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Abstract—Speech recognition and machine translation have
made major progress over the past decades, providing practical
systems to map one language sequence to another. Although multi-
ple modalities such as sound and video are becoming increasingly
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available, the state-of-the-art systems are inherently unimodal, in
the sense that they take a single modality — either speech or text —
as input. Evidence from human learning suggests that additional
modalities can provide disambiguating signals crucial for many
language tasks. In this article, we describe the How2 dataset, a
large, open-domain collection of videos with transcriptions and
their translations. We then show how this single dataset can be
used to develop systems for a variety of language tasks and present
a number of models meant as starting points. Across tasks, we find
that building multimodal architectures that perform better than
their unimodal counterpart remains a challenge. This leaves plenty
of room for the exploration of more advanced solutions that fully
exploit the multimodal nature of the How2 dataset, and the general
direction of multimodal learning with other datasets as well.

Index Terms—Grounding, multimodal machine learning,
speech recognition, machine translation, representation learning,
summarization.

I. INTRODUCTION

MULTIMODAL machine learning covers topics at the in-
tersection of natural language processing, speech recog-

nition, and computer vision [1]. Research in this area is mo-
tivated by recent advances in representation learning and the
reported benefits of multi-sensory inputs: e.g. visual and tactile
interaction increases infant sensitivity to colour differences over
purely visual inputs [2], and psycholinguistic studies show the
benefits of multiple modalities in concept representation [3].
Significant progress has been made in the last decade on ma-
jor problems, including image captioning [4], visual question
answering [5], image–sentence retrieval [6], and video caption-
ing [7]. A common aspect of these problems is that they typically
involve bi-modal learning, e.g. images and sentences in image
captioning, due to the nature of the freely available datasets.

In recent years, there has been a collective effort in multi-
lingual and multimodal representation learning, and models of
visually grounded speech. In multimodal machine translation,
researchers have focused on methods for integrating visual
information into sequence-to-sequence models [8]–[10], and in
multilingual image–sentence retrieval, it has been shown that
cross-lingual sentence–sentence objectives improve retrieval
performance [11], and that these findings extend to working with
multiple languages [12]. In multimodal speech recognition, the
image modality has been used to adapt the acoustic model [13],
the language model [14] and, more recently, end-to-end sys-
tems [15], [16]. In spite of these recent successes, researchers
have worked with bi- or multilingual datasets [17] that are much
smaller than the datasets typically used for machine translation
and speech recognition research.
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TABLE I
STATISTICS OF How2 DATASET

This paper introduces the large-scale tri-modalHow2 dataset ,
which consists of 2,000 hours of instructional videos with audio
signals and two types of English text: closed captions of the
speech and a self-written summary of the video, and crowd-
sourced Portuguese translations of a subset of the human anno-
tated transcripts (Section II). The How2 dataset affords a wide
variety of bi-, tri- and multi-modal experiments; here, we focus
on multimodal speech recognition (Section III), multimodal ma-
chine translation (Section IV), abstractive video summarization
(Section V), and multiview learning from speech, video, and
multi-lingual transcripts (Section VI). The main findings from
these experiments is that learning multimodal representations
almost always results in better task-specific performance, and
that there are numerous opportunities for future research on
effective feature integration in multimodal learning.

II. THE How2 DATASET

In the How2 dataset, we collect 79,114 English instructional
videos from YouTube with English subtitles. The dataset con-
sists of a total of 2,000 hours of video. Videos have an average
length of 90 seconds [18] and manual Portuguese transla-
tions. This collection of videos and translations constitutes a
large-scale resource for testing a substantial part of multimodal
language processing methods in a real-world scenario.1

An alignment process is needed to use the audio, the English
subtitles, the Portuguese translations, and the video modality
together. To this end, we first re-segment the English subtitles
into sentences using NLTK [19]. Then, we force-align the speech
signal at the word level with an HMM-GMM pre-trained on the
Wall Street Journal dataset. Finally, using the timings provided
by the word alignment, we create video clips aligned to the
initial segmented sentences. This process splits a video into
a sequence of clips, aligned with the speech signal and the
segmented sentences. Table I presents summary statistics of the
2000 h set and 300 h subset: the val and test sets can be used
for early-stopping, model selection and evaluation; the held set
is reserved for future evaluations or challenges. The total set
(i.e. 2000 h) contains around 22.5 M words. The tokenized
training set of 300 h subset contains around 3.8 M (43 K unique)
and 3.6 M (60 K unique) words for English and Portuguese

1The tools to download and construct the corpus are freely available at https:
//github.com/srvk/how2-dataset

respectively. Videos are broken down into clips, as described
above, with an average length of 5.8 seconds, or 20 words of
spoken language.

We collected Portuguese translations using the Figure Eight
crowdsourcing platform, where we could reliably find Por-
tuguese speaking crowdworkers. In order to speed-up the anno-
tation process, we framed the translation task as a post-editing
task. We first selected the best online machine translation service
among three state-of-the-art services based on Figure Eight’s
workers preferences. Then, we used the translations generated
by this system as a proxy and paid the crowd workers to post-edit
the translation. We attempted to ensure that the workers were in
fact post-editing the proxies by replacing content words of the
proxy with a random Portuguese word. If the substituted word
remains in the post-edit, we removed the worker from the pool
and re-collected the post-edit. Each of the 200 workers used in
this project have a limit of post-editing 5,000 sentences. None
of them reached this threshold.

We estimated the quality of this process by comparing the
performance of a translation model trained on either the post-
edited translations or the machine-generated proxy-translations.
The model trained on the proxy-translations performed 1 BLEU
point worse on predicting the post-edited translations than the
model trained on the post-edited translations, which suggests
that our data collection method indeed resulted in different
human-edited translation data.

