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Abstract

We propose a character-based non-
autoregressive GEC approach, with automat-
ically generated character transformations.
Recently, per-word classification of correction
edits has proven an efficient, parallelizable
alternative to current encoder-decoder GEC
systems. We show that word replacement edits
may be suboptimal and lead to explosion of
rules for spelling, diacritization and errors in
morphologically rich languages, and propose
a method for generating character transfor-
mations from GEC corpus. Finally, we train
character transformation models for Czech,
German and Russian, reaching solid results and
dramatic speedup compared to autoregressive
systems. The source code is released at
https://github.com/ufal/wnut2021_

character_transformations_gec.

1 Introduction

The current state of the art for grammatical error
correction (GEC) is achieved with encoder-decoder
architectures, leveraging large models with enor-
mous computational demands (Grundkiewicz et al.,
2019; Rothe et al., 2021). As such autoregressive
approach is slow on inference and is impossible
to parallelize, it has recently been suggested to
replace autoregressive sequence-to-sequence de-
coding with per-token tagging to enable parallel
decoding, achieving a dramatic speedup by a factor
of 10 in NMT (Gu et al., 2018) and very recently,
also in GEC (Omelianchuk et al., 2020).

Omelianchuk et al. (2020) approaches GEC as a
tagging task, discriminating between a set of word-
level transformations. The designed set is efficient
for English corpora, which rarely contain spelling
errors, and for English language, which does not
have diacritization marks and its morphology is
very modest compared to morphologically rich lan-
guages such as Czech or Russian. Using a set of
word-level transformations designed for English,

all character-level corrections would have to be
handled by generic word-for-word REPLACE rule,
leading to an explosion of rules.

We therefore suggest character transformations
on subword level. Moreover, our transformations
are automatically inferred from the corpus as op-
posed to being manually designed. Our approach
has the following advantages:
• character-level errors, such as diacritics,

spelling and morphology are handled,
• the transformations can be shared between

subwords, preventing an explosion of rules,
• the transformations are generated automati-

cally from corpus for each language.
We present an oracle analysis of various trans-

formations sets at different levels, in English and
three other languages: Czech, German and Rus-
sian. We find that the word-level set of rules may
be suboptimal for morphologically rich languages
and corpora with spelling errors and diacritics.

Finally, we train models with character transfor-
mations for non-autoregressive grammatical error
correction in Czech, German and Russian, reach-
ing solid results and dramatic speedup compared
to autoregressive systems.

2 Related Work

Awasthi et al. (2019) propose an alternative to
popular encoder-decoder architecture for GEC: a
sequence-to-edit model which labels words with
edits. Its advantage is parallel decoding while keep-
ing competitive results. Mallinson et al. (2020)
introduce a framework consisting of two tasks: tag-
ging, which chooses and arbitrarily reorders a sub-
set of input tokens to keep, and insertion, which
in-fills the missing tokens with another pretrained
masked language model. Omelianchuk et al. (2020)
develop custom, manually designed, per-token g-
transformations.

We further improve the sequence-to-edit model
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Algorithm 1: Extended LCS Alignment
Input: input subwords s, gold characters g
w[:, :]← 0
for i← |s| to 1 do

for j ← |g| to 1 do
w[i, j]← w[i+ 1, j]
for l← 1 to max(|g| − j, 8 + 3|s[i]|) do

g ← g[j : j + l]
if g.isspace() then continue

c←


1 if s[i] = g

0.75 if s[i].strip() = g.strip()
0.5 · LevenshSimilarity(s[i], g)

w[i, j]← max(w[i, j], c+w[i, j+1])
end

end
end
return alignment with weight w[0, 0], as in LCS

with an attempt at non-autoregressive grammati-
cal error correction for languages other than En-
glish, with character transformations applied at
subwords, inferred automatically from parallel
GEC corpus.

3 Transformations

Given that we encode an input sentence using
BERT (Devlin et al., 2019), it is natural to repre-
sent it using a sequence of subwords. We prepend
a space to every first subword in a word and use no
special marker for other subwords. Note that the
subwords might not correspond directly to parts of
input, because the bert uncased model strip input
casing and diacritics.

3.1 Alignment
In order to automatically encode the gold data
via character transformations, we first align the
input subwords and the corrected sentence. We
compute the alignment with Algorithm 1, which is
an extended version of LCS, where each subword
is aligned with a sequence of gold characters.
We ignore casing, diacritics and consider all
punctuation equal during the alignment, and bound
the maximum length of a correction (number of
characters aligned to a single input subword) by
8+3·input subword character length for efficiency.

