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Abstract

BERTScore (Zhang et al., 2020), a recently
proposed automatic metric for machine trans-
lation quality, uses BERT (Devlin et al., 2019),
a large pre-trained language model to eval-
uate candidate translations with respect to a
gold translation. Taking advantage of BERT’s
semantic and syntactic abilities, BERTScore
seeks to avoid the flaws of earlier approaches
like BLEU, instead scoring candidate trans-
lations based on their semantic similarity to
the gold sentence. However, BERT is not in-
fallible; while its performance on NLP tasks
set a new state of the art in general, studies
of specific syntactic and semantic phenomena
have shown where BERT’s performance devi-
ates from that of humans more generally.

This naturally raises the questions we address
in this paper: what are the strengths and weak-
nesses of BERTScore? Do they relate to
known weaknesses on the part of BERT? We
find that while BERTScore can detect when a
candidate differs from a reference in important
content words, it is less sensitive to smaller er-
rors, especially if the candidate is lexically or
stylistically similar to the reference.

1 Introduction

While manual, human evaluation of machine trans-
lation (MT) systems is still the gold standard, auto-
matic evaluation metrics have long been used for
their relative speed and inexpensiveness. Early au-
tomatic metrics were easy to implement and some-
what correlated with human judgements, but have
clear limitations: BLEU (Papineni et al., 2002) re-
lies on n-gram overlap, and is thus not robust to
differing word order or choice. In contrast, ME-
TEOR (Lavie and Agarwal, 2007) requires training,
but depends on token alignment, which is also a
fraught task.

With the advent of deep learning, new automatic
metrics have arisen, both in response to and mak-
ing use of the technical advances brought by deep

learning. In particular, metrics like COMET (Rei
et al., 2020) and BERTScore use large pre-trained
language models (LLMs) to generate scores for can-
didate sentences. The use of these LLMs allows
for metrics that take advantage of the linguistic ca-
pabilities of these LLMs, and no longer rely solely
on surface-level features such as n-grams.

The expressiveness of these models is both a
boon and a danger. While they can (and do, based
on correlation with human judgments) generate
more useful scores for translations, how they arrive
at the score, and which types of sentences they will
score accurately is not immediately obvious.

Moreover, these LLMs are known to have flaws.
BERT in particular has been shown to be, in certain
scenarios, insensitive to negation (Ettinger, 2020)
and word order (Pham et al., 2020). BERT also
has inexact representations of numbers (Wallace
et al., 2019) and fails to be robust to named enti-
ties (Balasubramanian et al., 2020). All of these
phenomena could result in poor-quality scores
from BERTScore. However, it is difficult to say
for certain how these issues might manifest in
BERTScore, as it employs BERT in an unsuper-
vised scenario distinct from that of these analyses.

Thus, in this paper, we analyze BERTScore. We
first formally define desiderata for a MT metric.
Then, we consider how BERTScore fulfills these
requirements under conditions of interest. We find
that BERTScore violates some of these require-
ments, specifically the requirement that incorrect
translations be rated below correct ones; this occurs
most often when the incorrect translation is lexi-
cally similar to the reference, or especially if the
difference is only in function (not content) words.

2 Desiderata for MT metric quality

The most common method of measuring the quality
of a MT metric is correlation with human judg-
ments (Fomicheva and Specia, 2019); however,
these correlations provide little information regard-



ing when and why an MT metric differs from hu-
man judgment. In this paper, we consider three
ways of examining MT metric quality, with the aim
of determining the failure cases of MT metrics.

In all of our experiments, we assume the fol-
lowing setup. We have a MT metric, which we
take to be a function M that takes as input a refer-
ence and candidate translation, and outputs a score
in [0, 1]. We also have a dataset D, consisting of
triples (x, Y,B) where x is a source sentence, Y
is a list of at least two reference translations, and
B is a list of at least one “bad” translation, which
contains errors.