To estimate the topic diversity in How2 dataset, we ran a La-
tent Dirichlet Allocation (LDA) [20] over the English subtitles.
Then, we defined 22 clusters by analyzing empirical distances
between videos and centroids. Finally, we applied a topic label
to each cluster by analyzing the top words.

A. Features

In what follows, we detail the features that we extract for each
modality.

1) Speech Features: For speech, we extract 40-dimensional
filter bank features from 16 kHz raw speech signal using a time
window of 25 ms and an overlap of 10 ms. 3-dimensional pitch
features are then concatenated to form the final 43-dimensional
feature vectors. The speech features of a given video are further
normalized using the mean and variance statistics from that
specific video.

2) Action Features (video-level): We extract action-level
video features from a 3D ResNeXt-101 [21] pretrained on the
Kinetics action recognition dataset [22] which comprises 400
different actions.

3) Object Features (frame-level): A ResNet-152 [23] trained
on ImageNet [24] which consists of 1000 categories ranging
from animals, flowers to devices and foods and so on.

4) Scene Features (frame-level): A ResNet-50 trained on
Places365 [25] for scene recognition with 365 categories in-
cluding, but not limited to: garden, valley, studio, theater and
office.

5) Object-Level: A ResNet-152 [23] trained on Ima-
geNet [24] which consists of 1000 categories, ranging from
animals and flowers to devices and foods.
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Fig. 1. Example from How2 dataset where visual semantics can be helpful
when transcribing ukulele.

Fig. 2. Summary of proposed multimodal ASR approaches.

III. MULTIMODAL SPEECH RECOGNITION

Fig. 1 shows an illustrative example from How2 where a
purely monomodal ASR is prone to transcribe the utterance
ukulele to an homophonic equivalent eucalylie. Earlier work
in ASR suggests that a correlated auxiliary modality can be
helpful within the context of instructional videos where videos
consistently provide visual cues related to the speech seman-
tics [13]–[15], [26]. This section discusses multimodal exten-
sions to automatic speech recognition (ASR) with vision as
supporting modality. We mainly explore two different multi-
modal interactions: first, we apply the visual adaptive training
framework [13]–[15] to S2S ASR systems; second, we propose
end-to-end multimodal grounding methods inspired by previous
work in image captioning [27] and multimodal neural machine
translation [28], [29].

A. Training & Features

We conduct all the experiments on the 300 h split of How2
dataset (Section II). For textual features, we first lowercase and
remove punctuation from the English transcripts and then train a
SentencePiece model [30] to construct a subword vocabulary of
5000 tokens. For speech, we use the 43-dimensional features
(Section II) as they are. Finally for the visual modality, we
explore two more pre-trained CNNs in addition to the action
features described in Section II: a ResNet-152 [23] trained on
ImageNet [24] for object recognition and a ResNet-50 trained on
Places365 [25] for scene recognition. For all types of features,
we obtain an average-pooled (avgpool) representation from
the corresponding CNN. For object and scene-level features,
we also experiment with class probabilities (prob) which are
1000-dimensional and 365-dimensional, respectively.

We explore two methods to obtain a single feature vector
for each clip of a given video: (1) a per-clip representation by

averaging frame level feature vectors of the clip and (2), a per-
video representation by averaging frame level feature vectors
across the whole video. We train all models with three randomly
initialized instances using nmtpy [31]. For each instance, the best
model is obtained by early-stopping on validation set word error
rate (WER).

B. Baseline Model

All multimodal ASR systems in this section extend the well-
known recurrent, attentive sequence-to-sequence model [32]. In
the following, X={x0, . . . , xT−1} represents an input sequence
of T speech features and f is the corresponding visual feature
for that utterance. All recurrent, attention and embedding layers
in the network are 320-dimensional.

The speech encoder is composed of 6 bidirectional LSTM
layers [33], each followed by a tanh projection layer. The
middle two LSTM layers apply a temporal subsampling [34] by
skipping every other input, reducing the input sequence length
T to T/4. The decoder implements the so-called Conditional
GRU architecture [35] where an attention mechanism [32] is
wrapped between two GRU [36] layers. At timestep t=0, the
hidden state of the first GRU is initialized with the mean-pooled
speech encoder state. The second GRU receives the output of
the attention layer.

C. Multimodal ASR Systems

1) Visual Adaptive Training (VAT): This method fine-tunes
a pre-trained ASR model using the visual modality. VAT adds a
new linear layer to the model to project the visual feature vector
f into the speech feature space. The projected utterance-specific
shift vector is then added to the speech features and the network
is jointly optimized until convergence:

xt = xt + (Wvf + bv) t ∈ {0, . . . , T − 1} (1)

2) Tied Initialization of Recurrent Blocks: Initializing the
encoder and the decoder is an approach previously explored in
multimodal machine translation [28], [29]. In order to prime the
speech encoder with visual context, two non-linear layers are
employed to learn an initial hidden state hk

0 and an initial cell
state ck0 for all the 6 LSTM layers in the encoder:

hk
0 = tanh (Whf + bh) k ∈ {1, . . . , 6} (2)

ck0 = tanh (Wcf + bc) (3)

The same idea can also be applied to the first GRU in the
decoder so that its initial hidden state is visually primed:

h′
0 = tanh (Wdf + bd) (4)

Finally we explore a third variant where we fuse the two ap-
proaches by sharing the projection parameters in equations 2
and 4. In the following, these three variants will be referred to
as einit, dinit and edinit respectively.

3) Visual Beginning-of-Sentence: Neural decoders receive a
special beginning of sentence vector as input at timestep t=0 in
order to begin decoding. This vector can be either constant or
learned during training, the latter being the approach taken in this
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TABLE II
VISUAL ADAPTIVE TRAINING RESULTS

work. The disadvantage of both methods is the fact that during
inference, the decoder always receives the same embedding
at t=0 regardless of the input modality. Here we propose to
modulate the decoder by using a visually-informed embedding
for a given example i:

yi0 = Wvf
i + bv (5)

D. Experimental Results

In what follows, we report single best, mean and ensembled
WER across the three training runs of each model.

