
UDPipe at EvaLatin 2020: Contextualized Embeddings
and Treebank Embeddings

Milan Straka, Jana Straková
Charles University

Faculty of Mathematics and Physics
Institute of Formal and Applied Linguistics
{straka,strakova}@ufal.mff.cuni.cz

Abstract
We present our contribution to the EvaLatin shared task, which is the first evaluation campaign devoted to the evaluation of NLP tools
for Latin. We submitted a system based on UDPipe 2.0, one of the winners of the CoNLL 2018 Shared Task, The 2018 Shared Task
on Extrinsic Parser Evaluation and SIGMORPHON 2019 Shared Task. Our system places first by a wide margin both in lemmatization
and POS tagging in the open modality, where additional supervised data is allowed, in which case we utilize all Universal Dependency
Latin treebanks. In the closed modality, where only the EvaLatin training data is allowed, our system achieves the best performance
in lemmatization and in classical subtask of POS tagging, while reaching second place in cross-genre and cross-time settings. In
the ablation experiments, we also evaluate the influence of BERT and XLM-RoBERTa contextualized embeddings, and the treebank
encodings of the different flavors of Latin treebanks.
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1. Introduction
This paper describes our participant system to the EvaLatin
2020 shared task (Sprugnoli et al., 2020). Given a seg-
mented and tokenized text in CoNLL-U format with surface
forms as in

# sent_id = 1
1 Dum _ _ _ ...
2 haec _ _ _ ...
3 in _ _ _ ...
4 Hispania _ _ _ ...
5 geruntur _ _ _ ...
6 C. _ _ _ ...
7 Trebonius _ _ _ ...

the task is to infer lemmas and POS tags:

# sent-id = 1
1 Dum dum SCONJ _ ...
2 haec hic DET _ ...
3 in in ADP _ ...
4 Hispania Hispania PROPN _ ...
5 geruntur gero VERB _ ...
6 C. Gaius PROPN _ ...
7 Trebonius Trebonius PROPN _ ...

The EvaLatin 2020 training data consists of 260k words of
annotated texts from five authors. In the closed modality,
only the given training data may be used, while in open
modality any additional resources can be utilized.
We submitted a system based on UDPipe 2.0 (Straka et
al., 2019a). In the open modality, our system also uses all
three UD 2.5 (Zeman et al., 2019) Latin treebanks as addi-
tional training data and places first by a wide margin both
in lemmatization and POS tagging.
In the closed modality, our system achieves the best per-
formance in lemmatization and in classical subtask of POS
tagging (consisting of texts of the same five authors as the

training data), while reaching second place in cross-genre
and cross-time setting.
Additionally, we evaluated the effect of:
• BERT (Devlin et al., 2019) and XLM-RoBERTa (Con-

neau et al., 2019) contextualized embeddings;
• various granularity levels of treebank embed-

dings (Stymne et al., 2018).

2. Related Work
The EvaLatin 2020 shared task (Sprugnoli et al., 2020) is
reminiscent of the SIGMORPHON2019 Shared Task (Mc-
Carthy et al., 2019), where the goal was also to perform
lemmatization and POS tagging, but on 107 corpora in 66
languages. It is also related to CoNLL 2017 and 2018
Multilingual Parsing from Raw Texts to Universal Depen-
dencies shared tasks (Zeman et al., 2017; Zeman et al.,
2018), in which the goal was to process raw texts into to-
kenized sentences with POS tags, lemmas, morphological
features and dependency trees of the Universal Dependen-
cies project (Nivre et al., 2016), which seeks to develop
cross-linguistically consistent treebank annotation of mor-
phology and syntax for many languages.
UDPipe 2.0 (Straka et al., 2016; Straka, 2018) was one of
the winning systems of the CoNLL 2018 shared task, per-
forming the POS tagging, lemmatization and dependency
parsing jointly. Its modification (Straka et al., 2019a) took
part in the SIGMORPHON 2019 shared task, delivering
best performance in lemmatization and comparable to best
performance in POS tagging.
A new type of deep contextualized word representation
was introduced by Peters et al. (2018). The proposed
embeddings, called ELMo, were obtained from internal
states of deep bidirectional language model, pretrained
on a large text corpus. The idea of ELMos was ex-
tended to BERT by Devlin et al. (2019), who instead of
a bidirectional recurrent language model employ a Trans-
former (Vaswani et al., 2017) architecture. A multilingual
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Figure 1: The UDPipe network architecture of the joint tag-
ger and lemmatizer.