Then we state that a good MT metric1 M ful-
fills, for any triple (x, Y,B) ∈ D, where Y =
{y1, y2, . . . , yn}, and B = {b1, b2, . . . , bm}, the
following conditions:

(i) For any pair (y, y′) of reference translations
from Y , M(y, y′) ≈M(y, y′) ≈ 1.

(ii) For any reference translation y ∈ Y and can-
didate translation b ∈ B, M(y, b) < 1 and
M(b, y) < 1. It follows that given another
reference translation y′ ∈ Y , we should have
that M(y, b) < M(y, y′) and so on.

(iii) If we know the relative quality of the bad
translations in B, let B be a list sorted in
decreasing order of translation quality, such
that b1 is better than b2, and so on. Then for
any reference translation y, and bad transla-
tions bi, bj from B, where i < j, M(y, bi) >
M(y, bj).

Put simply, (i) reference translations should be
scored near 1 when compared to each other, (ii) bad
candidate translations should be scored worse than
reference translations, and (iii) the scoring of bad
candidate translations should reflect their relative
quality.

To use this framework to investigate the failure
points of MT metrics, we simply need a dataset
that contains phenomena of interest; for example,
we might be interested in knowing if a MT metric
is able to distinguish between translations that do
and do not correctly render negation. Then, we
simply compute the quantities discussed in condi-
tions (i) through (iii) for each example, and see
which, if any, conditions are violated. If, for exam-
ple, condition (i) is violated when two equivalent

1We assume WLOG that the metric’s scores are normalized
such that better translations receive higher mean scores, and
equally good candidates receive a score near 1.

references employ different types of negation, this
might imply that our metric is not robust to this
sort of negation phenomenon.

Note that these desiderata only concern the
scores given to the reference and candidate sen-
tences; the source-language sentence is ignored.
This is because we define these desiderata keep-
ing in mind that many MT metrics (including
BERTScore) operate only in the target language2.
We can thus avoid assuming the existence of a
source sentence whatsoever, allowing the construc-
tion of datasets consisting only of reference and
bad candidate translations that exhibit phenomena
of interest. However, it may be desirable to use real
translations, so that the dataset reflects the distribu-
tion of real-world translation errors.

3 BERTScore and BERT

3.1 BERTScore

In this paper, our metric of interest is BERTScore
(Zhang et al., 2020). To compute BERTScore, we
first feed a reference and candidate translation for a
given sentence into BERT, and retrieve their token
level vector representations. Let z be the represen-
tations of the reference and ẑ those of the candidate.
Then we compute the precision and recall metrics
for BERTScore by comparing each token represen-
tation zi of the reference translation to each token
representation ẑj of the candidate translation as
follows:

PBERT =
1

|ẑ|
∑
ẑj∈ẑ

max
zi∈z

z>i ẑj

RBERT =
1

|z|
∑
zi∈z

max
ẑj∈ẑ

z>i ẑj

The F1 score can be defined as usual. As
BERTScore can range from -1 to 1, but most of-
ten inhabits the upper end of that range, its creators
suggest the use of baseline scaling, which generally
leaves BERTScore in the range [0,1], as desired for
use with our prior formalization. Baseline rescaling
is performed for PBERT as

P̂BERT =
PBERT − a

1− a

and likewise for RBERT ; a is an empirical lower
bound on observed BERTScore.

2In the long term, explicit inclusion of the source sentence
in MT evaluation would be useful but that is not the concern
of this work.



The form of BERTScore naturally leads to its
interpretation as a similarity-based metric. It pe-
nalizes candidates containing words whose repre-
sentations are not similar to any of the reference’s
words’ representations (precision), and vice-versa
(recall). As a result, the quality and characteristics
of these representations, derived from BERT, will
play a key role in the quality of BERTScore.

3.2 BERT

What, then, is known about BERT, and its syntactic
and semantic capabilities? Of the two, it is syntax
that BERT is most widely claimed to capture within
its internal representations: Hewitt and Manning
(2019) use structural probing to find dependency
trees in BERT’s vector geometry, while Tenney
et al. (2019) use probing to find part of speech
tags and dependency arc labels, among other types
of syntactic information. Analysis of BERT’s at-
tention has shown that certain heads attend to not
only relevant linguistic units such as determiners of
nouns and coreferent mentions (Clark et al., 2019),
but also dependency relations (Htut et al., 2019).

