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Abstract. Multiple studies have probed representations emerging in neural net-
works trained for end-to-end NLP tasks and examined what word-level linguistic
information may be encoded in the representations. In classical probing, a clas-
sifier is trained on the representations to extract the target linguistic information.
However, there is a threat of the classifier simply memorizing the linguistic labels
for individual words, instead of extracting the linguistic abstractions from the rep-
resentations, thus reporting false positive results. While considerable efforts have
been made to minimize the memorization problem, the task of actually measuring
the amount of memorization happening in the classifier has been understudied so
far. In our work, we propose a simple general method for measuring the memo-
rization effect, based on a symmetric selection of comparable sets of test words
seen versus unseen in training. Our method can be used to explicitly quantify the
amount of memorization happening in a probing setup, so that an adequate setup
can be chosen and the results of the probing can be interpreted with a reliability
estimate. We exemplify this by showcasing our method on a case study of probing
for part of speech in a trained neural machine translation encoder.
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1 Introduction

In recent years, there has been a considerable amount of research into linguistic ab-
stractions emerging in neural networks trained for various natural language processing
(NLP) tasks. It has been found that, to some degree, neural networks often capture
abstractions which seem to correspond to classical linguistic notions known from the
linguistic studies of morphology, syntax or semantics, even if they were not explicitly
trained to do so. The common hypothesis is that modern neural networks are suffi-
ciently powerful to unravel many linguistic properties and regularities of language, and
that they do so if this is useful for solving the task for which they are trained.
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In this work, we focus on the subfield of identifying word-level linguistic abstrac-
tions, such as part-of-speech (POS) labels, in word-level representations, such as static
or contextual word embeddings.

The usual method of assessing the amount to which linguistic abstractions are cap-
tured by a neural network is to use probing, which we review in Section 2. In word-level
probing, we take representations of words from a trained neural network (such as word
embeddings or hidden states from an encoder) and train a classifier to predict linguistic
labels (such as POS) from the representations corresponding to the words, using lin-
guistically annotated data (such as a tagged corpus). The common assumption is that
if the classifier learns to predict the linguistic labels with a high accuracy, it is an in-
dication that the neural word representations contain a latent abstraction similar to the
linguistic notion (e.g. that contextual word embeddings encode POS of the words).

1.1 The Memorization Problem

A major threat associated with the probing approach is that of memorization. As the
probing classifier learns to assign labels to words, it can succeed in two ways. Either, it
learns to extract an abstraction from the word representation which corresponds to the
label to assign; this is the intended case, which we refer to as generalization. Or, it sim-
ply memorizes the label associated with each word; we refer to this as memorization.
If memorization occurs, the result of the probing can be misinterpreted as the represen-
tations capturing some linguistic abstractions, while the actual underlying mechanism
is that the representations simply capture the word identity. The probing classifier thus
only learns to extract the word identity from the representation and memorizes the label
for the word.1 A crucial problem is that, without taking additional measures, there is no
way of distinguishing the true positive result from the false positive result.

With context-independent word representations (static word embeddings), it is of
course possible to avoid the problem by splitting the vocabulary into two disjoint sets
of words, training the classifier on a train set and testing it on a test set. However, for
contextual representations, this cannot be done easily, as the representations need to be
computed for whole sentences, not for individual words, and the train and test sets thus
need to be composed of full sentences, which unavoidably have a large word overlap.
While we might evaluate the probe only on test set words unseen in the training data,
these are not representative of the language, as such a set of test words will be biased
towards low-frequency words. We argue that we rather need to evaluate on the full test
set while measuring and minimizing the memorization effect.

1.2 Measuring Memorization

In this paper, we suggest a general method of measuring the amount of memorization
occurring in word-level probing of neural network representations, based on comparing

1 Unlike static word embeddings, contextual representations of the same word in different sen-
tences are different, which makes memorization harder, but not impossible: the identity of the
word is still strongly encoded in the contextual representation and can be extracted from it,
especially when a stronger classifier is used.
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the probing classifier accuracy on sets of seen and unseen words. Although a standard
test set contains both words seen and unseen in training data, the seen words tend to be
frequent while the unseen ones are typically rare words; we thus regard an approach of
comparing accuracies on these sets of words as inadequate and uninformative. Instead,
we propose a method which samples the seen and unseen words in a symmetric way to
ensure their comparability.