3.2 Transformations
We consider four kinds of transformations, differ-
ing in two dimensions – the granularity of the trans-

Input gatherin leafes
Correct Gathering leaves

Subwords gathe rin lea fes

string-at-word Gathering leaves
string-at-subword Gathe APP. g KEEP ves

char-at-word APPEND g,
UPPERC. 2nd

REPL. 3rd

from end
with v

char-at-subword UPPERC. 2nd APP. g KEEP
REPL. 1st

with v

Figure 1: Example of the four types of transformations.

formation and the unit it is applied on:

• character transformations applied on each sub-
word separately (char-at-subword),
• character transformations applied on each

complete word (char-at-word),
• string transformations applied on each sub-

word (string-at-subword),
• string transformations applied on each com-

plete word (string-at-word).

In such terminology, the transformations proposed
by Awasthi et al. (2019) and Omelianchuk et al.
(2020) can be referred to as string-at-word. An
example of the described transformation types is
illustrated in Figure 1.

To apply a transformation on a complete word,
we concatenate the corresponding subwords and
aim to produce the concatenation of the subwords’
corrections.

A string transformation can be one of keep, re-
place by given string or append a given string be-
fore/after.

A character transformation consists of multiple
character edits, which we construct as follows:

1. We start by computing the standard smallest
edit script between an input subword and a
correction. The edit script is a sequence of
inserts, replaces and deletes, and we index
each edit operation either from the beginning
of the input subword (if it involves the first
half of it) or from the end of it (otherwise).
The edit script is computed on lowercased
strings, and in case of bert uncased models,
also on undiacritized strings.

2. Afterwards, the unmodified input subword
(i.e., including casing in case of bert cased
models) is processed by the edit script, ob-
taining a correction with possibly incorrect
casing. If some incorrectly lowercased charac-



ters are indeed present, uppercase operations
are added, each indexing a single character
either from the beginning of the correction (if
the character is in the first half of it) or from
the end of it (otherwise).

3. Finally, for bert uncased models, we still need
to handle missing diacritics. We achieve it
analogously to step 2, adding missing diacrit-
ical marks with operations indexing single
characters again either from the beginning of
the correction (if the character is in the first
half) or from the end of it.

The reason for special handling of casing (and
diacritization for bert uncased models) is that
the proposed rules are more general, allowing to
capture for example corrections go→Going and
walk→Walking with a single rule append “-ing”,
uppercase first.

4 Transformations Upper-bound F-score

To assess the effect of number and type of transfor-
mations, we compute the potential maximum F0.5

score with the MaxMatch M2 scorer (Dahlmeier
and Ng, 2012).

We generate transformation dictionary from the
training portion of the following GEC corpora:
CoNLL-2014 shared task for English (Ng et al.,
2014), AKCES-GEC (Náplava and Straka, 2019)
for Czech, FALKO-MERLIN GEC (Boyd, 2018)
for German and RULEC-GEC (Rozovskaya and
Roth, 2019) for Russian. The sizes of the datasets
are quantified in Table 1.

We also generate transformations from synthetic
data augmentation used for training (Section 5); to
prevent the explosion of the transformation dictio-
nary, we consider only 1000 synthetic sentences,
except for Russian, which employs 5000 synthetic
sentences because of very small authentic data. Fi-
nally, we add a special uncorrectable error dictio-
nary element, indicating an error that cannot be
corrected by any dictionary transformation.

To encode a gold correction with a transforma-
tion, we first try looking it up in the dictionary. If
it is not present, we go through all dictionary trans-
formations in random order, accepting the first one
producing the correct output. If no transformation
match, we resort to the uncorrectable error (during
prediction, it will be replaced by the input token).

We show all combinations (character/string
at words/subwords), using cased and uncased
mBERT, in Figure 2. Clearly, character transforma-

Language Dataset Sentences

Czech AKCES-GEC 47 371
German Falko-MERLIN 24 077
Russian RULEC-GEC 12 480

Table 1: GEC datasets used for constructing rules and
for evaluation, including their size.

tions applied at subwords (char-at-subword, green)
have the highest potential in terms of upper-bound
F0.5 in all four languages. At the same time, word
replacements (string-at-word, red) do not scale
well. This effect is emphasized in morphologically-
rich Czech and Russian, for which the upper-bound
string replacement F0.5 (string-at-word, red) falls
below the current GEC systems state-of-the-art F0.5

(horizontal dotted line).

5 Experiments

We train the character subword GEC tagging model
using the char-at-subword transformation, which
have achieved the best upper-bound score.1 We
train the character subword GEC tagging model
(char-at-subword) for Czech, German and Russian,
in two stages: First, models are trained on a large
synthetic corpus, generated by a reimplementation
of Náplava and Straka (2019). Then, the models are
finetuned on a mixture of synthetic and authentic
data in ratio 1:2. The authentic data used in the sec-
ond stage are AKCES-GEC (Náplava and Straka,
2019) for Czech, FALKO-MERLIN GEC (Boyd,
2018) for German and RULEC-GEC (Rozovskaya
and Roth, 2019) for Russian.