1) Visual Adaptive Training: In Table II, we clearly see
that avgpool features consistently outperform class probability
features. Similarly, a per-video representation seems to give a
slight boost compared to per-clip granularity. Overall, avgpool
features reduces the WER by up to 1.4% depending on the
feature type and granularity. The contrastive restart continues
training the baseline ASR model without visual adaptation, and
shows that the improvements are not a side-effect of training
the model for additional epochs. But interestingly, once the
learned adaptation layer is removed from the network so that
the model falls back to the vanilla speech features xt, the model
still obtains around 18% WER. This seems to indicate that the
effect of adaptation is indirect in the sense that it leads to a more
robust ASR without necessarily relying on the visual modality.

2) End-to-End Variants: We observe that tied initialization
(edinit) reduces the WER by 0.8% and 0.5% in terms of single
best and mean scores, respectively (Table III). With ensembling,
the edinit variant reaches the best WER (15.0%) among all the
models explored. The visual-bos method performs on par with
the edinit. Action features give slightly better performance for
both.

Returning to example in Fig. 1, we checked how successful the
systems are when transcribing the word ukulele. We observe that
edinit systems with action and object features could transcribe
it once (out of ten occurrences in the test set) while the baseline
system could not. However, this should be taken with a grain of
salt, as the ukulele occurs only three times in the training set.

E. Discussion

In this section, we first explored visual adaptive training for
S2S ASR models and then experimented with novel multi-
modal extensions to S2S ASR. Our experiments showed that

TABLE III
END-TO-END RESULTS: ALL FEATURES ARE AVGPOOL AND PER-VIDEO. ENS

STANDS FOR ENSEMBLE DECODING

the method is effective for the S2S paradigm too, reaching up to
1.4% absolute WER improvement with action-level features.
However, we also discovered that the adaptive system still
preserves its performance even when the adaptation layer is
removed during inference. We leave the analysis of this phe-
nomenon to future work. Although end-to-end models perform
better than the baseline, the difference is smaller compared to
adaptive training. But when ensembling is used, the end-to-end
models obtain the best WER among all models. With regard to
visual representations, we show that average pooled CNN fea-
tures perform better than class probabilities and the action-level
features are slightly better than others.

IV. REGION-SPECIFIC MACHINE TRANSLATION

This section discusses another multimodal sequence to se-
quence task – Multimodal machine translation (MMT). MMT is
a research field that aims to enrich textual context with additional
modalities (images, videos, audio) for machine translation (MT).
The assumption is that context provided by these modalities
can help ground the meaning of the text and, as a consequence,
generate more adequate translations. This becomes more critical
when translating content that is naturally multimodal, such as
picture posts on social media, audio descriptions or subtitles.
MMT is especially useful when dealing with ambiguous or
out-of-vocabulary words, e.g. translating hat into German (there
is a distinction between summer hat Hut and winter hat Mütze).
Even a human translator would need to see the image to decide
which word to use.

Existing work on image-based MMT [37]–[39], especially
neural network approaches, often incorporates images as context
either as a single, global vector representation of the whole
image, or by attending to grid-based representations of different
local subregions of the image. We argue that such models do not
exploit images effectively for MT. A global image representation
provides only a summary of the image and is expected to apply
equally to the whole text, but MT operates at the word level.
For attention-based models, there is a mismatch between the
visual unit (equally divided grid-like image subregions) and the
textual unit (a word) because the subregions may not correspond
to a word or cover multiple words. This makes it hard to learn
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Fig. 3. Referential grounding approach uses object bounding boxes as visual
units by grounding the boxes to source language words in the encoder to guide
MT.

Fig. 4. Multimodal correspondences can be used to help guide translation, for
example potentially resolving the gender ambiguity of the word player such that
it can be correctly translated to its feminine form into a gender-marked language.

the correspondence between the textual and visual units during
decoding due to a lack of visual consistency, especially when
trained on small datasets; any assumed learned correspondences
are also hard to interpret since the subregions are not well
defined.

Our work in this section involves new referential grounding
approaches to MT where the correspondences between the visual
units (object regions) and textual units (source words) are better
defined, and can then be used more effectively for translation
(Fig. 3). By object region we mean the depiction of the entity
instance from the image as single, coherent unit. The object
instance can be a concrete entity, amorphous ‘stuff’ (sky, cloud),
or a scene (beach, forest). The main motivation of using objects
as a visual unit is that it may potentially result in better and
more interpretable grounding. As a motivational example, Fig. 4
shows a case where the ambiguous word player can be translated
correctly into a gender-marked language (female player) if its
correspondence to the correct region in the image is identified.

Our main contributions in this section are:
1) An implicit referential grounding MT approach where the

model jointly learns how to ground the source language
in the object-level image representations, and to translate,
while exploring training regimes with and without provid-
ing the correspondence as supervision;

2) An explicit referential grounding MT approach where
object-level grounding is performed at the source side,
independent of the translation model, and is subsequently

used to guide MT, where we vary the ways in which the
visual information is fused to the textual information.

The results of our experiments show that the proposed ref-
erential grounding models outperform existing MMT models
according to automatic evaluation metrics for general quality
and lexical ambiguity.