We do not present a new method for probing itself; our method is designed to com-
plement existing probing approaches by explicitly measuring their reliability with re-
spect to the memorization problem. This can help the researcher to select an adequate
probing setup by providing means for quantifying the magnitude of the memorization
problem, allowing for a trustworthy interpretation of the probing results.

As a case study, we apply our method to measure the amount of memorization in
probing for POS in word representations from a neural machine translation system.

2 Related Work

A comprehensive survey of word embeddings evaluation methods was compiled by
Bakarov [2]. An overview can also be found in the survey of methodology for analysis
of deep learning models for NLP by Belinkov and Glass [4]. Another overview [12]
mentions “[n]o standardized splits & overfitting” as one of the problems of evaluating
word embeddings with similarity tasks.

There are various strategies when it comes to the train/dev/test splitting in probing.
When it is possible to predict the probed property from the word type itself, the vo-

cabulary may be split into train/test sets. This strategy is used e.g. in [21,19] to evaluate
POS tag and other morphological features prediction.

Some works split the dataset into train/dev/test sets, without regard to the same
words occuring in both. These include predicting syntactic and semantic labels (includ-
ing POS) from hidden states on sentences [22,3,5,11,18] or treebanks [7,15].

Bisazza and Tump [6] address the problem with the overlap. They observe that even
a dummy random feature can be predicted with high accuracy when the same words
occur both in the train and the test data. They extract one vector per token from the
NMT encoder. They randomly split the vocabulary into two parts and use one to filter
the training data and the other to filter the test data. They repeat the experiments several
times and report mean accuracies.

Another approach to evaluating words in context of sentences is presented by [10].
They propose the word content task that tests whether it is possible to recover infor-
mation about the original words in the sentence from its embedding. They pick 1000
mid-frequency words from the source corpus vocabulary and sample equal numbers of
sentences that contain one and only one of these words. The words can then be parti-
tioned into train and test sets without the risk of their overlapping.

The ability of deep neural networks to memorize is a challenge for the theory of
deep learning [1]. It also has implications for the applications of neural networks, be-
cause it may be problematic if a portion of the training data can be reconstructed from
the trained model [9].
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In connection with probing neural networks, memorization was addressed by He-
witt and Liang [14], who propose control tasks to complement the linguistics tasks. A
control task associates word types with random labels. If the classifier performs well
on the control task, this means that it is able to memorize the training set. However, the
data distribution affects the generalization ability of deep neural networks and they tend
to learn simple patterns when possible [16]. Our approach differs from [14] by using
the original data to measure the memorization effect, evading the problem created by
altering the distribution in a control task.

3 Method

In the usual probing approach, we operate with two sets of sentences, a training set
and a test set, both labelled with the word-level labels corresponding to the linguistic
abstraction for which we are probing the neural word representations (e.g. POS). The
training set is used to train a probing classifier to predict the labels from the word repre-
sentations. The classifier is then evaluated on the test set, and its accuracy, compared to
a baseline, is used to estimate to what extent the given linguistic abstraction is encoded
in the word representations.

The goal of our method is to measure to what extent the probing classifier only
memorizes word identities instead of measuring the generalization captured by the word
representations. The main idea is to compare the probing classifier accuracies on words
that are part of the training data (seen words) and on words that are not (unseen words),
while keeping the sets of seen and unseen words otherwise comparable (as discussed in
Section 1), which we ensure by a symmetric way of creating these sets.

We propose the following approach:

1. Randomly split the training set into two halves, which we will refer to as seen
sentences and unseen sentences.

2. Train the probing classifier only on the seen sentences.
3. Apply the probing classifier to the test set.
4. Define the set of seen words as words that are contained in the seen sentences but

not in the unseen sentences.
5. Define the set of unseen words as words that are contained in the unseen sentences

but not in the seen sentences.
6. Evaluate the accuracy of the probing classifier separately on seen words and on

unseen words, ignoring words that are neither seen nor unseen.2

Using this approach, we can now quantify the magnitude of the memorization ef-
fect occurring in the probing setup as the difference between the classifier accuracy on
seen and on unseen words. If the memorization problem is not present, these accura-
cies should be identical, as the classifier only extracts the linguistic abstraction from

2 Note that words which occur in both seen and unseen sentences are neither seen words nor
unseen words. We also need to remove words that are part of the development set if one is
used for training the probing classifier. Technically, words that do not appear in the test set can
also be removed from the sets of seen and unseen words as they do not influence the results.
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the representation, regardless of the word identity; in this case, the classifier accuracy
reliably measures the amount of linguistic information encoded by the representation.
On the other hand, a higher accuracy on seen words than on unseen words signalizes
that the classifier memorized some of the seen words’ identities to some extent, instead
of extracting the linguistic abstractions from them.