However, these analyses of internal representa-
tions and the information contained therein occa-
sionally come at odds with targeted evaluations of
BERT’s syntactic abilities. Despite BERT’s sup-
posed knowledge of syntax, its predictions often
remain the same, even when its inputs are shuffled
(Pham et al., 2020). Moreover, BERT does not
seem to understand negation (Ettinger, 2020); this
may be due to BERT encoding syntactic informa-
tion, but not necessarily using it in its predictions
(Glavas and Vulić, 2021).

For semantics, the situation is even more com-
plicated. While BERT’s performance on natural
language understanding tasks set a new state of
the art, more targeted tests of its semantic abili-
ties have yielded less positive results. BERT has
limited knowledge of lexical semantic relations
such as hypernymy (Ravichander et al., 2020) and
antonymy (Staliunaite and Iacobacci, 2020). More-
over, it has fragile representations of named enti-
ties (Balasubramanian et al., 2020), and imprecise
representations of numbers (Wallace et al., 2019).
These flaws comprise specific linguistic phenom-
ena that BERTScore, due to its use of BERT, might
be unable to handle, and thus merit investigation.

German Source: Ich habe mich konzentriert.
Good Translation 1: I focused.
Good Translation 2: I’ve been concentrating.
Bad Translation 1: I’ve focused me.
Bad Translation 2: I have focussed.
Broad phenomenon: Verb Tense / Aspect /
Mood
Specific phenomenon: Reflexive - Perfect

Figure 1: Example data from TQ-AutoTest.

4 Experiments

For our experiments, we utilize the framework de-
scribed in Section 2 to investigate the questions
about BERT described in Section 3. As the number
of datasets that fit our framework is few, we limit
ourselves to three primary experiments.

4.1 TQ-AutoTest
First, we apply our framework to the TQ-AutoTest
dataset (Macketanz et al., 2018). Originally used
for targeted evaluation of MT systems, it includes
German source sentences that each exhibit one of
14 different linguistic phenomena, such as ambigu-
ity, composition, and subordination.

Each example contains a source sentence, an-
notated with the broader and more specific phe-
nomenon it exhibits, as well as 1-2 reference trans-
lations and 0-2 incorrect translations; see Figure 1
for a sample. As the dataset released is small, we
filter out phenomena containing fewer than 5 ex-
amples.

We can thus test condition (i) by computing the
BERTScore between the two references, and ver-
ifying it is close to 1. We also test condition (ii)
by comparing the BERTScore assigned (with re-
spect to a given reference) to the other reference,
and that which is assigned to a bad translation; the
former should be greater than the latter. We cannot
test condition (iii), as the dataset does not provide
multiple bad translations sorted by quality.

4.2 PE2rr
Second, we use the PE2rr dataset (Popović and
Arčan, 2016), which is a manually annotated error
analysis of MT output. Each example in the dataset
consists of a source sentence, one MT output, and
two correct translations, along with two error anno-
tations. These annotations are word-level annota-
tions into 8 broadly non-linguistic classes, such as



German Source: Frauen , die in Burkina Faso
zu Hexen abgestempelt werden , weisen in
der Regel einige gemeinsame gesellschaftliche
Merkmale auf .
Original Translation (Annotated): Women
in Burkina Faso [miss] are branded as
witches , usually [miss] some common so-
cial features .
Post-edit: Women in Burkina Faso who are
branded as witches usually have some common
social features .
Original Reference: Women declared as
witches in Burkina Faso usually have several
common characteristics .

Figure 2: Example data from PE2rr. The “[miss]”
tokens inserted in the original translation correspond
to one of the annotator’s error notations, indicating a
missing word.

“addition”, “lexical error”, or “untranslated”. See
Figure 2 for an example.

