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Abstract

Multilingual contextual embeddings, such as multilingual BERT (mBERT) and XLM-RoBERTa,
have proved useful for many multi-lingual tasks. Previous work probed the cross-linguality of
the representations indirectly using zero-shot transfer learning on morphological and syntactic
tasks. We instead focus on the language-neutrality of mBERT with respect to lexical semantics.
Our results show that contextual embeddings are more language-neutral and in general more
informative than aligned static word-type embeddings which are explicitly trained for language
neutrality. Contextual embeddings are still by default only moderately language neutral, however,
we show two simple methods for achieving stronger language neutrality: first, by unsupervised
centering of the representation for languages, and second by fitting an explicit projection on small
parallel data. In addition, we show how to reach state-of-the-art accuracy on language identification
and match performance of statistical methods for word alignment in parallel sentences.

1 Introduction

Multilingual BERT (mBERT; Devlin et al. (2019)) gained popularity as a contextual representation for
many multilingual tasks, e.g., dependency parsing (Kondratyuk and Straka, 2019a; Wang et al., 2019),
cross-lingual natural language inference (XNLI) or named-entity recognition (NER) (Pires et al., 2019; Wu
and Dredze, 2019; Kudugunta et al., 2019). Recently, a new pre-trained model XLM-RoBERTa (XLM-R;
Conneau et al. (2019)) claimed to outperform mBERT both on XNLI and NER tasks. DistilmBERT (Sanh
et al., 2019) promises to deliver comparable results to mBERT at a significantly lower computational cost.

Pires et al. (2019) present an exploratory paper showing that mBERT can be used cross-lingually for
zero-shot transfer in morphological and syntactic tasks, at least for typologically similar languages. They
also study an interesting semantic task, sentence-retrieval, with promising initial results. Their work
leaves many open questions in terms of how good the cross-lingual mBERT representation is for lexical
semantics, motivating our work.

In this paper, we directly assess cross-lingual properties of multilingual representation on tasks where
lexical semantics plays an important role and present two simple methods of achieving better language
neutrality.

Multilingual capabilities of representations are often evaluated by zero-shot transfer (Hu et al., 2020).
However, in such a setup, we can never be sure if the probing model did not overfit for the language used
for training. The training of models is usually done using a validation set from the same language as
the training set (otherwise it would not be zero-shot), even when it would have been better to stop the
training earlier. This overfitting on the original language can pose a disadvantage for information-richer
representations.

To avoid such methodological issues, we selected tasks that only involve a direct comparison of
the representations: cross-lingual sentence retrieval, word alignment (WA), and machine translation
quality estimation (MT QE). Additionally, we explore how the language is represented in the embeddings
by training language ID classifiers and by assessing how the representation similarity corresponds to
phylogenetic language families.
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Our results show that contextual representations are more language neutral than static word embed-
dings which have been explicitly trained to represent matching word similarly. However, contextual
representations still strongly carry information about the language.

By appropriately modifying the contextual embeddings to be language neutral, we reach state-of-the-art
results on language identification and word alignment using simple straightforward setups: centering the
representations for languages or fitting an explicit projection on small parallel data.

We further show that XLM-RoBERTa (XLM-R; Conneau et al. (2019)) outperforms mBERT in sentence
retrieval and MT QE, while offering a similar performance for language identification and WA.

2 Related Work

Multilingual representations, mostly mBERT, were already tested in a wide range of tasks. Despite many
positive results, the findings in the literature also indicate limited language neutrality.

• Wang et al. (2019) reached impressive results in zero-shot dependency parsing. However, the
representation used for the parser was a bilingual projection of the contextual embeddings based on
word alignment trained on parallel data.

• Pires et al. (2019) examined the cross-lingual properties of mBERT on zero-shot NER and part-of-
speech (POS) tagging but the success of zero-shot transfer strongly depends on how typologically
similar the languages are. Similarly, Wu and Dredze (2019) trained good multilingual models for
POS tagging, NER, and XNLI, but struggled to achieve good results in the zero-shot setup. Rönnqvist
et al. (2019) draw similar conclusions for language-generation tasks.

• Pires et al. (2019) also assessed mBERT on cross-lingual sentence retrieval between three language
pairs. They observed that if they subtract the average difference between the embeddings from the
target language representation, the retrieval accuracy significantly increases. We systematically study
this idea in the later sections.