To stabilize the evaluation, we propose to sample the seen and unseen sentences and
train the classifier multiple times, and to compute the microaverage accuracy.

We define our method as operating on words and word representations, as this
makes the subsequent word-level probing straightforward. Our method is in principle
applicable even for setups using subwords. However, in such cases, it is up to the re-
searcher to decide whether for the given language and setup, subword-level memoriza-
tion is a problem or not, as our method only deals with word-level memorization.

3.1 Which Words Are Selected for Evaluation?

It is important to note that the distribution of words selected for evaluation by our
method is strongly biased towards lower-frequency words. Very frequent words are
never selected for evaluation, and medium-frequency words are rarely selected, as they
always or nearly always appear in both seen and unseen sentences, and our method is
thus unable to measure the memorization effect for such words.

Specifically, the probability Psel(w) of a word w being selected as unseen (or seen)
follows a hypergeometric distribution: Psel(w) ∼ Hypergeometric

(
|S|, |S|2 , |Sw|

)
,

where S is the set of training sentences, out of which its subset Sw contains the word
w. For most words,3 it is similar to the binomial distribution Bi(|Sw|, 0.5), and Psel(w)

is thus inversely exponentially proportional to |Sw|: Psel(w) ≈
(
1
2

)|Sw|.
We believe that for very frequent words (especially function words such as com-

mon prepositions, pronouns, determiners and punctuation), avoiding memorization is
hard – a set of sentences constructed not to contain a given word from this class would
typically not be very representative of the language. Moreover, the probed neural net-
work is typically not very likely to meaningfully abstract over such words, as it is usu-
ally more economical for the network to simply memorize the most frequent words and
treat them as special cases.4,5

For medium-frequency words, such as common nouns and verbs, we see their
underrepresentation as a shortcoming of our method which we intend to focus on in
future work. We specifically plan to further investigate the approach of Bisazza and
Tump [6], reviewed in Section 2, who train the probing classifier on representations
of only some words in the training sentences and regard the other words as unseen.
We appreciate the approach, but we believe that it must be analyzed to what degree

3 For frequent words, the actual probability is even lower than the (already negligible) approxi-
mated value; for words that appear in more than half of the training sentences, the probability
is 0. The probability is also technically 0 for words that do not appear in the test set.

4 Which they often are, as frequent words tend to behave irregularly in language [23, p. 116].
5 Arguably, it is sane to memorize very frequent words rather than abstracting over them. Nev-

ertheless, we should be able to measure this reliably, not mistaking one for the other.
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Accuracy Stand. dev.

Train sent. seen unseen diff seen unseen

Encoder output states, linear classifier

50 90.5 87.3 3.3 3.4 5.6
100 89.1 86.8 2.3 1.8 2.0
500 93.9 92.8 1.1 0.9 1.1

1,000 94.7 93.9 0.8 0.9 0.8
5,000 95.5 94.9 0.7 0.5 0.6

10,000 95.7 95.5 0.2 0.8 0.8
30,000 95.8 95.9 0.0 0.4 0.4

Encoder output states, MLP

50 97.7 93.3 4.4 1.5 3.2
100 96.2 93.6 2.7 1.0 1.4
500 97.2 94.5 2.7 0.3 0.9

1,000 96.8 94.9 1.9 0.7 0.7
5,000 97.6 95.7 1.9 0.4 0.5

10,000 98.0 96.2 1.8 0.7 0.7
30,000 97.7 96.1 1.6 0.6 0.7

Accuracy Stand. dev.