Despite the difference in annotation type, we
apply our framework just as with the prior exper-
iment. For consistency with the prior experiment,
we use only the portion of the dataset where the tar-
get language is English (i.e., the German-English
portion). We also filter out any examples in which
the machine translation output is totally correct,
as this would leave no bad examples with which
to test conditions other than (i). This once more
allows us to test conditions (i) and (ii).

4.3 Grammatical Error Correction
Finally, we use two non-MT datasets for gram-
matical error correction (GEC): the CoNLL 2014
shared task dataset (Ng et al., 2014), as well as
additional annotations released by Bryant and Ng
(2015). The former consists of non-native English
speakers’ essays on genetic testing, paired with an-
notated corrections from two annotators for each
sentence. The latter adds additional annotators’
corrections for each sentence, yielding 11 in total.

Of special interest in this dataset is the pres-
ence of, for each example, an incorrect sentence
and 11 sets of error-annotated corrections that can
be applied to obtain correct sentences. Thus, for
each original, ungrammatical sentence, we have
10 (often distinct) grammatical sentences, whose
meaning should be roughly the same; these act as
reference sentences. This allows us to test condi-

tions (i) and (ii).
We can also test condition (iii) by using the fol-

lowing moderate assumption: a sentence, originally
grammatically incorrect, is more correct if more
corrections have been applied to it. That is, apply-
ing one or more corrections (from the same annota-
tor) brings an incorrect candidate sentence closer
to the shared meaning of the reference sentences.
This assumption can be false: sometimes a group
of corrections, rather than one alone, is needed to
increase the grammaticality of a sentence. But, this
assumption allows us to apply an arbitrary num-
ber of corrections to an initially incorrect sentence,
to generate intermediate incorrect sentences, with
controlled, graded, levels of incorrectness.

So, we generate two incorrect candidates by ap-
plying different numbers of edits from the same an-
notator to one original sentence. We then generate a
reference sentence by applying all of another anno-
tator’s edits. Finally, we calculate the BERTScore
of each candidate with respect to this reference; the
candidate that received more edits should receive a
higher BERTScore. Note that the reference must
be generated by a different set of edits; comparing
partially-corrected sentences to a correct sentence
generated from same edits would make this a trivial
string comparison problem. Figure 3 provides an
example of this process.

5 Results

In the following section, we detail the experiments
performed and their results. In all experiments, the
original authors’ implementation of BERTScore3

is used, with default baseline rescaling.

5.1 TQ-Autotest

As discussed in Section 4.1, we test conditions (i)
and (ii) with the TQ-Autotest dataset. First, we
filter the dataset to include only those examples
for which there are at least two good translations
(y, y′). Then, to test condition (i), we compute the
BERTScore (BERTScore(y, y′)) assigned to the
pair of good translations, then compute the mean
score for each category.

Note that one should not make absolute compar-
isons between the mean BERTScore assigned to
each category and the desired value (1.0) of the
mean score. Because BERTScore can easily be
rescaled, it is more useful to verify that good trans-
lation pairs receive similar scores across categories;

3Available at https://github.com/Tiiiger/bert_score



Original: As a result , if the situation keep go
on in this unexpected trend , it will cause a bad
effect on the young generation .
Corrections (Annotator 2):
(7, 8, ‘keeps’, subject-verb agreement)
(8, 10, ‘following’, word choice)
(10, 11, ‘’, preposition)
(17, 18, ‘have’, word choice)
(23, 24, ‘younger’, word form)
Original + 1 correction (b1): As a result , if
the situation keeps go on in this unexpected
trend , it will cause a bad effect on the young
generation .
Original + 4 corrections (b4): As a result , if
the situation keeps following this unexpected
trend , it will have a bad effect on the young
generation .
Alternate reference (Annotator 7) (y): As a
result , if the situation keeps going on in this
unexpected trend , it will have a bad effect on
younger generations .

Figure 3: Creation of graded ungrammatical sen-
tences from GEC data. Each correction is a tu-
ple of (start index, end index, new text, error
made). We apply a correction via string replace-
ment (i.e. in Python: original[start_index:
end_index] = new_text). Having received
more corrections, b4 should be closer to y than b1
is. Thus, we should have BERTScore(y, b4) >
BERTScore(y, b1).