A. Dataset and Region Alignment

Unlike other sections, we build and evaluate our referential
grounding MMT models on Multi30 K [17]. This makes the
task simpler to investigate, especially as the content in the
subtitles in How2 videos are often not depicted in the video. Each
image in Multi30 K contains one English (EN) description taken
from Flickr30K [40] and human translations into German (DE),
French (FR), and Czech (CS) [37]–[39]. The dataset contains
29,000 instances in the training set, 1,014 in the development
set, and 1,000 in the 2016 test set, where each instance comprises
an image and its description in four languages (EN, DE, FR and
CS). This setup of Multi30 K makes this dataset a “simpler”
version of the real-world multi-lingual multi-modal data as
compared to the How2 dataset which is inherently a video-based
human-targeted instructions corpus. Multimodal MT on the
How2 dataset [41] is explored in a follow up work.

The referential grounding models are dependent on image
region annotations and their mapping to the text. We consider
bounding box localisations of an object as “region,” for which
we have region annotations derived from Flickr30 K Enti-
ties [42]. In the dataset, each entity mention (noun phrase) in
Flickr30 K descriptions is annotated with a bounding box of
the instance(s) depicted. Any entity without a bounding box
is labeled as non-visual. Each entity mention is also assigned
at least one of eight high-level categories (person, clothing,
bodyparts, animals, vehicles, instruments, scene and others).

B. Model

1) Implicit Grounding: We propose two new attention mech-
anisms for MMT, where grounding happens on the source lan-
guage and where the process may be supervised by examples of
aligned word-image region pairs.

a) Base Model: As a baseline, we experiment with the
standard visual attention approach by Caglayan et al. [29] and
its extension to hierarchical fusion by Libovický and Helcl [9].
The image features for an image I are extracted from the last con-
volutional layer of a 152-layer ResNet [23] as a 14×14×1024
feature map.

b) Source Co-Attention: Our first proposed object-level
attention model learns to align source words to object regions
and to translate them jointly.

Let V = v1, . . . , vm be the m oracle or detected object-level
regions that have been cropped from the image. The visual repre-
sentation for each object region, φ(vi), is a 2,048-dimensional
vector generated as a non-linear transform of the penultimate
(pool5) layer of a 152-layer ResNet CNN.

Given these representations, we adapt the co-attention mech-
anism of Lu et al. [43] to ground the source words where the
model jointly learns to align these words to the image regions,
and to translate them. This is done by first obtaining the affinity
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Fig. 5. Distribution of attention weights for unsupervised and supervised co-
attention mechanism.

matrix A:

A = tanh (H�WaV) (6)

where H ∈ Rn×d are the encoder hidden states and V ∈ Rm×l

are the object-level image representations and Wa is the bilinear
parameter matrix. The image and encoder attention maps are
obtained as:

Cs = tanh (WcsH+ (WcvV)A�)

as = softmax(w�
csCs) (7)

where as computes the source affinity. Similarly, visual affin-
ity av is computed as:

Cv = tanh (WcvV + (WcsH)A)

av = softmax(w�
cvCv) (8)

Hierarchical attention [9] is added on top of co-attention
such that, at decoding time, the model jointly attends to the
source context vector computed using the standard attention and
the sum of the source affinity attention and the visual affinity
attention from Eq 7 and Eq 8.

c) Supervised Source Co-Attention: Our second proposed
model learns to ground source words to bounding box regions
with explicit correspondence annotations as supervision. We
expand the co-attention approach by adding an auxiliary loss
to the standard cross-entropy loss. The auxiliary loss penalises
cases where the co-attention weights are highest for regions other
than the correct one. Inspired by phrase localisation work by
Rohrbach et al. [44], given a correct region j we define the
grounding loss as:

Lgrounding = − 1

B

B∑

b=1

log(Pr(j|av)) (9)

where B is the number of phrases per batch and av is from Eq 8.
The loss is only active if the ground truth has an alignment;
otherwise, it is set to zero.

In Fig. 5 we show an example of attention weights learned
for image regions (indicated by letters A-D on the grids) for
a source sentence with both the unsupervised and supervised
versions of the source co-attention mechanism. The supervised
version clearly learns to assign the attention weights to the
correct regions for each given content source word.

Fig. 6. Specification via category embedding or visual features.

2) Explicit Grounding: While attention is a well-established
approach, for a dataset as small as ours (30 K training instances),
the models do not observe enough instances of similar visual
representations with the same textual context for attention to
be effective. The exception is supervised attention, as shown in
the previous section, but it requires region annotations and their
alignments to source words for training.

Here we introduce a different approach: regions and their
correspondences (alignments) to words in the source sentence
are identified beforehand, and then fed to the model as a way of
further specifying the source words.

Previous work has explored word-level information in neural
MT as morphological features [45] and as topics [46]. In both
cases, every word was specified with a vector containing the
additional information (e.g. POS tags). We follow a similar
approach; however, our setting is more complex in that we do not
have an image region associated to every word in the sentence.
We experiment with different strategies for words that do not
align to a region in the image, including function words, as
we discuss below. As for the content of the external vector, we
experiment with two types of additional information: (i) object
categories, and (ii) CCA projections.

a) Object Categories: The idea is to specify a word with
the category of the object in the image it aligns to. We focus on
nouns, which are more commonly depicted in images. Instead
of using pool5 features, for visual representations we rely on
the category of the objects in the image for which an alignment
exists. Fig. 6 shows a motivational example, where the pool5
visual representation for the two woman regions would be very
different despite belonging to the same semantic category. To
make the representation more flexible, instead of the category
label itself, we use pre-trained word embeddings for the word
representing the category. By doing so, visual representations
for woman and girl would be closer than those for woman and
dog, for example. We refer to this representation as Eobj.

b) CCA Projections: Since the specification involves re-
lating words to image representations, we evaluate the utility
of projecting the image representation such that it is highly
correlated with the word representations by using canonical
correlation analysis (CCA) [47]. Formally, given paired ma-
trices V and E, where each row of V is a visual region and
its corresponding word represented by its embedding E, we
generate a linear projection using CCA. We then use these
projections to obtain transformed representations of V as Vcca

and use them as visual features. V can contain either category
embeddings or pool5 representations.
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TABLE IV
COMPARISON OF MODELS USING ORACLE OBJECT ANNOTATIONS AND

