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Abstract

It is unclear whether, how and where large
pre-trained language models capture subtle lin-
guistic traits like ambiguity, grammaticality
and sentence complexity. We present results
of automatic classification of these traits and
compare their viability and patterns across
representation types. We demonstrate that
template-based datasets with surface-level ar-
tifacts should not be used for probing, care-
ful comparisons with baselines should be done
and that t-SNE plots should not be used to de-
termine the presence of a feature among dense
vectors representations. We also show how fea-
tures might be highly localized in the layers for
these models and get lost in the upper layers.

1 Introduction

Pre-trained language models, such as BERT, M-
BERT (Devlin et al., 2019) and GPT-2 (Radford
et al., 2019), while being very efficient at solving
NLP problems, are also notoriously difficult to in-
terpret and their analysis and interpretation is an
active area of research (Belinkov and Glass, 2019).
One such technique of analysis is based on probing
classifiers (Belinkov, 2021), which primarily con-
sists of training and evaluating a shallow network
multi-layer perceptron (MLP) as a classifier on top
of the vector representations. Probing classifiers
are now fairly established in NLP (Adi et al., 2016;
Tenney et al., 2019; Ma et al., 2019).

In this work, we build sentence representations
from layer-wise contextual embeddings obtained
from three different pre-trained language models
and probe them for three linguistic traits: sentence
ambiguity, grammaticality, and complexity using
some well-established datasets.

=Co-first authors.
Code for the experiments in this paper is open-source:

github.com/ufal/ambiguity-grammaticality-complexity

In the process, we show why having a reasonable
baseline is a necessity for performance interpreta-
tion. We also demonstrate why simply visually
checking the clustering of embeddings on datasets
using t-SNE, a popular dimension-reduction tech-
nique in probing, can lead to incorrect conclusions.

Motivation. The study of these traits is impor-
tant for example in machine translation where dis-
ambiguation is necessary and grammaticality cor-
rection and simplification sometimes happen im-
plicitly without any control. For the tasks of text
simplification and grammar correction, it is crucial
to be aware of whether and how general-purpose
models encode these traits or whether they abstract
the meaning from them. Specifically, ambiguity
detection has been investigated very little in con-
trast to other features. All of these three traits are
orthogonal in their definitions, although their mu-
tual relationships are unknown. For example, it
may be that ambiguous sentences tend to be more
complex and prone to lower grammaticality. We
assimilate the definition of these traits from the re-
spective datasets but nevertheless include examples
in Table 1.

Contribution. We carry out text classification
tasks of ambiguity, grammaticality and complexity
and demonstrate empirically that:

• having a reasonable baseline is a necessity for
performance interpretation;

• sentence ambiguity is represented much less
than sentence complexity in the models;

• the template-based BLiMP dataset is not suit-
able for probing grammaticality because of
surface-level artefacts;

• t-SNE is not always an adequate tool to see
whether a feature is represented in vectors.
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Dataset Class Sentence

Ambiguous COCO Ambiguous A metal artwork displays a clock in the middle of a floor.
MS COCO Unambiguous A couple sitting under an umbrella on a park bench.

HCR English Complex For the year, net income tumbled 61% to $ 86 million, or $ 1.55 a share.
HCR English Simple In part, the trust cited the need to retain cash for possible acquisitions.

CoLA Acceptable The sailors rode the breeze clear of the rocks.
CoLA Unacceptable The problem perceives easily.

BLiMP-Morphology Acceptable The sketch of those trucks hasn’t hurt Alan.
BLiMP-Morphology Unacceptable The sketch of those trucks haven’t hurt Alan.

BLiMP-Syntax Acceptable Aaron breaks the glass.
BLiMP-Syntax Unacceptable Aaron appeared the glass.

BLiMP-Syn_Semantics Acceptable Mary can declare there to be some ladders falling.
BLiMP-Syn_Semantics Unacceptable Mary can entreat there to be some ladders falling.