• XTREME (Hu et al., 2020), a recently introduced benchmark for multilingual representation eval-
uation, asses the representation on a wider range of zero-short transfer tasks that include natural
language inference (Conneau et al., 2018) and question answering (Artetxe et al., 2019; Lewis et al.,
2019), their results show a clearly superior performance of XLM-R compared to mBERT.

The literature clearly shows that downstream task models can extract relevant features from the multilingual
representations (Wu and Dredze, 2019; Kudugunta et al., 2019; Kondratyuk and Straka, 2019a). But they
do not directly show language-neutrality, i.e., to what extent similar phenomena are represented similarly
across languages.

Based on previous work it is impossible to say if this happens in a language-agnostic way or if it is
based on some implicit language identification. Our choice of evaluation tasks eliminates this risk by
directly comparing the representations.

3 Centering Representations

One way to achieve stronger language neutrality is by suppressing the language identity, only keeping
what encodes the sentence meaning. It can be achieved for instance using an explicit projection, however,
training such a projection requires parallel data. Instead, we explore a simple unsupervised method:
representation centering.

Following Pires et al. (2019), we hypothesize that a sentence representation in mBERT is composed
of a language-specific component, which identifies the language of the sentence, and a language-neutral
component, which captures the meaning of the sentence in a language-independent way. We assume that
the language-specific component is similar across all sentences in the language.

We estimate the language centroid as the mean of the representations for a set of sentences in that
language and subtract the language centroid from the contextual embeddings. We try to remove the



language-specific information from the representations by centering the sentence representations in each
language so that their average lies at the origin of the vector space.

The intuition behind this is that within one language, certain phenomena (e.g. function words) would
be very frequent, thus being quite prominent in the mean of the representations for that language (but
not for a different language), while the phenomena that vary among sentences of the language (and thus
presumably carry most of the meaning) would be averaged out in the centroid. We thus hypothesize that
by subtracting the centroid, we remove the language-specific features (without much loss of the meaning
content), making the meaning-bearing features more prominent.

We analyze the semantic properties of the original and the centered representations on a range of
probing tasks. For all tasks, we test all layers of the model. For tasks utilizing a single-vector sentence
representation, we test both the [cls] token vector and mean-pooled states.

4 Probing Tasks

We employ five probing tasks to evaluate the language neutrality of the representations.
The first two tasks analyze the contextual embeddings. The other three tasks are cross-lingual NLP

problems, all of which can be treated as a general task of a cross-lingual estimation of word or sentence
similarities. Supposing we have sufficiently language-neutral representations, we can estimate these
similarities using the cosine distance of the representations; the performance in these tasks can thus be
viewed as a measure of the language-neutrality of the representations.

Moreover, in addition to such an unsupervised approach, we can also utilize actual training data for
the tasks to further improve the performance of the probes; this does not tell us much more about the
representations themselves, but leads to a nice by-product of reaching state-of-the-art accuracies for two
of the tasks.

Language Identification. With a representation that captures all phenomena in a language-neutral
way, it should be difficult to determine what language the sentence is written in. Unlike our other tasks,
language ID requires fitting a classifier. We train a linear classifier on top of a sentence representation.

Language Similarity. Previous work (Pires et al., 2019; Wang et al., 2019) show that models can
be transferred better between more similar languages, which suggests that similar languages tend to
get similar representations. We quantify this observation by V-measure between language families and
hierarchical clustering of the language centroids (Rosenberg and Hirschberg, 2007). We cluster the
centroid by their cosine distance using Nearest Point Algorithm and stop the clustering with a number of
clusters equal to the number of language families in the data.

Parallel Sentence Retrieval. For each sentence in a multi-parallel corpus, we compute the cosine
distance of its representation with representations of all sentences on the parallel side of the corpus and
select the sentence with the smallest distance.

Besides the plain and centered representations, we evaluate explicit projection of the representations
into the “English space”. The projection is fitted by minimizing the element-wise mean square error
between the representation of an English sentence and a linear projection of the representation of its
translation.

Word Alignment. WA is the task of matching words which are translations of each other in parallel
sentences. WA is a key component of statistical machine translation systems (Koehn, 2009). While
sentence retrieval could be done with keyword spotting, computing bilingual WA requires resolving
detailed correspondence on the word level. Unsupervised statistical methods trained on parallel corpora
(Och and Ney, 2003; Dyer et al., 2013) still pose a strong baseline for the task. In a work parallel to ours,
Sabet et al. (2020), present a more complex alternative way of leveraging contextual represnetations for
word alignment that outperforms the statistical methods.