ALIGNMENTS, ACCORDING TO METEOR. RESULTS ARE AVERAGE OF THREE

RUNS WITH DIFFERENT SEEDS. THE FIRST ROW INDICATES THE BEST SYSTEM

FOR EN-DE, THE ONLY PAIR TESTED ON THIS TEST SET AT WMT16 [37]

For both object categories and CCA projections, for unaligned
words we specify them with an empty vector or with the vector
containing pre-trained word embeddings of the word itself. We
experiment with specifying every single word in the phrase for
multi-word alignments, or specifying the head nouns only. We
explore two methods to specify visual information for words:
concatenation and projection.

3) Concatenation: The source word embedding is specified
with region-grounded information via concatenation:

φ̃(si) = [φ(si);φ(r)] (10)

where, φ(si) is the source word embedding and φ(r) is the
object-level region information (category label embedding or
CCA projection). These are the initial representations of the
words for the encoder bidirectional recurrent units.

4) Projection: Alternatively, we learn a linear projection W
over the region-grounded information:

φ̃(si) = φ(si) +Wφ(r) (11)

C. Experimental Results

We build attention-based sequence-to-sequence models [32]
with bidirectional recurrent neural networks with gated recurrent
units [48] as the encoder and decoder. We use thenmtpytorch
tool [31] with the following settings: early stop by Meteor (max
100 epochs), selection of best model according to Meteor, beam
size = 6, batch size = 64, Adam as optimizer, word embedding
dimensionality = 256, and no sub-word units (they do not
improve performance in our case).

For category embeddings and CCA representations we
use fasttext 300-dimensional pre-trained word embed-
dings [49]. In the results reported for explicit alignments we
specify only head nouns for which an alignment exists to a region
in the image, and use the pre-trained embeddings of the words
themselves for the remaining words.

1) MMT Results: Table IV summarises the results for the
following models, using BLEU [50] and Meteor [51], where the
latter is the official metric used for this task (following the MMT
shared tasks):

1) Text-only: NMT baseline without visual information.
2) SubrAttention: Visual attention over image subregions at

decoding time (Section IV-B1a) with hierarchical fusion.

TABLE V
COMPARISON OF MODELS USING ORACLE OBJECT ANNOTATIONS

AND ALIGNMENTS, ACCORDING TO LTA

3) CoAttention: Co-attention over image regions (pool5
features for objects) and source words (Section IV-B1b).

4) SupCoAttention: Supervised co-attention over (pool5
image region features for objects) and source words (Sec-
tion IV-B1c).

5) ExplicitProj: Projection of category embedding informa-
tion Eobj (Section IV-B2b).

6) ExplicitConc: Concatenation of category embedding
Eobj and learned word embeddings (Section IV-B3).

7) ExplicitCCA: Concatenation of Vcca (pool5 object
features) and learned word embeddings (Section IV-B3).

The results in Table IV show that the proposed multimodal
models outperform text-only counterparts as well as the standard
multimodal approach SubrAttention for EN-CS and EN-FR. As
it has been shown in the WMT shared tasks on MMT [38], [39],
automatic metrics often fail to capture nuances in translation
quality such as the ones we expect the visual modality to help
with, which – according to human perception – lead to better
translations. This may be particularly the case for EN-DE, where
rich morphology and compounding may result in better transla-
tions, even though these do not match the reference sentences.

2) Lexical Ambiguity Evaluation: To deal with the weak-
nesses of the automatic metrics above, we also evaluate systems
using Lexical Translation Accuracy (LTA) [52] following the
methodology used at the WMT18 shared task on MMT [39].
LTA measures how accurately a system translates a subset of
ambiguous words found in the Multi30 K corpus. A word is
said to be ambiguous in the source language if it has multiple
translations (as given in the Multi30 K training corpus) with
different meanings. A lexical translation is considered correct
if it matches exactly the (lemmatised) word aligned to it on the
reference test set. The test set of 1,000 sentences contains 1,708
such words for EN-DE, 1,298 for EN-FR, and 249 for EN-CS.
Table V shows that all multimodal models are better than their
text-only counterpart.

3) Oracle Versus Predicted Regions: Thus far we showed
results where the oracle bounding boxes and object-word align-
ments are used. In the implicit grounding models this is not
a major issue given that the alignments are only needed at
training time. For the explicit grounding models, however, this
information is also needed at test-time. Therefore, we also inves-
tigate using predicted objects and object-word alignments [53].2

2We use the w2v-max and union model described in their paper.
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Fig. 7. How2 dataset example with different modalities. “Cuban breakfast” and “free cooking video” are not mentioned in the transcript and must be derived
from other sources.

TABLE VI
ROUGE-L AND CONTENT F1 FOR DIFFERENT SUMMARIZATION MODELS:

RANDOM BASELINE (1), RULE-BASED EXTRACTED SUMMARY (2A), NEAREST

NEIGHBOR SUMMARY (2B), DIFFERENT TEXT-ONLY (3,4,5A),
POINTER-GENERATOR (5B), ASR OUTPUT TRANSCRIPT (5C), VIDEO-ONLY

(6-7) AND TEXT-AND-VIDEO MODELS (8-9)

The results indicate that there are no significant differences in
performance.

D. Discussion

We proposed referential grounding approaches for MMT that
use clearly defined correspondences between a source word and
an object in the image to guide translation. We showed that MMT
models using such groundings at object-level can better exploit
image information, leading to better performance, especially
when translating challenging cases such as ambiguous words.