Linguistic Phenomenon BERTScore (F1)
LDD & interrogatives 0.849

Composition 0.852
Punctuation 0.864

Function word 0.712
Subordination 0.763

Non-verbal agreement 0.830
Ambiguity 0.804

Verb tense/aspect/mood 0.795
Coordination & ellipsis 0.885
Named entitiy & term. 0.859

MWE 0.874
Average 0.815

Table 1: TQ-AutoTest: Mean BERTScore (F1) as-
signed to gold reference, gold candidate pairs, by lin-
guistic phenomenon

Linguistic Phenomenon Accuracy
LDD & interrogatives 82.4

Composition 60.0
Punctuation 40.0

Function word 42.9
Subordination 75.0

Non-verbal agreement 60.0
Ambiguity 100.0

Verb tense/aspect/mood 73.6
Coordination & ellipsis 80.0

Named entity & terminology 85.7
MWE 100.0

Average 75.5

Table 2: TQ-AutoTest: Average Accuracy by
broad linguistic phenomenon. Credit is given when
BERTScore(y, y′) is greater than BERTScore(y, b), and
BERTScore(y, b′), if a b′ is provided.

these scores could then easily be rescaled to 1.0.
Thus, in this section, we explore only which types
of correct sentence pairs BERTScore is more or
less able to assign a high score, compared to the
average score given to correct sentence pairs.

We see in table Table 1 that the average
BERTScore for each category falls near the average.
There are some notable exceptions: for example,
the “function word” category, which falls well be-
low the mean. This indicates that BERTScore gives
different correct translations of the same sentence
lower scores, when that sentence contains difficult
function words. In contrast, the “coordination & el-
lipses” and “multi-word error” categories fall well
above the mean, suggesting that alternate correct
translations of sentences containing these phenom-
ena are scored more highly.

In the second experiment, we test condition
(ii) via the following procedure. Once more,
we filter the dataset, such that every example in-
cludes two good translations and one bad transla-
tion, (y, y′, b), with potentially another bad trans-
lation b′ as well. Then, we test the accuracy
of BERTScore on these examples. BERTScore
is deemed to correctly answer an example if
BERTScore(y, y′) > BERTScore(y, b). If b′ is
present, as in 71% of examples, it is also neces-
sary that BERTScore(y, y′) > BERTScore(y, b′).
We then report the mean accuracy for each category
of linguistic phenomenon.

In this second experiment, see Table 2, the dif-
ferences are more pronounced. In some categories,
namely those such as “ambiguity”, and “multi-



Error Type Count BERTScore (F1)
reordering 135 0.560

untranslated 55 0.553
lexical 171 0.584

inflection 72 0.571
derivation 16 0.537
missing 164 0.578

contraction 14 0.560
Average 90 0.587

Table 3: PE2rr: Mean BERTScore (F1) for reference
sentence pairs where the original machine translation
contains at least one error of the given type.

word error” which are likely to result in totally
incorrect word choice (i.e. an obvious lexical differ-
ence), BERTScore has a high accuracy. In contrast,
BERTScore struggles with difficult punctuation as
well as composition errors and function words; no-
tably, the last category also has the lowest score
in Table 1. These errors are all somewhat subtle.
Errors in function words are by definition not er-
rors in more obvious content words. Similarly, in
compositional phenomena like phrasal verbs, an er-
ror can appear simply as the omission or incorrect
substitution of a mere preposition.

In order to provide context for these results, we
also run the second experiment (which corresponds
to Table 2) using BLEU score4 as our metric. As
with BERTScore, we mark an example as correct
when BLEU(y, y′) is greater than BLEU(y, b), and
BLEU(y, b′), if a b′ is provided. We omit the
category-level results for brevity, but find that the
mean accuracy for BLEU is significantly lower, at
36.2%, compared to 75.5% in Table 2. This sug-
gests that although BERTScore is flawed, it is at
least more accurate than BLEU.