For a pair of parallel sentences, we find the WA as a minimum weighted edge cover of a bipartite
graph. We create an edge for each potential alignment link, weight it by the cosine distance of the token



representations, and find the WA as a minimum weighted edge cover of the resulting bipartite graph.
Unlike statistical methods, this does not require parallel data for training.

To make the algorithm prefer monotonic alignment, we add distortion penalty of 1/d to each edge
where d is the difference in the absolute positions of the respective tokens in the sentence. We add the
penalty with a weight that is hyper-parameter of the method estimated on a devset.

We keep the tokenization that is provided in the word alignment dataset. In the matching phase, we
represent the tokens that get split into multiple subwords as the average of the embeddings of the subwords.

Note that this algorithm is invariant to representation centering. Centering the representation would
shift all vectors by a constant, therefore all weights would change by the same offset, not influencing the
edge cover. We evaluate WA using F1 over sure and possible alignments in manually aligned data.

MT Quality Estimation. MT QE assesses the quality of an MT system output without having access
to a reference translation. Semantic adequacy that we can estimate by comparing representations of the
source sentence and translation hypothesis can be a strong indicator of the MT quality. The standard
evaluation metric is the Pearson correlation with the Translation Error Rate (TER)—the number of edit
operations a human translator would need to do to correct the system output. QE is a more challenging
task than the previous ones because it requires capturing more subtle differences in meaning.

We evaluate how cosine distance of the representation of the source sentence and of the MT output
reflects the translation quality. In addition to plain and centered representations, we also test trained
bilingual projection, and a fully supervised regression trained on the shared task training data.

We use the same bilingual projection into English space fitted by linear regression on the small parallel
data that we used for sentence retrieval.

For the supervised regression, we use a multilayer perceptron directly predicting the value of the
translation error rate provided in the training data.

5 Probed Models

Static word embeddings. As one of the baselines in all our experiments, we use aligned static word
embeddings. Unlike the hidden states of the pre-trained Transformers, they do not capture sentence
context. However, they were explicitly trained to be language-neutral with respect to lexical semantics.
We represent sentences as an average of the embeddings of the words.

Multilingual BERT (Devlin et al., 2019) is a deep Transformer (Vaswani et al., 2017) encoder that is
trained in a multi-task learning setup, first, to be able to guess what words were masked-out in the input
and, second, to decide whether two sentences follow each other in a coherent text.

We use a pre-trained mBERT model that was made public with the BERT release.1 The model
dimension is 768, hidden layer dimension 3072, self-attention uses 12 heads, the model has 12 layers. It
uses a vocabulary of 120k wordpieces that is shared for all languages.

It is trained using a combination of a masked language model (MLM) objective and sentence-adjacency
objective. For the MLM objective, 15% of input subwords are masked out and the model predicts the
masked subwords. For the sentence-adjacency objective, a special [cls] token is prepended to the input.
The embedding corresponding to this token is used as an input to a classifier predicting if the input
sentences are adjacent.

Therefore, for models based on mBERT, we experiment both with [cls] vector and the mean-pooled
vector, i.e., average embeddings for the rest of the tokens.

UDify. The UDify model (Kondratyuk and Straka, 2019a) uses mBERT to train a single model for
dependency parsing and morphological analysis of 75 languages. During training, mBERT is fine-tuned,
which improves the accuracy. Results on zero-shot parsing suggest that the fine-tuning leads to better
language neutrality with respect to morphology and syntax.

1https://github.com/google-research/bert



lng-free. In this experiment, we try to make the representations more language-neutral by removing
the language identity from the model using an adversarial approach. We continue training mBERT in a
multi-task learning setup with the MLM objective (Devlin et al., 2019) without the sentence adjacency
objective, i.e., the same way as XLM-R. It is trained jointly with adversarial language ID classifiers
(Elazar and Goldberg, 2018) using the same dataset as for the language ID tasks. The classifier is separated
from the rest of the model by a gradient-reversal layer (Ganin and Lempitsky, 2015), which negates the
gradients flowing from the classifier into the model. Intuitively, we can say that the rest of the model is
trying to fool the classifier, whereas the classifier tries to improve.