V. SUMMARIZATION

All videos in theHow2dataset are accompanied by a manually
written summary that should attract the attention of viewers and
increase the chance of the video being found in a keyword search.
The goal of the summarization task on this dataset is to generate
this type of video summary. An example video summary is
shown in Fig. 7.

A. Characteristics of the Summaries

In order to get a reliable estimate of the summarization quality,
we use a different split than for ASR and MT. The standard splits
contain enough text for sentence-level evaluation; however, there
is only one summary per video. We use 73,993 videos for
training, 2,965 for validation and 2,156 for testing. The average
length of transcripts is 291 words and and the average length of
summaries is 33 words.

B. Baseline Methods

a) Language Input: For text-based input, we use the tran-
scripts of the videos. We leverage the speech modality by using
the outputs from a pre-trained speech recognizer trained with
other data, as inputs to a text summarization model. We use
state-of-the-art models for distant-microphone conversational
speech recognition, ASpIRE [54] and EESEN [55], [56]. The
word error rate of these models on the How2 test data is 35.4%.
This high error mostly stems from normalization issues in the
data. For example, recognizing and labeling “20” as “twenty”
etc. We accept these as-is for this task. Also, note that this is
the WER on the larger 2000-hour corpus rather than 300-hour
subcorpus.

b) Visual Input: We represent videos by a sequence of
2048-dimensional action feature vectors (see Section II).

C. Models

We study various summarization models. First, we use a
Sequence-to-Sequence (S2S) model [57] consisting of an en-
coder RNN to encode (text or video features) with the attention
mechanism [32] and a decoder RNN to generate summaries.
Our second model is a Pointer-Generator (PG) model [58], [59]
that has shown strong performance for abstractive summariza-
tion [60], [61]. As our third model, we use hierarchical attention
approach [9] originally proposed for multimodal machine trans-
lation to combine textual and visual modalities to generate text.
This model first computes the context vector independently for
each of the input modalities (text and video). In the next step, the
context vectors are treated as states of another encoder, and a new
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TABLE VII
EXAMPLE OUTPUTS OF GROUND-TRUTH TEXT-AND-VIDEO WITH HIERARCHICAL ATTENTION (8), TEXT-ONLY WITH

GROUND-TRUTH (5A), ACTION FEATURES WITH RNN (7) AND THE TOPIC-BASED NEXT NEIGHBOR (2B)

Fig. 8. Building blocks of the sequence-to-sequence models, gray numbers in
brackets indicate which components are utilized in which experiments.

vector is computed. When using a sequence of action features
instead of a single averaged vector, the RNN layer helps capture
context. In Fig. 8, we present the building block of our models.

D. Evaluation

To evaluate the generated summaries we use ROUGE-L [62],
a standard metric for abstractive summarization that measures
the longest common sequence between the reference and the
generated summary. Additionally, we introduce a new metric
Content F1 that fits the template-like structure of the summaries
observed in our dataset.

a) Content F1: We compute the F1 score of the content
words in the summaries based over a monolingual alignment
obtained using METEOR toolkit [63]. Then, we remove function
words and task-specific stop words that appear in most of the
summaries from the reference and the hypothesis. These stop
words (how, learn, tips, free, etc.) are very frequent in the
reference summaries making it easy for the decoder to predict
these and thus increase the ROUGE score. We treat the remaining
words from the reference and the hypothesis as two bags of
words and compute the F1 score over the alignment. Note that the
score ignores the fluency of output in line with recently proposed
metrics such as HighRes [64].

b) Human Evaluation: In addition to automatic evalua-
tion, we also evaluated system summaries by eliciting human

TABLE VIII
HUMAN EVALUATION SCORES ON 4 DIFFERENT MEASURES OF

INFORMATIVENESS (INF), RELEVANCE (REL), COHERENCE (COH),
FLUENCY (FLU)

judgments. Following the abstractive summarization human an-
notation work of Grusky et al. [65], we ask our annotators to
label the generated output on a scale of 1–5 on metrics of infor-
mativeness, relevance, coherence, and fluency. We perform this
on randomly sampled 500 videos from the test set. We evaluate
three models: two unimodal (text-only, 5a; video-only 7) and
one multimodal (text-and-video, 8). Three workers annotated
each video on Amazon Mechanical Turk.

E. Output Examples from Different Models

Table VII shows the example outputs from our different text-
only and text-and-video models. The text-only model produces a
fluent output which is close to the reference. The action features
with the RNN model, which sees no text in the input, produces
an in-domain (“fly tying”’ and “fishing”) abstractive summary
that involves more details like “equipment” which is missing
from the text-based models but is relevant. The next neighbor
model is related to “knot tying” but not related to “fishing”.
The scores for each of these models reflect their respective
properties. Observing other outputs of the model, we noticed
that although predictions were usually fluent and thus getting
high ROUGE scores, there is a large room for improvement by
predicting all details from the ground truth summary, like the
subtle selling point phrases, or by using the visual features in a
different adaptation model.

In Table VIII, we report human evaluation scores of the
best text-only, video-only, and multimodal models. We observe
that text-only summaries dominate on relevance but multimodal
models are the most informative, coherent and fluent, indicating
that these models can fuse complementary information from
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multiple modalities to generate relevant summaries. The exam-
ple presented in Table VII shows how the generated summaries
vary with different models and features.

Our parallel work [66], [67] demonstrates the use of our sum-
marization models trained in this work for a transfer learning-
based summarization task on the Charades dataset [68], which
has audio, video, and text (summary, caption, and question-
answer pairs) modalities just like the How2 dataset. Pre-training
and transfer learning with the How2 dataset led to significant
improvements in unimodal and multimodal adaptation tasks on
the Charades dataset.

