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Abstract

In this paper, we present our submission to
the Non-Native Speech Translation Task for
IWSLT 2020. Our main contribution is a pro-
posed speech recognition pipeline that con-
sists of an acoustic model and a phoneme-to-
grapheme model. As an intermediate repre-
sentation, we utilize phonemes. We demon-
strate that the proposed pipeline surpasses
commercially used automatic speech recogni-
tion (ASR) and submit it into the ASR track.
We complement this ASR with off-the-shelf
MT systems to take part also in the speech
translation track.

1 Introduction

This paper describes our submission to Non-Native
Speech Translation Task in IWSLT 2020 (Ansari
et al., 2020). We participate in two sub-tracks:
offline speech recognition and offline speech trans-
lation from English into Czech and German.

We focus on the speech recognition, proposing
a robust pipeline consisting of two components —
an acoustic model recognizing phonemes, and a
phoneme-to-grapheme translation model, see Fig-
ure 1. We decided to use phonemes as the interme-
diate representation between the acoustic and the
translation model because we believe that conven-
tional grapheme representation is too constrained
with complicated rules of mapping speech to a tran-
script. This issue becomes immense when dealing
with dialects and non-native speakers.

Both models used in our pipeline are end-to-
end deep neural networks, Jasper (Li et al., 2019)
for the acoustic model and Transformer (Vaswani
et al., 2017) for the phoneme-to-grapheme transla-
tion model.

For punctuating, truecasing, segmenting and
translation into Czech and German, we use off-
the-shelf systems provided by ELITR project.
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Figure 1: The architecture of proposed model.

The paper is organized as follows: Section 2
reviews related work. In Sections 3 and 4 we de-
scribe models for our speech recognition pipeline
and their training. In Section 5, we describe the
punctuator, truecasor and segmenter, and machine
translation into Czech and German in Section 6.
We summarize our submissions in Section 7 and
conclude in Section 8.

2 Related Work

This section reviews the related work.

2.1 Phonemes and Acoustic Models

Phones and phonemes are well-established mod-
elling units in ASR. They have been used since
the beginning of the technology in 1950s (Juang
and Rabiner, 2005), for an empirical comparison of
different linguistic units for sound representation,
see Riley and Ljolje (1992).

An important work popularizing neural networks
in ASR to phonemes is Waibel et al. (1989). This
work proposes using a time-delayed neural network
(TDNN) to model acoustic-phonetic features and
the temporal relationship between them. The au-
thors demonstrate that the proposed TDNN can
learn shift-invariant internal abstraction of speech
and use it to make a robust final decision.



Salesky et al. (2019) suggest using of phoneme-
based ASR in speech translation. Their end-to-end
speech translation pipeline first obtains phoneme
alignment using the deep neural network hidden
Markov models (DNN-HMM) system and then av-
erages feature vectors with the same phoneme for
consecutive frames. Phonemes outputted by DNN-
HMM then serve as input features for speech trans-
lation.

2.2 Phoneme-to-Grapheme Models
In most past studies that included a separate
phoneme-to-grapheme (P2G) translation compo-
nent into the ASR, the phoneme representation was
used only for out-of-vocabulary (OOV) words, see,
e.g. Decadt et al. (2001); Horndasch et al. (2006);
Basson and Davel (2013).

Decadt et al. (2001) apply phoneme-to-
grapheme to enhance the readability of OOV out-
put in Dutch speech recognition. In their setup,
the ASR outputs standard (orthographic) text for
known words. For OOVs, phonemes are out-
putted. Because the phonemes are unreadable for
most users, the authors translate phonemes using
memory-based learning. The word error rate of this
improved setup of Dutch ASR was actually higher
than the baseline, on the other hand, the output
was better readable for an untrained person. They
report that 41 % of words were transcribed with
at most one error, and 62 % have only two errors.
Furthermore, most of the incorrectly transcribed
words do not exist in Dutch.

Horndasch et al. (2006) introduce a data-driven
approach called MASSIVE. Their main objective
is to find appropriate orthographic representations
for dictated Internet search queries. Their sys-
tem iteratively refines sequences of symbol pairs
in different alphabets. In the first step, they find
the best phoneme-grapheme alignment using the
expectation-maximization algorithm. In the second
step, they cluster neighbouring symbols together
to account for insertions. Finally, n-gram proba-
bilities of symbol pairs are learned. During the
inference, the input string is split into individual
symbols. All possible symbol pairs are generated
for each symbol, and the best sequences are se-
lected in a beam search.

