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Motivation

e 25thJanuary 1921
o R.U.R.by Karel Capek
o first theatre play
about robots

e 26th February 2021
o Al: When a Robot
Writes a Play
o first theatre play
written (from 90%)
by “robots”
(actually Al)
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Approach

Hacking the GPT-2 language model

1.
2.
3.
4.
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A WODN PR

Hacking the GPT-2 language model
Building a web application
Generating a theatre play script
Performing the play on stage

®




Hacking the GPT-2 Language Model

117M Parameters 345M Parameters 762M Parameters 1,542M Parameters

® OpenAl = Transformers
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Language model

e Task: Which word should follow?

o lwoke upinthe morning and went to the...

m kitchen

m bathroom
m cinema

m horse
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Task: Which word should follow?

o lwoke upinthe morning and went to the... kitchen/bathroom/cinema/horse

Language model
o Needs to learn what language looks like
o Large amount of texts: news, books, websites, film subtitles... (bilions of words)
N-gram language model (e.g. 4-gram)
o How often are words A B C followed by word D (in first 100M lines of Wikipedia)?
m  ‘wenttothe bathroom” > “went to the horse”? 42> 4
m  “wenttothecinema” > “wentto the kitchen? 25> 14
Neural language models

See a larger number of preceding words (GPT-2: up to 1023 previous words)

Choose which preceding words to look at (attention, skip-gram)

Can estimate word similarity (cosine distance of word embeddings)

Complex internal representations and operations instead of simple comparison of frequencies

O O O O



Take GPT-2 XL language model
Feed it with a theatre-script-like prompt, e.g.:

A man is driving in his car. He sees a girl hitchhiking next to the road. He
stops the car.

Man: Do you want aride?
Girl: Oh yes please!

Let it generate a continuation
Machine translation English—Czech

19



A sample output

A man is driving in his car. He sees a girl hitchhiking next to the road. He stops the car.
Man: Do you want aride?
Girl: Oh yes please!

Man: Okay, then you must first convince me you're not a child prostitute.
Girl: I'm 16 years old, and I'm only 16.

Man: Then I'll take you home!

Woman: He's asking for trouble!

Man: No, he's only asking!

Woman: Then why don't you just take her home already?

Man: But | have a family!

THEaiTRE
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“Resolved” issues

THEaiTRE
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“Resolved” issues

e Set of characters: introduces new, forgets old
o modify next token probabilities to restrict characters
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e Set of characters: introduces new, forgets old

o modify next token probabilities to restrict characters
e Repetitiveness: identical lines

o increase repetition penalty 1.00 — 1.01

o discard and regenerate if repetition occurs
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e Set of characters: introduces new, forgets old
o modify next token probabilities to restrict characters
e Repetitiveness: identical lines
o increase repetition penalty 1.00 — 1.01
o discard and regenerate if repetition occurs
e Limited context (1024 subwords): long-distance inconsistencies
o extractive summarization (TextRank) of prompt+output — 5 lines
o pluskeep last 250 subwords
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WIP + plans

e Generating a whole play (now: individual scenes)
o hierarchical approach: title — outline — scenes (fine-tuned models)
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Generating a whole play (now: individual scenes)

o hierarchical approach: title — outline — scenes (fine-tuned models)
Character personalities and perspectives

o cluster character types, employ character embeddings

Dramatic situations (e.g. Intruder, Request, Parting)

o annotate plays, detect situations, tune to generate situations
Various machine translation issues (gender, politeness, context...)

o document-level, fine-tuning, automatic post-editing

28



The Web Application
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Producing the script

e Generating individual scenes

e Post-processing the script

THEaiTRE
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e Generating individual scenes
o THEaiTRobot operated by a proffessional theatre dramaturge
o interventions
m theinput prompts
m choosingdifferent variant
m manually adding aline
e Post-processing the script

33



e Generating individual scenes
o THEaiTRobot operated by a proffessional theatre dramaturge
o interventions
m theinput prompts
m choosingdifferent variant
m manually adding aline
e Post-processing the script
m deletions
m small edits
m fixingerrorsin automated EN—CS translation

34



e Generatingindividual scenes (15 generated, 8 selected)
o THEaiTRobot operated by a proffessional theatre dramaturge
o interventions
m theinput prompts (2% of lines)
m choosing different variant (for 8% of generated lines)
m  manually adding a line (1% of lines)
e Post-processing the script
m deletions (15% of lines)
m small edits (30% of lines, 8% of words)
m fixing errors in automated EN—CS translation (20% of words)
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e Generatingindividual scenes (15 generated, 8 selected)
o THEaiTRobot operated by a proffessional theatre dramaturge
o interventions
m theinput prompts (2% of lines)
m choosing different variant (for 8% of generated lines)
m  manually adding a line (1% of lines)
e Post-processing the script
m deletions (15% of lines)
m small edits (30% of lines, 8% of words)
m fixing errors in automated EN—CS translation (20% of words)
e ...50~90% of the script comes from GPT-2
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Staging the play

e Onlydialogues generated
e Everything else done manually
o stage directions, scene design, music, costumes...
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e Onlydialogues generated
e Everything else done manually

O

stage directions, scene design, music, costumes...

e Proffessional theatre team

©)
©)
©)
©)

1 director (Daniel Hrbek)

2 dramaturges

6 actors

scenographer, costume designer, choreographer...
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Only dialogues generated

Everything else done manually

o stage directions, scene design, music, costumes...
Proffessional theatre team

o 1director (Daniel Hrbek)

o 2dramaturges

o 6 actors

o scenographer, costume designer, choreographer...
Online premiere on 26th February 2021

o ~ 10000 views
Live performances once possible
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When a Robot Writes a Play: Automatically Generating a Theatre Play Script

e Hackingthe GPT-2 language model
e Building aweb application
e Generating atheatre play script

e Performing the play on stage

https://www.theaitre.com/
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