SIGTYP 2020 Shared Task

Rudolf Rosa, Martin Vastl, Daniel Zeman

🖬 September 24, 2020

Charles University Faculty of Mathematics and Physics Institute of Formal and Applied Linguistics

SIGTYP

ACL Special Interest Group on Typology https://sigtyp.github.io/ (founded 2020)

SIGTYP

WALS: World Atlas of Language Structures

Number of Genders

Gender in WALS

- Lexical category of nouns
- Agreement or cross-reference elsewhere:
 - Pronouns
 - Adjectives, determiners (inflection)
 - Verbs (inflection)
 - ... or a subset thereof
- Data:
 - Ukrainian and Russian: 3 genders (not 4, with animacy)
 - Czech and Slovak not shown at all
 - English: 3 genders; although only in pronouns!

192 WALS Features

- 1A Consonant Inventories
- 2A Vowel Quality Inventories
- ...
- 20A Fusion of Selected Inflectional Formatives
- 26A Prefixing vs. Suffixing in Inflectional Morphology
- 27A Reduplication
- 28A Case Syncretism
- ...
- 81A Order of Subject Object and Verb
- 85A Order of Adposition and Noun Phrase
- 107A Passive Constructions
- 120A Zero Copula for Predicate Nominals
- ...
- 129A Hand and Arm
- 131A Numeral Bases
- 138A Tea

7 General (Non-linguistic) Features

- WALS language code: cze
- Language name: Czech
- Family: Indo-European
- Genus: *Slavic*
- Latitude: 50.0
- Longitude: 15.0 ... somewhere east of Kouřim :-)
- Country codes: CZ

Sparse Data

- 2662 languages in WALS (only 1357 used in the shared task)
- 7 general features
- 192 linguistic features (only 185 in the shared task)

Sparse Data

- 2662 languages in WALS (only 1357 used in the shared task)
- 7 general features
- 192 linguistic features (only 185 in the shared task)
- Within the shared task training data:
- Features per language
 - maximum (English): 159 linguistic features
 - median: 28 linguistic features
 - minimum (2 languages): 4 linguistic features

Sparse Data

- 2662 languages in WALS (only 1357 used in the shared task)
- 7 general features
- 192 linguistic features (only 185 in the shared task)
- Within the shared task training data:
- Features per language
 - maximum (English): 159 linguistic features
 - median: 28 linguistic features
 - minimum (2 languages): 4 linguistic features
- Languages per feature
 - maximum (87A Order of Object and Verb): 785 languages
 - median: 168 languages
 - minimum (2 features): 8 languages

The Shared Task

- How well could the missing feature values be guessed?
- 1125 training languages
- 83 development languages
- 149 test languages
- Some features (about 50% randomly picked) are masked: the value is ?
- Task: based on the remaining features in this or other languages, predict the values of the masked features

The **ÚFAL** Submission

- Probabilistic System
- Neural System
- Combined System
- + a number of other dead-end attempts

- Greenberg (1963): there are correlations
- e.g. universal (17):

with overwhelmingly more than chance frequency, languages with dominant order VSO have the adjective after the noun

- Greenberg (1963): there are correlations
- e.g. universal (17):

with overwhelmingly more than chance frequency, languages with dominant order VSO have the adjective after the noun

- WALS features:
 - 81A Order of Subject, Object and Verb
 - = 3 VSO
 - 87A Order of Adjective and Noun
 - = 2 Noun-Adjective

- Greenberg (1963): there are correlations
- e.g. universal (17): with overwhelmingly more than chance frequency, languages with dominant order VSO have the adjective after the noun
- WALS features:
 - 81A Order of Subject, Object and Verb
 - = 3 VSO
 - 87A Order of Adjective and Noun
 - = 2 Noun-Adjective
 - In training data (given that 81A = 3 VSO):
 - 54 languages have both features filled
 - 28 languages (52%) = 2 Noun-Adjective
 - 19 languages (35%) = 1 Adjective-Noun
 - 7 languages (13%) = 3 No dominant order

- Greenberg (1963): there are correlations
- e.g. universal (17): with overwhelmingly more than chance frequency, languages with dominant order VSO have the adjective after the noun
- WALS features:
 - 81A Order of Subject, Object and Verb
 - = 3 VSO
 - 87A Order of Adjective and Noun
 - = 2 Noun-Adjective
 - In training data (regardless of 81A):
 - 713 languages have 87A filled
 - 455 languages (64%) = 2 Noun-Adjective
 - 200 languages (28%) = 1 Adjective-Noun
 - 53 languages (7%) = 3 No dominant order
 - 5 languages (1%) = 4 Only internally-headed relative clauses

Probabilistic System

$$score(s_i = x, t_j = y)$$

= $P(t_j = y | s_i = x)$
× $\log c(s_i = x, t_j = y)$
× $I(s_i, t_j)$

- Single best signal (no voting among source features)
- Country codes: ignore US
- Latitude and longitude: group into zones

(1)

Neural System

- Language embeddings based on their feature values
- Latitude and longitude: cluster the points via k-Means, use cluster id as feature
- Training neural network:
 - Pick language
 - Pick feature value (50% probability that it belongs to the language)
 - Goal of the network: predict that a feature value belongs to the language
- Prediction
 - For a language and a masked feature:
 - Pass all possible values to the network
 - Pick the value with the highest output probability

Combined System

- Development data:
 - Neural system is slightly better (74.49% > 73.81%)
 - The systems make different errors (oracle ightarrow 81%)
- System-internal confidence scores:
 - Probabilistic system \rightarrow cond. prob. \times log count \times mutual info
 - Neural system \rightarrow output feature prob. from the network
- Empirically found thresholds T_N and T_P
 - If neural confidence $> T_N$, use neural system
 - Else: if probabilistic confidence $> T_P$, use probabilistic system
 - Else use again neural system

Results

System	Dev	Test
Baseline	53.45	51.39
Probabilistic	73.81	71.08
Neural	74.49	69.80
Combined	75.50	70.75
Feed-forward	56.45	
kNN-Hamming	62.28	
kNN-LangEmbed	68.10	

Table 1: Accuracy of various models on the development and test data.

Ranking

Thanks! Díky!