2.3 Error Correction in ASR
Hrinchuk et al. (2019) deal with the correction of
errors in ASR by introducing Transformer post-
processing. The authors first train an ensemble of

10 ASR models. Using these models, they collect
“ASR corrupted” data. Subsequently, they train a
Transformer on this data where the “ASR corrupted”
text serves as the source and the original true tran-
scripts as the target. In their best setup, they utilize
transfer learning. They use BERT (Devlin et al.,
2018), a masked language model consisting only
of Transformer encoder, and initialize both encoder
and decoder of their Transformer correction model
with BERT’s weights.

2.4 Online ASR Services

We compare our work with Google Cloud Speech-
to-Text API1 and Microsoft Azure Speech to Text.2

Both of these services provide publicly available
APIs for transcribing audio recordings.

3 Neural ASR with Phoneme-Level
Intermediate Step

Our main idea is to couple an end-to-end acous-
tic model with a specialized “translation” model,
which translates phonemes to graphemes and cor-
rects the ASR errors.

The motivation for the translation step is that the
translation model can exploit larger context than a
basic convolutional acoustic model. Furthermore,
we can utilize considerably larger non-speech cor-
pora to train this part of the pipeline.

3.1 Acoustic Model

For our acoustic model, we use the Jasper (Li et al.,
2019) convolutional neural architecture in the vari-
ant of Jasper DR 10x5 variant, as described in the
original paper. It is implemented within the NeMo
library (Kuchaiev et al., 2019).

For training, we use approximatelly 1 000 hours
of speech data from LibriSpeech (Panayotov et al.,
2015) and 1 000 hours of Common Voice3. Be-
cause we want the model to produce phonemes and
not graphemes, which are available in the train-
ing corpora, we converted the transcript to IPA
phonemes using the phonemizer4 tool.

To speed-up the training process, we initialize
our English sound-to-phoneme Jasper model with

1https://cloud.google.com/
speech-to-text

2https://azure.microsoft.com/
en-us/services/cognitive-services/
speech-to-text/

3https://voice.mozilla.org/en
4https://github.com/bootphon/

phonemizer
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Type Corpus Adapt. Full training

dev LS Clean 46.07 3.84
CV 54.69 11.86

test
LS Clean - 4.18 / 4.48† / 3.58‡
LS Other - 11.48 / 11.67† / 8.57‡

CV - 10.21 / 10.47† / 6.46‡

Table 1: Results in % of Phoneme Word Error Rate
(PWER) using greedy decoding (no mark), beam
search (†) and beam search with language model (‡).
The language model is trained on phonemized ASR
training data. Note, PWER is not directly comparable
to WER. “LS” LibriSpeech. “CV” Common Voice.

the available checkpoint of the standard sound-to-
grapheme model.5. This seed model was trained on
LibriSpeech, Mozilla Common Voice, WSJ, Fisher,
and Switchboard corpora, which is beyond the set
of corpora allowed for a constrained submission.
The model yields word error rate (WER) of 3.69
% on LibriSpeech test-clean, and 10.49 % on test-
other using greedy decoding.

For a smooth transition from the Latin alpha-
bet to IPA, we start our training with an adapta-
tion phase of 2,000 training steps. As the model’s
memory footprint is smaller during this phase, we
increase the batch size to 64 (global batch size is
640). One thousand steps are warm-up; the maxi-
mal learning rate is 0.004.

The full training takes ten epochs. The model
memory requirements increase, therefore we re-
duce the batch size to 16 (global batch size is 160).
We also reduce the learning rate to 0.001.

Optionally, we include a phoneme-level lan-
guage model, which re-scores the output of the
acoustic model before the phoneme-to-grapheme
translation, to achieve higher quality. Setups that
use this component are further in this paper marked
with “ lm”.

Results of training after the Adaptation phase
(the “Adaptation” column) and the Full training are
in Table 1. Note that these scores are calculated
on the reference transcript converted to phonemes
using phonemizer. Token ambiguities thus change,
and these scores are not comparable to standard
grapheme WER.