Train sent. seen unseen diff seen unseen

Encoder word embeddings, linear classifier

50 98.5 74.3 24.1 0.9 7.6
100 97.0 78.0 19.0 0.8 2.3
500 97.6 80.5 17.1 0.7 3.2

1,000 97.0 82.8 14.2 1.0 1.5
5,000 96.2 84.7 11.4 0.5 1.7

10,000 95.2 85.3 10.0 0.8 1.0
30,000 93.5 88.0 5.4 0.6 1.3

Encoder word embeddings, MLP

50 98.5 76.6 21.8 0.9 6.9
100 97.0 81.4 15.6 0.7 3.0
500 97.8 87.4 10.3 0.4 1.9

1,000 97.7 89.8 7.9 0.5 1.4
5,000 98.4 92.7 5.6 0.2 1.0

10,000 98.7 93.5 5.2 0.2 1.0
30,000 98.4 94.2 4.1 0.6 1.2

Table 1. Case study evaluation on POS prediction, varying the number of training sentences,
the probed representations, and the probing classifier. The difference between the accuracy of
the probe on seen versus unseen words represents the magnitude of the memorization problem.
Micro-average over 10 repetitions, in percentage points, with standard deviations.

it may be influenced by the contextual representations of the seen words containing
information about surrounding words regarded as unseen.6

Our method mostly focuses on lower-frequency words, which we believe to be
reasonable, as the lower the frequency of the word, the stronger is the network forced
to abstract over the word. We are thus mostly interested in such words in probing, as
if the network captures the abstractions that we are probing for, they should be most
prominent in representations of lower-frequency words.

Still, we also omit very rare words, which either do not appear in the test sen-
tences or in the training sentences (or, obviously, in none of those). For these words, the
memorization effect is very unlikely to occur.

4 Case Study

As a case study, we apply our method to probing representations from a neural machine
translation model for POS. We study the memorization phenomenon along three di-
mensions, varying the train set size, the contextuality of the representation (static word

6 In their method, unseen words are part of the training sentences and can thus influence the
contextual representations of the seen words which are used for training the probing classifier,
whereas in our method, the training sentences do not contain the unseen words at all.
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embeddings versus encoder output states), and the power of the probing classifier, using
either a linear classifier or a multi-layer perceptron classifier (MLP).

We analyze a Transformer model [24] implemented within the Neural Monkey
framework7 [13], trained for the task of machine translation from Czech to English
on the CzEng dataset8 [8]. The setup is based on [17], with the exception of splitting
the sentences into words instead of subwords, as explained in Section 3; we use a vo-
cabulary of 25,000 words that are most frequent in the parallel training data.

We probe the source word embeddings and source encoder output states for Univer-
sal POS with a linear classifier (softmax) or a MLP with one hidden layer of dimension
512, using the Universal Dependencies 1.4 version of the Czech Prague Dependency
Treebank [20]. We use the first 500 sentences from the treebank training data as tuning
data for the probing classifier, the rest of the training data is used to create the seen
and unseen sentence sets, using either the full data or subsampling smaller subsets. The
probing classifier is then evaluated using the development part of the treebank using
token-based evaluation. For each setup, we repeat the experiment 10 times with differ-
ent samples of the seen and unseen sentences and report micro-average results.

By comparing the accuracies of the probing classifier on seen and unseen words
in Table 1, we can see that the memorization problem is clearly most pronounced with
static word embeddings, where the magnitude of the effect (the difference in the accura-
cies) ranges from 4 points for the full training set up to 24 points for a training set of 50
sentences, while for the contextual representations, the effect does not surpass 5 points.
The memorization effect is more pronounced with the stronger classifier, and disappears
only with the linear classifier applied to contextual representations when trained with
the largest train set.

5 Conclusion

We presented a method for measuring the memorization effect in word-level probing of
neural representations of words, based on a comparison of the accuracy of the probing
classifier on symmetrically sampled comparable sets of seen and unseen words. As we
showed in a case study on probing for POS, our method can measure the magnitude of
the memorization problem and can thus serve as a means for selecting an appropriate
probing setup, as well as for estimating the reliability of the findings of the probing
experiment with respect to the threat of mistaking memorization for generalization.

In future, we intend to tackle the shortcoming of our method of underrepresenting
medium-frequency words. We also plan to apply the method to a wider range of word-
based probing tasks, as well as to measure the memorization effect for existing previous
probing works and reassess results reported by their authors from this perspective.
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