BLiMP-Semantics Acceptable There was a rug disappearing.
BLiMP-Semantics Unacceptable There was every rug disappearing.

Table 1: Sentence examples from used datasets.

2 Related Work

Ambiguity. Word-sense disambiguation has
been extensively studied and is a closely related
task (Navigli, 2009). This has also been the
focus of work done with recent NLP tools, which
has mostly concentrated on the determination
of ambiguity at the lexical level and not at the
sentence level. Yaghoobzadeh et al. (2019);
Şahin et al. (2020); Meyer and Lewis (2020)
classify ambiguous words. Chen et al. (2020)
explore the geometry of BERT and ELMo (Peters
et al., 2018) using a structural probe to study
the representational geometry of ambiguous
sentences. Bordes et al. (2019) use a combination
of visual and text data to ground the textual
representations and make notes on disambiguation.
Ambiguity modelling has also been a focus of
the MT community because translation often
requires disambiguation. This applies on many
levels: lexical (Higinbotham, 1991; Zou and
Zou, 2017; Do et al., 2020; Campolungo et al.,
2022), syntactic (Pericliev, 1984) and semantic
(Baker et al., 1994; Stahlberg and Kumar, 2022).
Psycholinguists have also studied the effect of
ambiguity resolution on cognitive load (Altmann,
1985; Trueswell, 1996; Papadopoulou, 2005),
often motivated by issues in MT (Sammer et al.,
2006; Scott, 2018). Bhattacharya et al. (2022)
explore ambiguity by the task of translation by
human annotators.

Grammaticality. This trait has been studied
historically from the perspective of human sen-

tence processing and acceptability (Nagata, 1992;
Braze, 2002; Mirault and Grainger, 2020). Many
real-world applications utilize tools for automatic
grammaticality prediction (Heilman et al., 2014;
Warstadt et al., 2019), such as automatic essay as-
sessment (Foltz et al., 1999; Landauer, 2003; Dong
et al., 2017) or machine translation (Riezler and
Maxwell III, 2006). For MT, output acceptabil-
ity, or fluency, is a standard evaluation direction
for which many automated metrics exist (Hamon
and Rajman, 2006; Lavie and Denkowski, 2009;
Stymne and Ahrenberg, 2010). In contrast to our
supervised classifier approach, perplexity-based
approach has been used to measure acceptability
(Meister et al., 2021).

Related more closely to our setup, Hewitt and
Manning (2019) use a linear probe and identify
syntax in contextual embeddings. Lu et al. (2020);
Li et al. (2021) examine gramaticality in BERT
layers. Hanna and Bojar (2021) assess BERTScore
effectiveness in spotting grammatical errors.

Complexity. Similarly to other traits, complex-
ity was first studied in the human processing of
language (Richek, 1976; Just et al., 1996; Heinz
and Idsardi, 2011). Brunato et al. (2018) perform a
crowd-sourcing campaign for English along with
an in-depth analysis of the annotator agreement
and complexity perception. Automatic complexity
estimation is vital, especially in the educational
setting for predicting readability (McNamara et al.,
2002; Weller et al., 2020). Ambati et al. (2016)
estimate sentence complexity using a parser while



Štajner et al. (2017) do so using n-grams. Sarti
(2020); Sarti et al. (2021) juxtapose the effect of
complexity on language models and human assess-
ment thereof. Martinc et al. (2021) survey multiple
neural approaches to complexity estimation, includ-
ing using pre-trained LM representation. In con-
trast to our work, they report only the final results
and do not investigate the issue from the perspec-
tive of probing (e.g. what representation to extract
and from which layer).