The training is executed on 10 NVIDIA GTX
1080 Ti GPUs with 11 GB VRAM.

5https://ngc.nvidia.com/catalog/
models/nvidia:multidataset_jasper10x5dr

4 Phoneme-to-Grapheme Model

We seek a model for translating transcripts written
in phonemes into graphemes in the same language.
Unlike the most studies reviewed in Section 2, we
propose to use Transformer (Vaswani et al., 2017)
architecture for phoneme-to-grapheme translation.
We believe that Transformer is the best option for
these tasks. Transformer has shown its potential in
many NLP tasks. Most importantly, we consider
its ability to learn the structure of a sentence, see
e.g. Pham et al. (2019).

4.1 Text Encoding Considerations
We use Byte Pair Encoding (BPE) (Sennrich et al.,
2016) for text encoding in our experiments. We
use the implementation in YouTokenToMe6 library.
It is fast and offers BPE-dropout (Provilkov et al.,
2019) regularization technique.

First, we decided to use separate vocabularies for
source and target sentences, because the source and
target representations, IPA phonemes and English
graphemes, have no substantial overlap.

There has been a quite intensive discussion
about vocabulary size in neural machine transla-
tion (NMT) (Denkowski and Neubig, 2017; Gupta
et al., 2019; Ding et al., 2019). All works agree that
for low-resource translation tasks, it is better to ap-
ply smaller vocabulary sizes. For a high-resource
task, it is convenient to use larger vocabulary. Our
task, translation of phonemes into graphemes in
the same language, differs from the previous works.
Hence, we decided to experiment with vocabulary
sizes. We also want to know whether we should
train the sub-word units for source on clean data
(phonemes without errors), or we should introduce
ASR-like errors to these data.

We design the experiment as follows: we test
character-level encoding and BPE vocabulary sizes
of 128, 512, 2 000, 8 000 and 32 000. Further, we
test a clean data configuration, “corrupted” data
(we collect transcripts from an ensemble of 10 ASR
systems) and a “mixed” data — combination of the
two previous.

Because of the data scarcity, we use Transformer
Base configuration. We alter maximum sequence
length to 1024 because for character-level, 128, and
512 BPE configurations, many sentences do not fit
into the model. We train all models for 70 000 steps
on one GPU using the same batch size for all con-
figurations: 12 000 tokens. We set the learning rate

6https://github.com/VKCOM/YouTokenToMe
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to 0.04. As training data, we use “corrupted” ASR
transcripts paired with true transcripts. We col-
lect the data from an ensemble of 10 ASR models,
yielding approximately 7 million sentence pairs.
For the collection of ASR corrupted data, we used
LibriSpeech and Common Voice datasets.
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Figure 2: Results in % of word error rate on the Com-
mon Voice test set.
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Figure 3: Results in % of word error rate on the Lib-
riSpeech test clean.
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Figure 4: Results in % of word error rate on the Lib-
riSpeech test other.

Graphical comparison is in Figures 2 to 4.

BPE size Character-level encoding seems to be
the worst or second-worst possible representation.
For the Common Voice test set, it scores almost one
percentage point of WER more compared to the
best result (5.53 vs 4.55). Also, all other encodings
performed almost half a percentage point better.

For both LibriSpeech test sets, it performed a bit
better than BPE 128.

Generally, the results suggest a the larger the
vocabulary, the lower WER. Among the different
BPE sizes, we can recognize the 32 000 vocabulary
size has the best results systematically on all test
sets.

Finally, we consider the following: a model can
better learn from larger vocabulary sizes. First, a
model does not have to learn low-level orthography
extensively. Rather than memorizing characters (or
other smaller units), it can focus on the whole sen-
tence and how individual words interact. Second, a
larger model can detect errors because of anomalies
in the input encoding. Larger vocabularies produce
a shorter representation. Corrupted word is more
likely to be broken down to smaller pieces. When
a model detects such a situation, it can, for exam-
ple, decide the right target word based on context,
rather than the suspicious word. Such anomaly will
most likely not occur in the text encoded with small
BPE.