VI. CORRELATION-BASED UNSUPERVISED LEARNING

All machine learning involves learning representations on top
of the input features [69]. In deep learning, representation is
learned implicitly, as a result of finding a local minimum of a
loss function. In contrast to this implicit representation learning
stand several explicit representation learning paradigms [70]–
[72]. How to best exploit multiple views is an open problem,
especially when there is a latent alignment between views, such
as between an image and its spoken caption [73]. We treat
the How2 dataset as a 4-way parallel corpus, and explore an
advanced, correlation-based representation learning objective.

A. Deep Generalized Canonical Correlation Analysis

It has been shown that the availability of a second view
in addition to a primary input can help with any task. For
instance, the video stream of a speaker’s face, in addition to
the audio recording, helps perform speech recognition [74].
This qualitative result is still true when the second view is
reconstructed from the primary input by a trained predictor.
However, in some cases, it may be difficult to learn such a
predictor, as in the speech recognition example above. Instead
of reconstructing the secondary view, it is simpler to learn a
representation for each view that is maximally reconstructive of
the representations learned for the other views [72], [75]. This
intuition was first formalized as Canonical Correlation Analysis
(CCA) [47], extended to pairs of views [76] and arbitrary feature
extractors [77]. We use the formulation of [78], [79] which we
describe next.

For each view j ∈ {1..J}, all N points of the dataset are
stored in a matrix Xj ∈ Rdj×N , where dj is the dimensionality
of the feature vector. We denote fj : Rdj → Rhj the j-th learned
feature extractor — in our case a neural net — and Uj ∈ Rhj×k

a linear transformation matrix. The {fj}j and {Uj}j are trained
jointly to reconstruct an unknown shared representation, under
constraints, resulting in the following problem:

minimize
∑J

j=1 ||G− UT
j fj(Xj)||22 subject to GGT = Ik,

with respect to parameters {G, {fj , Uj}j}. Here, G ∈ Rk×N

can be viewed as the learned representation for the dataset, and
k is the dimensionality of said representation. The constraint
on G prevents trivial solutions. Note that each learned feature
extractor (fj , Uj) tries to reconstructG fromXj . We refer to this
method as deep generalized CCA (DGCCA). Deep CCA [77] is
equivalent to the case J = 2.

TABLE IX
RECALL@10 FOR RETRIEVING REFERENCE MODALITY GIVEN SOURCE

MODALITY (”SOURCE - REFERENCE”). SWAPPING SOURCE AND REFERENCE

CHANGE RETRIEVAL SCORES BY LESS THAN 1% ABSOLUTE

TABLE X
RECALL@10 FOR RETRIEVING COLUMN MODALITY GIVEN SOURCE ROW

MODALITY, FOR A DGCCA MODEL TRAINED ON 3 VIEWS. RESULTS FROM THE

BOTTOM LEFT TRIANGLE CAN BE COMPARED TO THOSE IN TABLE IX.

B. Experiments and Results

Within the framework of DGCCA, we use theHow2 dataset as
a 4-way parallel corpus: video, speech, transcription in English,
translation in Portuguese. Each data point in that corpus cor-
responds to one utterance. For the text and speech modalities,
we use encoder-decoder sequence-to-sequence models trained
on the How2 dataset to extract the {Xj}j features. We average
either the encoder-side embeddings or the sequence of context
vectors to obtain a single vector for each sequence, follow-
ing [80]. For the video modality, we first break up the videos
into keyframes, then average the outputs of a ResNet [23] over
the time window corresponding to a given utterance. We thus
obtain a single vector representing the video modality for each
utterance.

1) Retrieval Experiments: We start with an intrinsic evalu-
ation of our learned representations. We use a retrieval task to
probe the reliability of the learned embedding space. Given a
source point v, we return the 10 closest points within a reference
set {ui}i. The source and reference points come from different
views of the dev and test sets of the How2 dataset . This allows
us to score the retrieval based on whether the correct point is
within the 10 closest points, and we report this as Recall@10.
Picking the 10 closest points at random results in a Recall@10 of
0.5% for the dev set and 0.4% for the test set. Using our DGCCA
model, retrieving the 10 closest points involves projecting the
source point and the reference set into the shared space, comput-
ing pairwise distances (we use mean-centered cosine distance)
and taking the 10 closest points.

To validate the approach, we compare linear and deep CCA
on pairs of modalities. Linear CCA corresponds to fj being set
to the identity mapping for all j. We report retrieval results in
Table IX. With the exception of speech-to-text retrieval, deep
CCA performs systematically better than linear CCA.

We train models on 3 and 4 modalities, and report retrieval
scores in Tables X and XI. In both cases, k = 160. When adding
modalities, we note that retrieval scores decrease, since the
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TABLE XI
RECALL@10 FOR RETRIEVING COLUMN MODALITY GIVEN SOURCE ROW

MODALITY, FOR A DGCCA MODEL TRAINED ON 4 VIEWS. RESULTS FROM THE

BOTTOM LEFT TRIANGLE CAN BE COMPARED TO THOSE IN TABLE IX.

TABLE XII
SCORING TOP-1 RETRIEVAL RESULT FROM DGCCA MODELS WITH ASR, MT

AND ST METRICS. MODELS USED (FROM LEFT TO RIGHT) WERE TRAINED

USING SPEECH AND TEXT (EN); TEXT (EN) AND TEXT (PT); SPEECH, TEXT

(EN), TEXT (PT) AND VIDEO. SOURCE SENTENCES FOR THE RETRIEVAL ARE

FROM

THE TEST SET

model needs to accommodate additional views. Some retrieval
scores are higher than others; most likely, the model trades off
higher scores for easier pairs of views (e.g. Portuguese text
and English text) against lower scores for harder pairs of views
(e.g. video and speech). This could be compensated by adding
weights {wj}j for each reconstruction loss, or by tuning the
architectures of the {fj}j separately.

