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Introduction

• MNMT aims to handle the translation from multiple source
languages into multiple target languages with singled unfied
model (Johnson et al., 2017; Fan et al., 2021).

• Back Translation (BT) (Sennrich et al., 2016; Caswell et al.,
2019) is a simple and effective data augmentation technique,
which makes use of monolingual corpora and has proven to
be effective for MNMT(Zhang et al., 2020).

• Knowledge Distillation (KD) (Kim and Rush, 2016) is a com-
monly used technique to improve model performance. We fol-
low a recent approach to KD (Wang et al., 2021), which uses
selection at the batch level and global level to choose suitable
samples for distillation.
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Overview of the best-performing system of our proposed approach.
we report spBLEU scores and chrF on the provided devtest set.
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0.0 31.97 34.13 31.72 39.13 40.72

36.17 0.0 26.97 26.11 29.97 29.47

38.06 26.47 0.0 26.41 33.41 35.05

35.06 25.23 26.15 0.0 28.84 27.88

40.9 26.39 29.97 25.83 0.0 36.45
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Data

• Moses trurecased and punctuation normalized.

• Sentences containing 50% punctuation are removed.

• Duplicate sentences are removed.

• Using langid filter out sentences with mixed language.

• SentencePiece was used to produce subword units.

• Remove sentences with more than 250 subwords.
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Results

# Systems spBLEU chrF BERTScore BEST BLEU

0 Flores 28.0 0.528 0.867 sr-mk (36.0)

1 Bilingualwhole 21.1 0.477 0.831 en-mk (31.3)

2 Bilingualselect 28.4 0.533 0.863 sr-en (40.6)

3 Multilingualwhole 16.7 0.431 0.827 sr-en (26.1)

4 Multilingualselect 30.9 0.555 0.874 sr-en (40.0)

5 Multilingualselect + TaggedBT(Multilingualselect) 30.7 0.548 0.873 sr-en (40.5)

6 Multilingualselect + TaggedBT(Bilingualselect) 32.3 0.562 0.879 sr-en (41.5)

7* Multilingualselect + TaggedBT(Bilingualselect) + KDbatch 33.2 0.572 0.883 sr-en (42.0)

8* Multilingualselect + TaggedBT(Bilingualselect) + KDglobal 33.9 0.576 0.887 sr-en (42.4)

Analysis

• Our multilingual model (#4) performs competitively with the Flores strong base-
line (Model #0).

• Although the overall performance of the Multilingual model (#4) is better than
the Bilingual model (#2), back-translation using the Bilingual model (model #6)
is better than back-translation using the Multilingual model (model #5).

• Knowledge Distillation further improves performance slightly (Model # 7∗ and
Model # 8∗).
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Conclusion

• Our goal is to investigate the impact of bilingual sys-
tems on multilingual systems.

• Our best translation system scores 5 to 6 BLEU
higher than a strong baseline system provided by
the organizers (Goyal et al., 2021).

• Our model only has 313M parameters, which is
smaller than the other submissions.

• Our submission is the only fully constrained submis-
sion that uses only the corpus provided by the orga-
nizers and does not use any pre-trained models.
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