The model is based on a pretrained BERT en-
coder (Devlin et al., 2019), specifically bert-base-
multilingual (uncased for Czech and German,
cased for Russian). After encoding the tokens, we
add a simple softmax classifier that projects embed-
dings for each subword into a distribution over a set
of transformations (Section 3) generated from au-
thentic data with a limited addition from synthetic
data (Section 4). We generate 7.7k transformations
for Czech, 4.3k transformations for German and
3.1k transformations for Russian.

GEC models based on Transformer and
BERT-encoder were shown to perform better
when applied iteratively (Lichtarge et al., 2018;

1We also performed preliminary experiments with char-at-
word GEC tagging model, and it performed worse than using
the char-at-subword transformations.
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Figure 2: F0.5 depending on number and type of transformations, if all transformations were correctly predicted
(upper-bound). Up and right is better (higher F0.5, fewer rules), down and left is worse (lower F0.5, more rules).
Circled numbers 1©, 2© and 3© denote that we kept transformations present at least once, twice or three times in the
training data, respectively (larger means less transformations).

Omelianchuk et al., 2020). Therefore, we exper-
iment with multiple iterations and report results
both for single iteration and four iteration phases
after which we did not observe significant improve-
ments.

We train both the fully-connected network and
BERT with AdamW optimizer (Loshchilov and
Hutter, 2019) which minimizes the negative log-
likelihood. Both for pretraining and finetuning, the
learning rate linearly increases from 0 to 5 · 10−5

over the first 10000 steps and linearly decreases to
0 over 20 epochs. We use the batch size of 2048
sentences and clip each training sentence to 128
tokens. We pretrain each model for circa 14 days
and finetune it for circa 2 days on Nvidia P5000
GPU and select the best checkpoint according to
development set.

We experimented with weighting all classes dif-
ferent from the KEEP instruction by a factor of 3.
It turned out effective only for pretraining Russian.

We present the results of our models in Table 2.
Compared to autoregressive models of similar size
(Náplava and Straka, 2019), our models achieve
solid results with large speedup due to the non-
autoregressive tagging approach. Obviously, the
inflation of model size (Rothe et al., 2021) to enor-
mous size (13B parameters) leads to further im-
provements at the cost of increased computational
demands.

5.1 Runtime Performance

To evaluate the speed-up of the non-autoregressive
decoding, we compare the runtime performance
of our system to the autoregressive Transformer



Model Params F0.5

Richter et al. (2012) 58.54
Náplava and Straka (2019)synt 210M 66.59
Náplava and Straka (2019)fine 210M 80.17
Rothe et al. (2021) base 580M 71.88
Rothe et al. (2021) xxl 13B 83.15

Ours synthetic 172M 64.29
Ours finetuned 172M 72.86
Ours finetuned 4 iterations 172M 75.06

(a) Czech

Model Params F0.5

Boyd (2018) 45.22
Náplava and Straka (2019)synt 210M 51.41
Náplava and Straka (2019)fine 210M 73.71
Rothe et al. (2021) base 580M 69.21
Rothe et al. (2021) xxl 13B 75.96

Ours synthetic 170M 44.29
Ours finetuned 170M 62.92
Ours finetuned 4 iterations 170M 65.95

(b) German

Model Params F0.5

Rozovskaya and Roth (2019) 21.00
Náplava and Straka (2019)synt 210M 40.96
Náplava and Straka (2019)fine 210M 50.20
Rothe et al. (2021) base 580M 26.24
Rothe et al. (2021) xxl 13B 51.62

Ours synthetic 180M 25.36
Ours finetuned 180M 36.62
Ours finetuned 4 iterations 180M 38.68

(c) Russian

Table 2: Model results

encoder-decoder architecture from Náplava and
Straka (2019), which is of comparable size. The
measurements are performed using both a CPU-
only decoding (performed on a dedicated 32-core
Intel Xeon E5-2630) and GPU decoding (measured
on an Nvidia Quadro P5000). The results presented
in Table 3 show that the non-autoregressive system
is four times faster.

Model Time Per Sentence

T2T 162.34
BERT-GEC 41.26

(a) CPU decoding on a 32-core Intel Xeon

Model Time Per Sentence

T2T 22.36
BERT-GEC 5.09

(b) GPU decoding on Nvidia Quadro P5000

Table 3: Average time in milliseconds required to pro-
cess a single sentence in the Czech test set, measured
using both (a) CPU decoding and (b) GPU decoding.

6 Conclusion And Future Work

We proposed a character-based method to gener-
ate target transformation instructions for GEC tag-
ging models, as an alternative to autoregressive
models. We compared the character transforma-
tions to previously used word-level transforma-
tion instructions and have shown that character-
based rules have better coverage and scale bet-
ter in Czech, German and Russian. Moreover,
we trained character-based GEC tagging models
for these languages. The source code is avail-
able at https://github.com/ufal/wnut2021_

character_transformations_gec.
For future work, we propose to investigate ways

to generate synthetic data to achieve better cov-
erage of the target transformation set, since the
current process for generating synthetic errors is
well suited for encoder-decoder models, but may
fail to cover certain transformations.
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