Probing. Earlier probing studies have shown that
the early layers of BERT capture phrase-level in-
formation and the later layers tend to capture long-
distance dependencies (Jawahar et al., 2019). The
syntax is also captured more in the early layers of
BERT and higher layers are better at representing
semantic information (Tenney et al., 2019). It is not
clear if and how pre-trained models achieve com-
positionality (Kalchbrenner and Blunsom, 2013;
Nefdt, 2020; Kassner et al., 2020) and how linguis-
tic knowledge is represented in sentence embed-
dings. Liu et al. (2019) use probing on a set of
tasks including token labelling, segmentation and
pairwise relation extraction to test the abilities of
contextual embeddings. Mutual information can
be used as a viable alternative to traditional probes
that require optimization (Pimentel et al., 2020).
A conceptual follow-up is V-information (Hewitt
et al., 2021) which is better suited for probing. In
many cases, t-SNE is the prevalent method of vi-
sualization of class clusters in high-dimensional
vector space (Jawahar et al., 2019; Jin et al., 2019;
Wu and Xiong, 2020; Hoyt and Owen, 2021).

3 Data

For each trait, we use a different dataset. Their over-
all sizes are listed in Table 2 and example sentences
in Table 1. We repurpose the datasets and derive
binary labels (positive/negative) from each: am-
biguous/unambiguous, complex/simple and gram-
matical/ungrammatical.

Ambiguity. We use sentences from the MS
COCO (Lin et al., 2014) dataset, for our list of
ambiguous and unambiguous sentences. The MS
COCO dataset comprises of a set of captions de-
scribing an image. Captions containing ambiguous
verbs corresponding to 461 images (Ambiguous
COCO; Elliott et al., 2016) constitute the ambigu-
ous sentences for our experiment. 461 captions
that were randomly sampled from MS COCO con-

Dataset Sentences

Ambiguity COCO 0.9k

Complexity HCR English 1.2k
PACCSS-IT 1.1k

Grammaticality CoLA 5k
BLiMP 67×2k

Table 2: Number of sentences for each dataset corre-
sponding to each trait.

stituted the unambiguous sentences for the experi-
ment.

Complexity. Corpus of Sentences rated with Hu-
man Complexity Judgments1 (Iavarone et al., 2021)
and PACCSS-IT (Brunato et al., 2016) contain 20
human ratings on the scale from 1 (not complex)
to 7 (very complex) about sentences. We bina-
rize these ratings and consider sentences below
the average to be simple sentences and others to
be complex sentences. The resulting dataset is
class-balanced (complex/simple) in terms of exam-
ples (592 sentences of each class for English and
551 sentences for Italian). The average sentence
length for complex and simple examples is 24.84
and 13.95, respectively for English sentences. For
Italian sentences, the average sentence length for
complex and simple examples is 21.61 and 12.26,
respectively. The complexity could therefore be
encoded solely in the sentence length.

Grammaticality. For experiments under this cat-
egory, we use the Benchmark of Linguistic Min-
imal Pairs (BLiMP; Warstadt et al., 2020) and
the Corpus of Linguistic Acceptability (CoLA;
Warstadt et al., 2019) datasets. BLiMP con-
tains sentence pairs, one of which contains a
mistake in syntax, morphology, or semantics
while the other is correct. The dataset covers
67 different conditions, grouped into 12 phenom-
ena. These phenomena are further categorized as
‘syntax’,‘morphology’,‘syntax-semantics’ and ‘se-
mantics’. The CoLA dataset is not contrastive but
contains human annotations of acceptable gram-
maticality.

1English sentences were taken from the Wall Street Journal
section of the Penn Treebank. Italian sentences were taken
from the newspaper section of the Italian Universal Depen-
dency Treebank.



4 Experiments

4.1 Task definition
In the following experiments, we are solving three
classification tasks in parallel. The input is always
the whole sentence and the output one of the two
classes (ambiguous/unambiguous, complex/simple,
acceptable/unacceptable), as shown in Table 1, ap-
plies to the whole sentence. The whole pipeline is
also depicted in Figure 1. When using the TF-IDF
feature extractor, it replaces the pre-trained LM
block.

Visiting 
friends can 

 be annoying. 

Pre-trained
LM

MLP
classifier

[0.1, 0.6, 2.3, ..., 0.9] Ambiguous 
(0.95)

text input task-specific 
classifier

vector 
representation

outputrepresentation 
model

Figure 1: Example of the experiment pipeline for ambi-
guity classification. Ambiguous sentence from Stanley
and Gendler Szabó (2000).

