, pre-print only
® Architecture for pre-trained BERT-like (encoder-only) models; strong multilingual
capabilities

® Similar with more modern building blocks

Neural Architectures for Character-level NLP Why characters? Neural String Edit Distance Character-level Machine Translation 37/ 49



Existing Character-Level Architectures: Charformer

c h a r f o f m e x c h a r f o r m e r
zaects (2][%) R GEIREHERER [ a0 o 1o (e
socks ([ ) (e Do) Ce D T Do) (eI T P Pus Prs Pun
4-Blocks X, Xy || Xy | [ X ) | X || Xe X, X, X, X, || X, | X, Pra Py
(a) Formation of subword blocks to be scored by Fr. (b) Block scores that have been expanded
Offsets and/or pre-GBST convolutions not shown. back to length L. Softmax is taken over block

scores at each position ¢ to form block weights for
constructing latent subword representations.

Source: Tay et al. (2021); from Google, to appear to ICLR'22

® Parameter-efficient: One convolution and a lot of averaging

® Also for pre-trained representations (encoder-only), matches subwords

Neural Architectures for Character-level NLP Why characters? Neural String Edit Distance Character-level Machine Translation
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State-shrinking and Two-step decoding

T he _cat _ s 1lweeps # # # # # D i e _ K a
character embedding processing char. proc.
downsampling downsampling
Transformer

Transformer encoder
decoder

decoder

Lightweight LSTM | RN
0T T
D e K

Neural Architectures for Character-level NLP Why characters? Neural String Edit Distance Character-level Machine Translation 39/ 49



Experiment Setup

e |WSLT'14 data for: English <+ { Arabic, French, German }
® 200k training sentences, 1.5k validation and test

® Our own implementation in PyTorch

Neural Architectures for Character-level NLP Why characters? Neural String Edit Distance Character-level Machine Translation 40/ 49



Result: BLEU

= Enc. Dec. Char. ‘ From English Into English
é proc. ‘ ar de fr ar de fr
downsample P | Bw | B | Bew | B | Buw | Buw
BPE 16k 16516 112
Vanilla char. 658
3 — 9672
) —
25 9672
§ 3 3 9646
5 5 9646
3 — 1320 329
5
E S — 1320 3L3
53 3 1165 306
)
5 5 1165 a4
3 — 6446 332
s — oo [ERS s 2 a0 (S
£
5 s on SN0
s s e g9 LT (@l us [22 [

chrF and COMET are consistent (in the paper)

Neural Architectures for Character-level NLP

Why characters? Neural String Edit Distance Character-level Machine Translation

® Two-step architecture as fast as
BPEs, but low quality

® Downsampling 3 much better than
downsampling 5

BPE > Lee-style > Vanilla
char. > everything else

41/ 49



® | ee-style encoder works the best

® Two-step decoding matches the speed, but worse quality

Let’s try the best option in a competitive setup.

Character-level Machine Translation 42/ 49



Character-level Machine Translation
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Competitive data setup

Previous work makes optimistic conclusions based on small and old datasets...
..let’s do it properly

== — bm =

® CzEng 2.0 corpus (Kocmi et al., 2020) ® Data mix Edinburgh used for
® 61M authentic parallel sentences WMT'21 submission (Chen et al.,
2021)

50M back-translated
® 66M authentic parallel sentence

52M back-translated

..data almost comparable to best WMT submissions
(tagged back-translation, Transformer BIG architecture, FairSeq)

Neural Architectures for Character-level NLP Why characters? Neural String Edit Distance Character-level Machine Translation
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Extensive evaluation

Character-level methods often motivated by morphological generalization and noise
robustness.

® Quality: BLEU, chrF, COMET in News, IT and medical domain

Gender dataset

Morpheval: Specific morphological phenomena

Recall of novel forms and lemmas (in news)

Quality under sampled noise
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News IT Medical Gender Avg. Recall of novel Noisy

Acc. or- ——————— set

BLEU COMET BLEU COMET BLEU COMET pheVal Forms Lemmas ChrF

30.8 .672 345 889 26.4 734 33.7 48.5 436

BPE 16k +0.8 +.022 +1.3 +.022 +1.4 +.037 713 866 vs. 63.7 vs. 71.1 +.002
28.4 597 314 821 236 .674 34.3 47.4 436

BPE to char. 0" T 1> Loss .13 039 68.9 87.0 vs. vs. £.001
. 27.7 550 30.0 .778 23.3 .663 34.4 47.4 .493
Vanilla char. .07  £026 <12  +.028  +1.3  +.039 70.2 86.4 vs.61.0  vs.68.7 +.001
28.8 .609 31.7 .849 243 .696 34.1 48.5 497

Lee-style enc. 70" Uoor i3 Los .13 038 65.6 86.6 vs.617  vs.69.2 £.001

® Characters worse in everything, incl. domain robustness

® No signs of better morphological generalization

® Strictly better for noisy inputs

Character-level Machine Translation
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Results: English-German

News IT Medical Gender Avg. Recall of novel Noisy
Acc Mor- —mm—— set
BLEU COMET BLEU COMET BLEU COMET ' pheval Forms Lemmas Chl’F
315 418 456 622 38.7 .569 40.2 51.0 464
BPE 16k +0.9 +.021 +1.3 +.021 +1.6 +.034 66.5 90.6 vs. 72.3 vs. 67.0 +.002
29.1 .360 46.5 .617 36.0 .513 45.1 50.8
BPE to char. 70" T 43 Lo 14 03 71.2 913 vs. 711 vs.65.5 465
. 27.8 .321 453 600 356 .496 50.7 45.1 504
Vanilla char. .08 023 £13 2022 <14  +.036 71.2 91.4 vs.64.3  vs.70.2 +.001
29.1 363 46.5 .619 36.5 .500 445 50.8 515
Lee-style enc. 0" T 03 Lo .14 037 74.0 915 vs. 771 vs.65.5 £.001
® Same results as for Czech
® Slightly better morphological generalization
46/ 49
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The only thing where characters
are better is noise robustness
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Neural Architectures for Character-level NLP

Summary

® Neural String Edit Distance can be a viable alternative for
character-level tasks

® Machine translation needs semantically rich units and shorter
sequences

® Modern architectures that work elsewhere are to weak for MT
® The best character-level architecture: Lee-style encoding

® Many research papers about character-level MT tend to
overclaim

® The only advantage of character-level: noise robustness

https://ufal.mff.cuni.cz/jindrich-1libovicky



https://ufal.mff.cuni.cz/jindrich-libovicky
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