BERT model trained on 102 languages can significantly
improve performance in many NLP tasks across many lan-
guages. Recently, XLM-RoBERTa, an improved multilin-
gual model based on BERT, was proposed by Conneau et
al. (2019), which appears to offer stronger performance in
multilingual representation (Conneau et al., 2019; Lewis et
al., 2019).

3. Methods
3.1. Architecture Overview
Our architecture is based on UDPipe entry to SIG-
MORPHON 2019 Shared Task (Straka et al., 2019a),
which is available at https://github.com/ufal/
sigmorphon2019. The resulting model is presented in
Figure 1.
In short, the architecture is a multi-task model predict-
ing jointly lemmas and POS tags. After embedding input
words, three shared bidirectional LSTM (Hochreiter and
Schmidhuber, 1997) layers are performed. Then, softmax
classifiers process the output and generate the lemmas and
POS tags.
The lemmas are generated by classifying into a set of edit
scripts which process input word form and produce lem-
mas by performing character-level edits on the word pre-
fix and suffix. The lemma classifier additionally takes the
character-level word embeddings as input. The lemmatiza-
tion is further described in Section 3.2.
The input word embeddings are the same as in the previous
versions of UDPipe 2.0:

• end-to-end word embeddings,
• character-level word embeddings: We employ bidi-

rectional GRUs (Cho et al., 2014; Graves and Schmid-
huber, 2005) of dimension 256 in line with (Ling et al.,
2015): we represent every Unicode character with a
vector of dimension 256, and concatenate GRU out-
put for forward and reversed word characters. The

character-level word embeddings are trained together
with UDPipe network.

• pretrained word embeddings: We use FastText word
embeddings (Bojanowski et al., 2017) of dimension
300, which we pretrain on plain texts provided by
CoNLL 2017 UD Shared Task (Ginter et al., 2017),
using segmentation and tokenization trained from the
UD data.1

• pretrained contextualized word embeddings: We
use the Multilingual Base Uncased BERT (De-
vlin et al., 2019) model to provide contextualized em-
beddings of dimensionality 768, averaging the last
layer of subwords belonging to the same word.

We refer the readers for detailed description of the architec-
ture and the training procedure to Straka et al. (2019a).

3.2. Lemmatization
The lemmatization is modeled as a multi-class classifica-
tion, in which the classes are the complete rules which lead
from input forms to the lemmas. We call each class encod-
ing a transition from input form to lemma a lemma rule. We
create a lemma rule by firstly encoding the correct casing
as a casing script and secondly by creating a sequence of
character edits, an edit script.
Firstly, we deal with the casing by creating a casing script.
By default, word form and lemma characters are treated as
lowercased. If the lemma however contains upper-cased
characters, a rule is added to the casing script to uppercase
the corresponding characters in the resulting lemma. For
example, the most frequent casing script is “keep the lemma
lowercased (don’t do anything)” and the second most fre-
quent casing script is “uppercase the first character and
keep the rest lowercased”.
As a second step, an edit script is created to convert input
lowercased form to lowercased lemma. To ensure meaning-
ful editing, the form is split to three parts, which are then
processed separately: a prefix, a root (stem) and a suffix.
The root is discovered by matching the longest substring
shared between the form and the lemma; if no matching
substring is found (e.g., form eum and lemma is), we con-
sider the word irregular, do not process it with any edits and
directly replace the word form with the lemma. Otherwise,
we proceed with the edit scripts, which process the prefix
and the suffix separately and keep the root unchanged. The
allowed character-wise operations are character copy, addi-
tion and deletion.
The resulting lemma rule is a concatenation of a casing
script and an edit script. The most common lemma rules
present in EvaLatin training data are presented in Table 1.
Using the generated lemma rules, the task of lemmatization
is then reduced to a multiclass classification task, in which
the artificial neural network predicts the correct lemma rule.

3.3. Treebank Embedding
In the open modality, we additionally train on all three UD
2.5 Latin treebanks. In order to recognize and handle pos-
sible differences in the treebank annotations, we employ
treebank embeddings following (Stymne et al., 2018).