Source of BPE training data For Common
Voice, we observe some variation in performance.
Best seems to be the “mixed” configuration. Some-
what worse is “corrupted” and the worst is “clean”
version. In this case, we think the “mixed” is best
as it has frequent enough “corrupted” words. This
enables a model to learn to translate these corrupted
words into the correct ones. Also, it knows enough
other words, so it can adequately work with correct
phonemes.

For other test sets, we observe almost no differ-
ences. Only “corrupted” configuration has slightly
worse performance.

We conclude that the source of training data for
BPE has almost no impact on the final result.

4.2 Baseline Phoneme-to-Grapheme Model
(“asr” Configuration)

We decided to use Transformer Big configuration
(as opposed to the initial experiment with BPE vo-
cabularies). As we concluded in the previous part,
we select BPE vocabulary size of 32 000, and the
BPE encoding is trained on “clean” phonemized
English part of Czeng 1.7 (Bojar et al., 2016) cor-
pus.

First, we train a randomly initialized Trans-
former model. The source of the “translation” is
the phonemized English Czeng and the target is the
original English.



We use six 16 GB GPUs for the training. We
set the batch size to 6 000 tokens, learning rate to
0.02, warm-up steps to 16 000 and total steps to
600 000. We manually abort the training after the
convergence is reached (140 000 steps in our case).

4.3 Transfer from SLT (“asr slt”
Configuration)

In standard NMT, the source text usually does not
suffer from so many errors as in our setup. We
address this “correction” need by training on artifi-
cially corrupted source side.

We initialize the Transformer encoder from our
in-house speech translation model trained from En-
glish phonemes to Czech graphemes (described in
Polák (2020)) and the decoder from a model for
the opposite direction. Both of these initial models
were trained on CzEng, with one side converted to
phonemes using phonemizer.

These pre-trained parts of the model, the encoder
and decoder need joint training to learn to operate
with each other. We employ this training also to
inject the capacity of correcting ASR output.

Specifically, we apply the jack-knife scheme to
our ASR training data (LibriSpeech and Common
Voice), training ten different ASR models, always
leaving one-tenth of the training data aside. This
one-tenth is recognized with the model, leading
to the full speech corpus equipped not only with
golden transcripts but also with ASR outputs. We
call this an “ASR-corrupted” corpus.

Based on our experience from the experiment
with BPE vocabularies, where the model easily
over-fit to the sentences from ASR transcripts
from speech corpora, we mix the corrupted and
clean data with a 1:1 ratio. This is different from
Hrinchuk et al. (2019) who use only the ASR-
corrupted data to train. We then train the complete
Transformer model from English phonemes to En-
glish graphemes with the same hyper-parameters
as the baseline.

4.4 Transfer from BERT (“asr bert”
Configuration)

Finally, we use the pre-trained BERT (Devlin et al.,
2018). Unlike Hrinchuk et al. (2019), we do not ini-
tialize both the encoder and decoder with the BERT.
We initialize the encoder from the English-to-
Czech speech translation model (as in Section 4.3)
because we need the model to process phonemes,
not graphemes on the source side. The decoder

is initialized from the BERT “large” to match the
dimension of the Transformer encoder.

For this setup, we tried the same training pro-
cedure on half-noisy data as above. However, we
were unable to obtain any reasonable performance
(we got WER of 28 % on LibriSpeech dev-other).
We hypothesize this is due to the vast amount of
weights that must be randomly initialized in the
decoder: BERT is a Transformer encoder only.
Hence it does not have the Encoder-Decoder at-
tention layer which must be trained from scratch.
During the training of the whole model with many
randomly initialized weights, the initially trained
weights from the BERT might depart too far from
the optimum.

To overcome this issue, we use an analogous
adaptation trick as for the training of the acous-
tic model. We freeze all weights initialized from
seed models and train only the randomly initial-
ized weights until convergence (the criterion was
the loss on the validation dataset). This adaptation
takes 13 500 steps in our case. Subsequently, the
training continues as in the previous case with one
exception — we used only ASR corrupted data
from LibriSpeech.