5.2 PE2rr

Using the PE2rr dataset, we again test conditions
(i) and (ii). We use an approach like that taken
with the TQ-AutoTest dataset. First, we filter out
examples in which the two references translations
provided are identical; in this case, the BERTScore
will be trivially 1. For all other examples (y, y′),
we compute BERTScore(y, y′). Then, for each
error category, we compute the mean BERTScore
(F1) among all examples that contain at least one

4We calculate BLEU as implemented in the
multi-bleu.perl script at https://github.com/
moses-smt/mosesdecoder/blob/master/
scripts/generic/multi-bleu.perl

Error Type Acc. (Easy) Acc. (Hard)
reordering 97.0 44.4

untranslated 100.0 72.7
lexical 98.2 46.2

inflection 100.0 50.0
derivation 100.0 50.0
missing 97.0 46.3

contraction 100.0 50.0

Table 4: PE2rr: Average accuracy by error type, for
both the easy and hard problem scenarios. Credit
is given when BERTScore(y, y′) is greater than
BERTScore(y, b).

Figure 4: PE2rr: BERTScore accuracy on sentences
with n errors, in the easy and hard scenarios.

of that error. Results are reported in Table 3.
We find that the average BERTScore assigned to

pairs of correct translations in this dataset, 0.587,
is much lower than in TQ-AutoTest, where the av-
erage BERTScore assigned to correct translations
pairs was 0.815. Moreover, PE2rr examples with
no errors in their machine translation have a higher
BERTScore assigned to their correct translations.

Testing condition (ii) with the PE2rr dataset is
somewhat more challenging. First, we filter out
any of the machine translations that have no errors
(as we need a bad translation to test condition (ii)).
Normally, the next step would be to compute and
compare, using our two references translations y, y′

and one bad translation b, BERTScore(y, y′) and
BERTScore(y, b).

However, a difficulty arises: while each example
has two correct translations, and one incorrect ma-
chine translation, the two correct translations are
not generated in the same way. One is a post-edit
of the machine translation, while the other is an
original reference, generated from the German text
without the machine translation.

https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl


If we choose the original reference to be y, and
the post-edit to be y′, this is a fair comparison; how-
ever, if we choose the post-edit to be y, the task
becomes much more challenging. This is because
BERTScore(y, b) will be comparing a post-edited
machine translation to the original machine trans-
lation, and there will naturally be a good deal of
overlap, even though b contains errors. So, we re-
port results in two cases in Table 4: the easy case,
where y is the original reference, and the hard case,
where y is the post-edit.

This choice has a major effect on the ability of
BERTScore to distinguish good translations from
bad ones. When we choose the original reference
as y, BERTScore has a high accuracy in all cat-
egories. In contrast, in the hard problem setting,
BERTScore does poorly (at or below chance) in all
categories except sentences with an untranslated
word, which is likely easy for BERTScore to detect.

We again compare BERTScore to BLEU to con-
textualize our results for condition (ii) (in Table 4).
We find that once more BERTScore outperforms
BLEU, which achieves accuracies below 50% in
all categories in the easy setting, and below 13%
in the hard setting. The disparity between the easy
and hard setting performance reflects the fact that
BLEU also struggles to penalize bad translations
with high n-gram overlap, compared to those with
less overlap.

Finally, to provide an alternate explanation for
the trend in BERTScore accuracies, we plot in Fig-
ure 4 the BERTScore accuracy for examples with n
errors, in both the easy and hard scenarios. While in
the easy scenario, BERTScore has an accuracy near
1 for n >= 5, in the hard scenario, the accuracy is
lower, but increases with n. This suggests that it is
easier for BERTScore to distinguish between trans-
lations that are good and those that are bad, but
lexically similar to the postedited reference, when
the latter contain more errors. Alternatively, we
can view this as BERTScore being less sensitive
to translation errors (except when they are numer-
ous), and relatively more sensitive to the stylistic
differences that exist between the post-edited and
original reference sentences.