4.2 Setup
We use a simple MLP classifier to identify three
linguistic traits from BERT (bert-base or multilin-
gual bert-base) and GPT-2. The resulting vectors
are 768-dimensional.2 Both of these models are
Transformer based models and contain 12 layers,
which makes comparison convenient. We perform
probing on each model separately.

• CLS: single vector at the [CLS] token.

• Pooling: single vector from the pooling layer.

• Tokens: vector representations of tokens ag-
gregated with mean or (Hadamard) product to
get a single 768-dimensional vector.

We obtain the layer-wise pre-trained model rep-
resentations using Huggingface (Wolf et al., 2019)
and use them to train a classifier that identifies if a
sentence belongs to the positive class (e.g. ambigu-
ous) or not. We perform a 10-fold cross-validation
each with 10 runs of MLP.

Baseline. The most common class classifier
(50% accuracy) is a poor baseline because it may be
that the ambiguous and non-ambiguous sentences
are distributed differently w.r.t. topic. In an attempt
to alleviate this issue, we, therefore include as the
baseline a TF-IDF-based vectorizer (with a varying
number of maximum features). Probe performance

2The CLS and pooling representations apply only to BERT.

of e.g. 65% would be considered at the first glance
a positive result compared to 50%. However, in
reality, it would be a false positive finding if a sim-
ple lexical feature extractor such as TF-IDF could
yield 70%.

MLP Configuration. For probing we use
MLPClassifier from scikit-learn 1.1.0 (Pe-
dregosa et al., 2011) with most defaults preserved,
as shown in Table 3.

Architecture Single hidden layer (100)
Activation ReLU
Optimizer Adam

Learning rate 10−3

Epochs Early stopping, patience 1

Table 3: MLP classifier configuration.

4.3 Ambiguity & Complexity
Because the dataset is in Italian, we make use of
multilingual BERT for both Complexity datasets.
The probe performance for M-BERT is shown in
Figure 2. At the first glance, it appears that the
model does represent ambiguity internally since
the ambiguity probe is systematically higher than
50%. However, because TF-IDF performs simi-
larly and only uses surface-level features, the probe
is very weak. This is supported by the fact that the
most negative tokens from the classification (ex-
tracted from logistic regression coefficients) con-
tained words such as man or woman, which disam-
biguate, based on gender, some unclear cases with
an unclear referent.

In contrast, the complexity probe is systemati-
cally higher than the TF-IDF baseline. With minor
exceptions, the accuracy remains high regardless
of the layer. The performance for Italian (sentences
taken from PACCSS-IT corpus) is identical to that
for English using M-BERT (not shown). The CLS
representation at layer 0 is 50% in both instances
because it does not contain any information from
the sentence (before the self-attention block).

4.4 Grammaticality
For the morphological task of determiner-noun
agreement, Figure 3 shows a sudden drop in accu-
racy for the CLS representation at the 5th layer. In
all the tasks concerning “Determiner-Noun Agree-
ment”, the sentence minimal pairs focus on the
number agreement between the demonstrative de-
terminers (like this/these) and an associated noun.



Acceptable Sentence Unacceptable Sentence

Raymond is selling this sketch. Raymond is selling this sketches.
Carmen hadn’t shocked these customers. Carmen hadn’t shocked these customer.

Carl cures those horses. Carl cures that horses.
Sally thinks about that story. Sally thinks about those story.

Laurie hasn’t lifted those cacti. Laurie hasn’t lifted those cactus.
The waitresses haven’t cleaned this thesis. The waitresses haven’t cleaned this theses.

The teachers are running around this concealed
oasis.

The teachers are running around these con-
cealed oasis.

Randolf buys those gray fungi. Randolf buys that gray fungi.

Cynthia scans these hard books. Cynthia scans this hard books.
Jerry appreciates this lost report. Jerry appreciates these lost report.