4.5 ASR Results

CV LS clean LS other

asr (primary) 9.72 4.87 11.67
asr lm 7.00 4.63 10.25
asr slt 3.26 5.10 11.75
asr slt lm 3.97 5.00 10.63
bert 12.93 4.13 10.21
bert lm† 11.25 4.04 9.69

Table 2: Performance of the submitted models in terms
of % WER on the Common Voice test set (CV), and
LibriSpeech (LS) clean and other test set. † not submit-
ted due to time constraints. Best results in bold.

Table 2 reports the performance of our proposed
systems on Common Voice test set and LibriSpeech
test-clean and test-other.

The performance of “slt”-pretrained models is
very good on Common Voice (CV), reaching WER
of 3.26 %. However, we suspect that the model
overfitted to CV texts. The corpus contains many
speakers, but the set of underlying sentences is
very limited, and our models can memorize them.
The more realistic evaluation on the independent
LibriSpeech other indicates that “asr slt” is actually
rather poor.

For the general domain, assessed by LibriSpeech



AMIa AMIb AMIc AMId Teddy Autocentrum Audit Weightened
AMI Rest Total

asr (primary) 35.89 32.76 35.60 39.90 57.43 11.62 9.83 35.05 19.67 33.99
asr lm† 37.58 33.66 35.32 40.60 56.65 14.01 11.00 35.70 20.54 34.65
asr slt 36.73 33.22 35.70 39.69 56.87 10.93 10.22 35.37 19.66 34.28
asr slt lm† 37.71 33.83 35.67 40.45 56.31 12.87 10.71 35.88 20.07 34.78
asr bert 36.69 33.82 36.50 39.63 56.76 12.87 9.60 35.85 19.64 34.72
asr lm‡ 35.95 32.94 35.57 40.43 56.20 13.10 10.67 35.20 20.22 34.17
asr slt lm‡ 37.72 33.86 35.59 40.59 56.42 13.10 10.71 35.88 20.29 34.80

Microsoft 53.72 52.62 56.67 58.58 87.82 39.64 24.22 54.80 39.75 53.76
Google 51.52 49.47 53.11 56.88 61.01 14.12 17.47 51.87 25.33 50.03

Table 3: Results in % WER on IWSLT ASR development set. † submitted without punctuation and segmentation.
‡ submitted with punctuation and segmentation after the deadline.

AMIa Teddy Autocentrum Audit

asr 4.79 1.41 21.66 5.59
asr lm† 2.80 1.57 12.53 1.84
asr lm†* 2.86 1.57 12.79 1.93
asr slt 4.52 1.48 22.02 5.56
asr slt lm† 3.19 1.55 8.85 1.81
asr slt lm†* 3.26 1.55 9.32 1.88
asr bert 6.08 1.41 19.01 5.79
asr lm‡ 3.92 5.65 21.65 5.24
asr slt lm‡ 4.01 6.08 21.50 5.02

Gold 21.09 54.77 42.52 9.03

Table 4: Czech BLEU scores on the IWSLT develop-
ment set. † submitted without punctuation and segmen-
tation. ‡ submitted with punctuation and segmentation
after the deadline. * lower case BLEU.

clean, we would choose the BERT-pretrained
model with phoneme LM rescoring. This model
was unfortunately trained too late, so we did not
include it in our submission.

The Non-Native Task setting is very specific,
and we carefully examine the performance on the
IWSLT development (Table 3). The performance
varies considerably, but the baseline setup (“asr”)
perform well on average, and it is also not much
worse than the best system on the particular files,
e.g. 9.83 on the Audit file compared to “asr bert”
which wins there with 9.60. Based on these results,
we selected “asr” as our primary submission for
speech recognition track.

It the particular domain of non-native speech
recognition, the usefulness of the phoneme lan-
guage model seems to be minor, unlike on the CV
and LS test sets in Table 2. However, this result
could be unreliable because the IWSLT develop-
ment set is very small.

We note that all proposed systems outperform
publicly available Google and Microsoft ASR on
all files in the development set, see the last two
rows of Table 3.