5.3 Grammatical Error Correction

For GEC, we test all three conditions. To test the
first, we use the 11 annotators’ corrections to create
post-edited versions (y1, . . . , y11) of the original
sentences; these should all have the same mean-

Figure 5: GEC: Heatmap of Average BERTScore (F1)
assigned when comparing references from a given pair
of annotators

n: # of bn: With b0: Without y′: Alternate
Errors Errors Errors Reference

1 0.841 0.850 0.865
2 0.830 0.844 0.860
3 0.820 0.839 0.856
4 0.814 0.828 0.847
5 0.812 0.821 0.842

Table 5: GEC: Average BERTScore (F1) assigned
when comparing a reference y to a) bn, a sentence with
n errors in it, b) b0, the same sentence, but with all
errors corrected, and c) y′, an alternate reference sen-
tence.

ing. Then, we compute the mean BERTScore (F1)
for each pair of annotators’ post edits; these are
reported in Figure 5. The mean BERTScore falls in
a very narrow range (0.84-0.88), except for Anno-
tators 1 and 8, who provided similar annotations.

We test conditions (ii) and (iii) jointly. To do so,
we need two correct translations, created indepen-
dently of one another. We also need two partially
correct translations (of different levels of correct-
ness) and one correct translation; these must be
created from the same set of edits, independent of
the first two. To create these, we first select three
annotators, and assign them roles: reference an-
notator, alternate reference annotator, and “error”
annotator. Next, for n = 1, . . . , 5, we filter out
all examples where the error annotator made fewer
than n error annotations. Then, for each example,
the reference and alternate reference annotators’ an-



notations are used to create one reference sentence
(y) and alternate reference sentence (y′). The error
annotator’s annotations are used to create both a
third, fully corrected sentence (b0), and a sentence
with n errors in it (bn); the errors that remain are
chosen at random.

Finally, we compute BERTScore(y, y′),
BERTScore(y, b0), and BERTScore(y, bn); the
mean values for each of these is reported in Table 5.
Note that although b0 and y′ have no errors, their
mean BERTScore still changes with n because
we filter out examples that have fewer than n
errors according to the error annotator. Thus,
the downward trend with growing n reflects the
fact that, as the number of errors in a sentence
increases, the annotators’ corrections diverge.

We can see that BERTScore does respect condi-
tions (ii) and (iii) within the GEC data. The alter-
nate reference and error-free sentence are always
assigned a higher score than the sentence with er-
rors (ii). Moreover, the sentences with more errors
are assigned a lower score than those containing
fewer errors (iii).

Also of note is the absolute magnitude of the
BERTScores assigned in this experiment, which
is much higher than those in the prior PE2rr ex-
periment. The mean BERTScore assigned to even
examples containing 5 errors (0.812, Table 5), is
much higher than the mean BERTScore assigned to
PE2rr reference pairs (0.587, Table 3). As before,
we suggest that this occurs due to sensitivity to
style. Although b5 contains errors, it is stylistically
similar to the reference, as they are both edits of the
same sentence; in contrast, the two references in
the PE2rr dataset are very distinct from one another.

Finally, we perform this same evaluation with
BLEU, again omitting full results for brevity. We
find that BLEU, regardless of n, gives the alternate
reference y′ a higher score than the other sentences.
However, the BLEU scores assigned to bn and b0
were similar, and b0 did not consistently receive
higher scores. Thus, we conclude that BERTScore
also performs better on this task.

6 Discussion

From our experiments on three datasets, we draw
three main findings. First, we find that the perfor-
mance of BERTScore with respect to conditions
(i) and (ii) can vary based on linguistic phenom-
ena. Second, while BERTScore is generally capa-
ble, it has difficulties on a challenge dataset that

tasks it with penalizing lexically similar incorrect
translations and preferring translations that are lexi-
cally different but more correct. Third, BERTScore
does, in certain circumstances, respect our third
condition—it ranks worse bad translations below
better bad translations.