1We use -minCount 5 -epoch 10 -neg 10 options.

https://github.com/ufal/sigmorphon2019
https://github.com/ufal/sigmorphon2019


Lemma Rule Casing Script Edit Script Most Frequent Examples

↓0;d¦ all lowercase do nothing et→et, in→in, non→non, ut→ut, ad→ad
↓0;d¦-+u+s all lowercase change last char to us suo→suus, loco→locus, Romani→romanus, sua→suus
↓0;d¦---+o all lowercase change last 3 chars to o dare→do, dicere→dico, fieri→fio, uidetur→uideo, data→do
↓0;d¦-+s all lowercase change last char to s quid→quis, id→is, rei→res, omnia→omnis, rem→res
↓0;d¦----+o all lowercase change last 4 chars to o hominum→homo, dedit→do, homines→homo
↓0;d¦--+o all lowercase change last 2 chars to o habere→habeo, dicam→dico, ferre→fero, dat→do
↓0;d¦--+u+s all lowercase change last 2 chars to us publicae→publicus, suis→suus, suam→suus, suos→suus
↓0;d¦- all lowercase remove last character gratiam→gratia, causam→causa, uitam→uita, copias→copia
↓0;d¦-+u+m all lowercase change last char to um belli→bellum, posse→possum, bello→bellum
↓0;d¦---+s all lowercase change last 3 chars to s omnibus→omnis, rebus→res, nobis→nos, rerum→res
↑0¦↓1;d¦ 1st upper, then lower do nothing Caesar→Caesar, Plinius→Plinius, Antonius→Antonius
↓0;d¦-----+o all lowercase change last 5 chars to o uideretur→uideo, uidebatur→uideo, faciendum→facio
↓0;d¦--+i all lowercase change last 2 chars to i quod→qui, quae→qui, quem→qui, quos→qui, quam→qui
↓0;d¦--- all lowercase remove last 3 characters quibus→qui, legiones→legio, legionum→legio, legionis→legio
↓0;d¦--+s all lowercase change last 2 chars to s omnium→omnis, hostium→hostis, parte→pars, urbem→urbs
. . . . . . . . . . . .
↓0;ais all lowercase ignore form, use is eum→is, eo→is, ea→is, eorum→is, eam→is

Table 1: Fifteen most frequent lemma rules in EvaLatin training data ordered from the most frequent one, and the most
frequent rule with an absolute edit script.

System
Lemmatization

classical cross-genre cross-time
UDPipe – open 96.19 (1) 87.13 (1) 91.01 (1)
UDPipe – closed 95.90 (2) 85.47 (3) 87.69 (2)
P2 – closed 1 94.76 (3) 85.49 (2) 85.75 (3)
P3 – closed 1 94.60 (4) 81.69 (5) 83.92 (4)
P2 – closed 2 94.22 (5) 82.69 (4) 83.76 (5)

Post ST – open 96.35 87.48 91.07
Post ST – closed 95.93 85.94 87.88

Table 2: Official ranking of EvaLatin lemmatization. Ad-
ditionally, we include our best post-competition model in
italic.

Furthermore, given that the author name is a known infor-
mation both during training and prediction time, we train a
second model with author-specific embeddings for the indi-
vidual authors. We employ the model with author-specific
embeddings whenever the predicted text comes from one of
the training data authors (in-domain setting) and a generic
model otherwise (out-of-domain setting).

4. Results
The official overall results are presented in Table 2 for
lemmatization and in Table 3 for POS tagging. In the open
modality, our system places first by a wide margin both in
lemmatization and POS tagging. In the closed modality, our
system achieves best performance in lemmatization and in
classical subtask of POS tagging (where the texts from the
training data authors are annotated), and second place in
cross-genre and cross-time settings.

5. Ablation Experiments
The effect of various kinds contextualized embeddings is
evaluated in Table 4. While BERT embeddings yield only a
minor accuracy increase, which is consistent with (Straka et
al., 2019b) for Latin, using XLM-RoBERTa leads to larger

System
Tagging

classical cross-genre cross-time
UDPipe – open 96.74 (1) 91.11 (1) 87.69 (1)
UDPipe – closed 96.65 (2) 90.15 (3) 84.93 (3)
P4 – closed 2 96.34 (3) 90.64 (2) 87.00 (2)
P3 – closed 1 95.52 (4) 88.54 (4) 83.96 (4)
P4 – closed 3 95.35 (5) 86.95 (6) 81.38 (7)
P2 – closed 1 94.15 (6) 88.40 (5) 82.62 (6)
P4 – closed 1 93.24 (7) 83.88 (7) 82.99 (5)
P2 – closed 2 92.98 (8) 82.93 (8) 80.78 (8)
P5 – closed 1 90.65 (9) 73.47 (9) 76.62 (9)