Overall, retrieval scores between language modalities are
high, ranging from 71.0% to 98.4%. There are several reasons
which could explain the lower scores involving the video modal-
ity. First, it is not quite clear how much temporal coherence the
video modality has in the How2 dataset . For instance, objects
mentioned by the speaker might appear much later in the video,
very briefly, or not at all. Further, ResNet features might not be
able to adequately represent the domain of theHow2 dataset . We
experimented with representations from action networks [21]
trained on an action dataset [22], and obtained similar results.
Most likely, given the noisy input features, our models lack either
the expressive power or a sufficient amount of training data to
capture the correspondence between the language modalities
and the video [73], [81].

2) Scoring top-1 Retrieval Results: Given our high retrieval
scores between language modalities, we attempt to measure their
performance with conventional ASR, MT and ST metrics —
WER and BLEU scores. For each data point in the test set, we
retrieve the closest point from a reference set, and use it as the
output hypothesis of either an MT, ASR or ST model, which
can then be scored with the relevant metric. If using the test set
as a reference set, given the high retrieval scores, the WER or
BLEU scores would be almost perfect. We thus report two more
challenging settings in Table XII: the reference set can be either
the train set, or the union of the train set and the test set. As
compared to the baseline sequence-to-sequence neural model,
our models perform reasonably well, and are consistent with

our retrieval scores: MT works best, then ASR, then ST. When
the reference set is the train set, the scores drop considerably,
also because the train set does not necessarily contain adequate
sentences. To quantify this, we pick, for each target sentence
from the test set, the closest sentence from the train set in terms
of edit distance, which yields a BLEU of 10.6 and a WER of
63.0%.

C. Discussion

We framed the How2 dataset as a multiview representation
learning problem, and probed the quality of the learned repre-
sentations using intrinsic evaluations. While our results show it
is possible to learn high-quality representations on the language
modalities, the video modality remains a major challenge, pos-
sibly calling for specialized architectures or transfer learning.
Further integrating the learned representations into supervised
tasks is left for future work.

VII. CONCLUSION

This paper describes (1) the How2 dataset , a collection of
large-scale open-domain user-generated instructional videos,
and (2) a detailed study of different multi-modal learning ex-
periments on this dataset or other proxy datasets like Multi30 K
for MT. This corpus brings together English audio, English tran-
scripts, Portuguese transcripts, videos, and summaries, along
with meta-data such as topic of the video. This makes the How2
dataset a good resource for research at the intersection of vision,
language and speech. By releasing this dataset, we hope to
enable research on multi-lingual, multi-modal, highly correlated
and well-aligned parallel modalities. We presented numerous
uni-, multi- and cross-modal tasks such as speech recognition,
machine translation, summarization, and multi-view represen-
tation learning. With this study, we hope to shed light on the
current state of vision, language and speech grounding and to
help researchers with designing new tasks in this space.

APPENDIX

A. The How2 Dataset

Fig. 9 show the LDA topic distribution and segment length
analysis of the 300 h subset of the How2 dataset .

B. Region-Specific Multimodal Machine Translation

Table XIII shows qualitative examples for results presented
in Section IV.

C. Correlation-based Multiview Learning

1) Feature Extraction: We use baseline ASR and MT mod-
els from Sections III and IV. For each input sequence, the
encoder produces a corresponding sequence of feature vectors
h1, . . ., hT . We use 1

T

∑T
i=1 hi to represent that input sequence.

The decoder with attention produces a sequence of context
vectors c1, . . ., cS , and we use 1

S

∑S
i=1 ci to represent the target

sequence. Since we use word-based ASR and MT systems, each
cj and hi roughly represents a word in context. For the video
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TABLE XIII
QUALITATIVE EXAMPLES COMPARING TEXT-ONLY NMT AND MULTIMODAL MODELS. WE SHOW THE SOURCE (SRC), TEXT-ONLY MT (NMT) AND A

MULTIMODAL MODEL (MMT). IN BOTH CASES WE ALSO SHOW THE BACK TRANSLATION INTO ENGLISH FOR CLARITY. UNDERLINED WORDS REPRESENT

TRANSLATION ERRORS, WHILE BOLD FACE WORDS, THE CORRECT (OR BETTER) VERSION

Fig. 9. LDA topic distributions and segment durations for the 300 h subset.
The overall 2000 h corpus exhibits very similar characteristics.

Fig. 10. Extracting sequence embeddings from trained sequence to sequence
models.

modality, we first break up the videos into keyframes, then use
a ResNet [23] to map each keyframe to a multi-class posterior,
based on the 1000 ImageNet classes. For each speech utterance,
we then compute the average of the posteriors corresponding
to the time window of the speech utterance. The averaging
process is meant to capture the most persistent predictions and
reduce the variability due to noise. We thus obtain a single vector
representing the video modality for each utterance. As a result,
for text, speech and video, the Xj features are 320-, 800- and
1000-dimensional, respectively.

2) Models and Training: The features described above are
kept fixed, while we use feed-forward neural networks with 2
hidden layers and tanh non-linearities for the {fj}j . The first
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layer has the same dimensionality as the input, and the second
layer the same size as k. To avoid under-defining the objective, k
should be no larger than the smallest of the{hj}j . We setk to half
the smallest of the {hj}j involved, as a heuristic to retain most of
the informative components and discard uninformative ones. For
numerical stability, we add the identity matrix scaled by 10−16

to all the view-specific covariance matrices. We use stochastic
gradient descent with batch size 5500 and Adam optimizer with
default parameters. The analytical expression of the gradient
was taken from [78]. In the experiments involving video, we use
a weight decay of 10−5. After each full pass over the training
set, we measure retrieval scores between all possible pairs of
different views on the dev set, using the highest of these scores
to measure the performance of our model. We use this score to
do early stopping.
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