AMIa Teddy Autocentrum Audit

asr 8.87 5.20 15.94 22.40
asr lm† 3.45 2.02 4.16 6.15
asr lm†* 5.30 4.33 8.64 18.16
asr slt 9.77 4.35 16.40 22.91
asr slt lm† 3.45 2.21 4.00 6.54
asr slt lm†* 5.34 4.20 6.92 20.07
asr bert 10.22 3.99 13.38 24.76
asr lm‡ 10.79 4.36 17.24 25.09
asr slt lm‡ 10.88 3.60 17.34 26.64

Gold 34.95 45.57 36.56 38.97

Table 5: German BLEU scores on the IWSLT develop-
ment set. † submitted without punctuation and segmen-
tation. ‡ submitted with punctuation and segmentation
after the deadline. * lower case BLEU.

5 Punctuation, Truecasing and
Segmentation

Our ASR system produces lowercased, unpunc-
tuated text, but the machine translation works on
capitalized, punctuated text, segmented to individ-
ual sentences. We use the same biRNN punctuator,
truecaser and segmenter as Macháček et al. (2020).
The punctuator is a bidirectional recurrent neural
network by Tilk and Alumäe (2016) trained on the
English side of CzEng (Bojar et al., 2016). The
truecaser uses tri-grams (Lita et al., 2003). We use
a rule-based Moses Sentence Splitter (Koehn et al.,
2007). More details are in Macháček et al. (2020),
Section 4.2.

6 Machine Translation

Our submission to the SLT track relies on the MT
systems, which are used also by ELITR project
and are described in their submission to this task
(Macháček et al., 2020). We do not rely on their val-
idation for this task. As our primary MT systems,
we select “WMT18 T2T” for Czech and “de T2T”
for German, because they were easily accessible



Name Initialization LM rescoringEncoder Decoder

asr (primary) random random no
asr lm random random yes
asr slt EN CS CS EN no
asr slt lm EN CS CS EN yes
bert EN CS BERT no

Table 6: Submitted English ASR configurations. “EN
CS” means the Transformer encoder was initialized
with the encoder weights from a translation model
trained from English phonemes to Czech graphemes.
“CS EN” means the decoder was initialized from an
MT model translating Czech phonemes to English
graphemes.

through Lindat service7.
“WMT18 T2T” was originally trained for

English-Czech WMT18 news translation task
(Popel, 2018), and was also between the top sys-
tems in WMT19 (Popel et al., 2019). It is a single-
sentence Transformer Big model in Tensor2Tensor
framework (Vaswani et al., 2018). “de T2T” is a
similar system, but trained on the data for English-
German WMT news translation. Tables 4 and 5
present BLEU scores of our primary systems for
Czech and German, respectively. Note that the files
Teddy, Autocentrum and Audit are very short.

We submit also all other machine translation
systems for Czech and German by ELITR with
our “asr” source for contrastive evaluation. See
Macháček et al. (2020) for more details.

7 Submission Summary

We participate in two tracks of the non-native
speech translation task: speech recognition, and
speech translation into both Czech and German. In
both cases, our submissions are off-line.

The acoustic model was initialized from a check-
point trained on other data than allowed for the task.
Therefore, our systems are unconstrained.

For the speech recognition track, we utilize our
speech recognition pipeline in various configura-
tions. We first obtain the phoneme transcripts using
the acoustic model. For configurations marked with
“ lm”, we additionally use a phoneme language
model during the acoustic model inference. Subse-
quently, we feed these phonetic transcripts to the
phoneme-to-grapheme translation model. We have
three variants of this model: plain (“asr”), with
pre-trained weights from SLT (“slt”), and with pre-

7https://lindat.mff.cuni.cz/services/
translation/

trained weights from SLT for encoder and BERT
for decoder (“bert”). In this manner, we yield
five different configurations for submission (see
Table 6). The transcripts are then punctuated and
truecased. Based on the punctuation, we further
segment the transcripts. Our primary submission
for the ASR track is the “asr” system.

We do not have our own translation model. To
participate in the translation track, we utilize the
MT systems of the ELITR project, which are
mostly Transformer neural models. We select as
our primary submission the “asr” system.

8 Conclusion

We presented our submissions to the Non-Native
Speech Translation Task for IWSLT 2020.

For the non-native speech recognition, we pro-
posed a pipeline that consists of an acoustic model
and a phoneme-to-grapheme model. We demon-
strated that the proposed pipeline surpasses com-
mercially used ASR on the development set.

To participate in the non-native speech transla-
tion track, we use off-the-shelf translation model
on our ASR transcripts.
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