Post ST – open 96.82 91.46 87.91
Post ST – closed 96.76 90.50 84.70

Table 3: Official ranking of EvaLatin lemmatization. Ad-
ditionally, we include our best post-competition model in
italic.

accuracy improvement. For comparison, we include the
post-competition system with XLM-RoBERTa embeddings
in Tables 2 and 3.
To quantify the boost of the additional training data in the
open modality, we considered all models from the above
mentioned Table 4, arriving at the average improvement
presented in Table 5. While the performance on the in-
domain test set (classical subtask) improves only slightly,
the out-of-domain test sets (cross-genre and cross-time sub-
tasks) show more substantial improvement with the addi-
tional training data.
The effect of different granularity of treebank embeddings
in open modality is investigated in Table 6. When treebank
embeddings are removed from our competition system, the
performance deteriorates the most, even if only a little in
absolute terms. This indicates that the UD and EvaLatin an-
notations are very consistent. Providing one embedding for
EvaLatin data and another for all UD treebanks improves
the performance, and more so if three UD treebank specific



Word BERT XLM-RoBERTa Lemmatization Tagging
embeddings embeddings embeddings classical cross-genre cross-time classical cross-genre cross-time

Open modality
7 7 7 96.04 86.85 90.58 96.46 90.44 87.66
3 7 7 96.27 87.28 90.80 96.64 91.16 87.78
7 3 7 96.19 86.76 90.78 96.70 90.34 87.50
7 7 3 96.33 86.48 90.95 96.80 90.67 87.79
3 3 7 96.28 87.28 90.80 96.74 91.11 87.69
3 7 3 96.35 87.48 91.07 96.82 91.46 87.91

Closed modality
7 7 7 95.62 84.62 87.63 96.14 88.90 83.59
3 7 7 95.79 85.55 88.37 96.44 90.59 84.14
7 3 7 95.65 84.76 87.58 96.44 89.08 84.84
7 7 3 95.93 84.97 87.63 96.67 89.36 84.24
3 3 7 95.96 85.52 88.04 96.65 90.15 84.93
3 7 3 95.93 85.94 87.88 96.76 90.50 84.70

Table 4: The evaluation of various pretrained embeddings (FastText word embeddings, Multilingual BERT embeddings,
XLM-RoBERTa embeddings) on the lemmatization and POS tagging.

Lemmatization Tagging
classical cross-genre cross-time classical cross-genre cross-time

The improvement of open modality,
i.e., using all three UD Latin treebanks

+0.430 +1.795 +2.975 +0.177 +1.100 +3.315

Table 5: The average percentage point improvement in the open modality settings compared to the closed modality. The
results are averaged over all models in Table 4.

Lemmatization Tagging
classical cross-genre cross-time classical cross-genre cross-time

Per-author embeddings, per-UD-treebank embeddings 96.28 87.28 90.80 96.74 91.11 87.69
Single EvaLatin embedding, per-UD-treebank embeddings 96.28 87.28 90.80 96.70 91.11 87.69
Single EvaLatin embedding, single UD-treebank embedding 96.23 87.22 90.78 96.68 91.14 87.63
EvaLatin and UD treebanks merged 96.18 87.23 90.77 96.52 91.01 86.12

Table 6: The effect of various kinds of treebank embeddings in open modality – whether the individual authors in EvaLatin
get a different or the same treebank embedding, and whether the UD treebanks get a different treebank embedding, same
treebank embedding but different from the EvaLatin data, or the same treebank embedding as EvaLatin data.

Lemmatization Tagging
classical classical

The improvement of
using per-author
treebank embeddings

0.027 0.043

Table 7: The average percentage point improvement of us-
ing per-author treebank embedding compared to not distin-
guishing among authors of EvaLatin data, averaged over all
models in Table 4.

embeddings are used.
Lastly, we evaluate the effect of the per-author embeddings.
While on the development set the improvement was larger,
the results on the test sets are nearly identical. To get more
accurate estimate, we computed the average improvement
for all models in Table 4, arriving at marginal improve-
ments in Table 7, which indicates that per-author embed-
dings have nearly no effect on the final system performance

(compared to EvaLatin and UD specific embeddings).

6. Conclusion

We described our entry to the EvaLatin 2020 shared task,
which placed first in the open modality and delivered strong
performance in the closed modality.
For a future shared task, we think it might be interesting
to include also segmentation and tokenization or extend the
shared task with an extrinsic evaluation.
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