With respect to the first finding, penalizing
translations that incorrectly render function words
seems to be the most difficult for BERTScore. In
TQ-Autotest, this includes sentences with tag ques-
tions; in one example, the reference is “You’re
crazy, aren’t you?”, and secondary good translation
is “You’re crazy, right?”, while incorrect sentences
are “You’re crazy, or?” and “You’re crazy, are
not you?”. That is, the differences do not affect the
main content of the sentence. In contrast, sentences
with incorrectly resolved word ambiguity or larger,
multi-word errors were easily penalized.

The second finding also confirms that
BERTScore can more easily detect bad translations
when there is less lexical overlap. In the easy
problem setting, where both the good and bad
candidate translations were lexically distinct from
the reference, BERTScore easily distinguished the
good translation from the bad. But, in the hard
problem setting, where the bad translation has high
lexical overlap with and was stylistically similar to
the reference, BERTScore struggled. Due to this
style sensitivity, BERTScore may be better-suited
to scoring candidates from widely-differing
systems, as opposed to closely-related systems, or
multiple candidates from one system.

Our third finding, provides more positive results.
In the GEC scenario, BERTScore was able to fulfill
all three of the conditions we defined. It not only
gave high scores to similar sentences and worse
scores to sentences with errors; it also gave better
scores to more grammatically correct sentences,
even when they were not perfectly correct.

Unfortunately, the GEC dataset does not nec-
essarily reflect the kinds of errors that occur in
machine translation. It focuses primarily on gram-
matical errors, and thus contains fewer semantic er-
rors. Moreover, since the GEC annotators had only
the incorrect text, and no source text to work with,
their annotations are occasionally in disagreement,
as they each independently inferred the intended
meaning of the incorrect text.



7 Related Work

The original paper introducing BERTScore (Zhang
et al., 2020) naturally compared BERTScore’s cor-
relations with human judgments to that of other
metrics. However, various other surveys of MT
metrics, as well as datasets and methodologies have
been conducted, offering insights into how MT sys-
tem and metric performance should be measured.

Naturally, the WMT Metrics task, most recently
run in 2020 (Mathur et al., 2020b) is one such
forum for the evaluation of metrics. In this last
iteration, metrics were evaluated based on their
correlation with human judgment scores on the sen-
tence, paragraph, and document level. BERTScore
was not included even in the most recent iteration
of the metrics task.

More recently, Kocmi et al. (2021) run a
large-scale comparison of MT metrics, including
BERTScore using a large dataset of translations
with human judgments; they find that BERTScore’s
performance is middle-of-the-road, though better
than BLEU, and recommend COMET (Rei et al.,
2020) for general use.

Unfortunately, while these studies evaluate MT
metrics, using human judgments alone cannot tell
us when or why they may succeed or fail. In re-
sponse to the results of 2019 WMT Metrics Task
(Ma et al., 2019), Mathur et al. (2020a) note that
correlations of metrics with human judgment can
be highly sensitive to the number of systems in
question, as well as outliers.

Fomicheva and Specia (2019) propose moving
beyond correlation with human judgment alone
as a standard for MT metric evaluation. To this
end, they conduct a comprehensive study of MT
metrics, and review datasets that have more fine-
grained error and quality annotations. Despite this,
datasets for MT metric evaluation with linguistic
annotations or other annotations regarding sentence
content are few.

8 Conclusion

BERTScore is a new metric for MT evaluation
that uses BERT, and is as a result difficult to in-
terpret. We define desiderata for BERTScore and
other such metrics’ performance, and use targeted
datasets to find when BERTScore fails. We find
that BERTScore fails to assign low scores when
a bad candidate sentence has high lexical overlap
with the reference in terms of content words. De-
spite this, in less challenging scenarios, BERTscore

does well, and is able to rank sentences in order of
their quality. Moreover, BERTScore outperforms
BLEU score across the datasets and conditions we
tested. However, these experiments are limited in
scope, due to limited available data with appropri-
ate annotations. Development of datasets for MT
metric evaluation with linguistic annotation would
aid in further work on this topic.
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