Table 4: Example minimal sentence pairs from the determiner-noun agreement task of BLiMP.
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Figure 2: MLP dev accuracy for ambiguity and com-
plexity BERT representation across layers.

Examples of minimal pairs from the different tasks
of this kind are shown in Table 4.

While the cause is unclear, it corresponds to the
average norm of the representation being very low
at that particular layer, making it harder for the
classifier optimization.

As Figure 4 shows, many tasks can be “solved”
with a simplistic TF-IDF featurizer, making them
inadequate for determining the usefulness of large
model representations. More adequate datasets
need to be developed for probing stronger mod-
els. Systematically for all cases in morphology
where the TF-IDF failed to work accurately, the per-
formance of CLS representations was worse than
the mean representations. Even in most semantics

0 2 4 6 8 10 12
Layer
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0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
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Mean

Hadamard
CLS
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Figure 3: MLP dev accuracy for determiner noun
agreement irregular 1 task of BLiMP benchmark for
BERT representation across layers. Each point is rep-
resented with a mean across 10 runs with a 95% confi-
dence interval.

tasks, TF-IDF probes had near-perfect accuracy.
For the 7 out of 26 syntactic tasks where the TF-
IDF classifier was not accurate, the BERT models
show a steep rise in accuracy from the 2nd/3rd layer
for the mean and CLS representations, respectively.
In comparison, GPT-2 does not exhibit this pattern.

5 Discussion

The experiments with ambiguity reveal that the
representations of the pre-trained models do not
encode the ambiguity trait well. The description
detailing how the Ambiguous COCO was created
(Elliott et al., 2017) states that the dataset was cre-
ated with the intention of testing the capabilities
of multimodal translation systems. We posit that
ambiguity as a trait is not encoded in an accessi-
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Figure 4: Accuracy on various BLiMP tasks with a max
of BERT and GPT-2 representations and TF-IDF base-
line. Each task+model is represented as one square.
The lighter squares correspond to greater accuracy and
are hence better.

ble way in the layer representations of pre-trained
models.

For BLiMP tasks related to morphology and
syntax-semantics, the accuracy goes down in the
upper layers, presumably because of increasing ab-
straction for both models (not shown in graphs).
Although we perform experiments without fine-
tuning, the findings are in line with the experimen-
tal results of Mosbach et al. (2020) where finetun-
ing on 3 tasks from the GLUE benchmark (Wang
et al., 2018) showed changes in probing perfor-
mance mostly in the higher layers. Fine-tuning
however led to modest gains. The present setup
which probes sentence representations from pre-
trained models shows that the middle layers fare
far better in our probing tasks than the upper layers.
This leads us to posit that the features of interest
are highly localized and are lost in the upper layers
(even with fine-tuning).

Although both BERT and GPT-2 employ the
Transformer (Vaswani et al., 2017) architecture,
they have very different ways and locations for
storing knowledge in their internal representations
(Rogers et al., 2020; Vulić et al., 2020; Lin et al.,
2019; Kuznetsov and Gurevych, 2020; de Vries
and Nissim, 2021; Liu et al., 2021). The CLS rep-
resentations outperform the mean representations
in only a few cases. This is expected since without
fine-tuning the CLS token in BERT is trained to be
used for the next sentence classification tasks.

6 t-SNE Inadequacy

Given appropriate optimization and classifier, if
two or more classes in a vector space form clusters,
they are linearly separable and therefore the clas-

Complexity, [CLS] layer 2 | Cluster | 86% (+38%)

Complexity, mean layer 12 | No cluster | 83% (+35%)

Ambiguity, [CLS] layer 2 | No cluster | 75% (-9.2%)

Figure 5: t-SNE projections from BERT-based embed-
dings. The first and the second row show high accuracy.
The second and third rows show a lack of visual clus-
ters. Red/black represent either complex/simple or am-
biguous/unambiguous sentences. Percentages include
classifier accuracy with the difference to the TF-IDF
baseline in parentheses.

461A + 461U

231A + 231U

Figure 6: t-SNE projections from BERT-based embed-
dings (layer 1 of CLS) on ambiguous/unambiguous sen-
tences (58% MLP and 66% TF-IDF accuracy). The
first row is all the vectors and the second is half of them
subsampled by Algorithm 1. Red/black represent am-
biguous/unambiguous sentences.

sifier performs well. Furthermore, if a classifier
probe performs well and is not affected by surface-
level phenomena, it means that the features are
represented in the vectors. Both these statements
are one-way implications:

• clear clustering→ high classifier accuracy

• high classifier acc. → feature present



Because t-SNE projects vectors from high di-
mensional space to lower dimensions in a manner
that tries to preserve distances, it may be that vi-
sual clusters are created where there were none
before and vice versa. The following scenarios are
possible:

• clear clusters and high classifier accuracy

• no clusters and high classifier accuracy

• no clusters and low classifier accuracy

The last combination, “clear clusters and low
classifier accuracy” is impossible with proper opti-
mization. The three scenarios on probes from the
previous experiments are shown in Figure 5. The
conclusion is that probes should always precede
visual clustering checks using t-SNE because it
may be that the data does not form clear clusters
in t-SNE but the classes are still linearly separable,
meaning that the feature is encoded. The last image
shows two clusters but not those that separate the
two classes.

A plethora of work uses t-SNE to show clusters
of vectors grouped by features (Chi et al., 2020;
Nigam et al., 2020; Wu et al., 2020; Zhang et al.,
2021; Subakti et al., 2022), though some follow-up
with reporting classifier performance. Because t-
SNE visual separation is not easily quantifiable, the
negative results are often underreported (Fanelli,
2012; Mlinarić et al., 2017). This issue can be
resolved by using other methods, such as probes.

Algorithm 1 Forcing t-SNE clusters
. Vectors of sentences in the two classes

Load DA, DB

. Cluster size, e.g. |DA|/2
Input c′, c← c′/2

. Two seeds from classes, most distant
sA, sB ← argmaxvA∈DA,vB∈DB

||vA − vB||

. Closest points to own seeds
C ′A ← top-c v∈DA

−||sA − v||
C ′B ← top-c v∈DB

−||sB − v||
. Furthest points to opposing seeds

C ′′A ← top-c v∈DA
||sB − v||

C ′′B ← top-c v∈DB
||sA − v||

CA ← C ′A ∪ C ′′A
CB ← C ′B ∪ C ′′B
t-SNE(CA ∪ CB)

6.1 Forcing t-SNE Clusters.
It is possible to start with sentence vectors that
result in a t-SNE graph that does not show any
visual clusters and select half of them such that
running t-SNE will show clusters between the two
classes. The algorithm is described in Algorithm 1.
It is based on first finding two most distant “seeds”
from the two classes and then selecting vectors of
the same class which are closest to the seed or most
distant to the other seed.

An example is shown in Figure 6. While the orig-
inal does not show any clusters between the classes,
the application of the algorithm selects such vectors
that t-SNE shows visual clusters. Simplu randomly
subsampling the vectors would not work but this
shows that using t-SNE to visually determine the
presence of a feature is not robust.

7 Conclusion

In this work, we showed how large pre-trained
language models represent sentence ambiguity in
a much less extractable way than sentence com-
plexity and stress the importance of using reason-
able baselines. We document that template-based
datasets, such as BLiMP used for sentence accept-
ability, are not suitable for probing because of
surface-level artefacts and more datasets should
be developed for probing more performant models.
Finally, we discuss why using t-SNE visually for
determining whether some representations contain
a specific feature is not always a suitable approach.

Future work
Because both t-SNE clustering and classification
(inability to establish a rigid threshold for accu-
racy) can fail for determining whether a specific
feature is represented in the model, more robust
methods for this task should be devised. These
probes should also be replicated in models used for
machine translation, which is the primary motiva-
tion for studying these traits.
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