DistillmBERT. This model was inferred from mBERT by knowledge distillation (Sanh et al., 2019).
The model only has 6 layers instead of 12, the rest of the hyperparameters remain the same. The model
is initialized with a subset of the original mBERT parameters and trained on similar training data. The
model was optimized towards cross-entropy of its output distribution with respect to output of the teacher
mBERT model while keeping the MLM objective in the multitask learning setup. The model is forced to
use a smaller space to obtain the representation and therefore it might leverage the similarities between
language and thus reach better language neutrality.

XLM-RoBERTa. Conneau et al. (2019) claim that the original mBERT is under-trained and train a
similar model on a larger dataset that consists of two terabytes of plain text extracted from CommonCrawl
(Wenzek et al., 2019). Unlike mBERT, XLM-R uses a SentencePiece-based vocabulary (Kudo and
Richardson, 2018) of 250k tokens, the rest of the architecture remains the same as in the case of mBERT.
The model is trained using the MLM objective, only without the sentence adjacency prediction.

6 Experimental Setup

To train the language ID classifier, for each of the BERT languages we randomly select 110k sentences of
at least 20 characters from Wikipedia, and keep 5k for validation and 5k for testing for each language.
The training data is also used for estimating the language centroids and training the lng-free version of the
model.

For parallel sentence retrieval, we use a multi-parallel corpus of test data from the WMT14 evaluation
campaign (Bojar et al., 2014) with 3,000 sentences in Czech, English, French, German, Hindi, and Russian.
To compute the linear projection (for the special linear projection experimental condition), we used the
WMT14 development data (500–3000 sentences per language pair).

We use manually annotated WA datasets to evaluate word alignment between English on one side and
Czech (2.5k sent.; Mareček (2016)), Swedish (192 sent.; Holmqvist and Ahrenberg (2011)), German (508
sent.), French (447 sent.; Och and Ney (2000)) and Romanian (248 sent.; Mihalcea and Pedersen (2003))
on the other side. We compare the results with FastAlign (Dyer et al., 2013) and Efmaral (Östling and
Tiedemann, 2016) models which were provided with 1M additional parallel sentences from ParaCrawl
(Esplà et al., 2019).

For MT QE, we use English-German training and test data provided for the WMT19 QE Shared Task
(Fonseca et al., 2019) which consist of source sentences, automatic translations, and manually corrected
reference translations. For the supervised estimation, we use a multi-layer perceptron with a hidden layer
of size 256, trained to estimate the HTER value using the mean-square-error loss.

For the static word embeddings, we use pre-trained tables provided by Joulin et al. (2018).2 The
embeddings were trained on Wikipedia and aligned with a projection trained on small bilingual dictionaries.
The number of word types captured in the embedding tables span from 350k for Romanian to 2.5M for
English.

The experiments with contextualized embeddings are implemented using the Transformers package
(Wolf et al., 2019), which we also use for obtaining the pre-trained models; except for UDify, which was
obtained from (Kondratyuk and Straka, 2019b). The lng-free mBERT version was finetuned using the
same data that was used for language identification.

Our source code is available at https://github.com/jlibovicky/assess-multilingual-bert.
2https://fasttext.cc/docs/en/aligned-vectors.html

https://github.com/jlibovicky/assess-multilingual-bert
https://fasttext.cc/docs/en/aligned-vectors.html
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Figure 1: Language ID accuracy for different layers of mBERT.

7 Results

Language Identification. Table 1 shows that for mBERT, centering the sentence representations con-
siderably decreases the accuracy of language ID, especially in the case of mean-pooled embeddings. This
indicates that the centering procedure indeed removes the language-specific information to a great extent.

For comparison the state-of-the-art language ID model from FastText (Grave et al., 2018) reaches
accuracy of 91.4 % with a pretrained model, and 91.8 % when retrained on our training data, i.e., slightly
worse than our best model based on mBERT. Langid.py (Lui and Baldwin, 2012) reaches 90.1 % when
trained on the same dataset.

Adversarial fine-tuning prevented the language identification only from the [cls] vector and only
marginally for mean-pooling. This supports the hypothesis that language identity is derived from the pres-
ence of function words and structures and representation centering suppresses these frequent phenomena.

Centering the representations within languages requires knowing the language in advance. Centering
adds language-specific information to the representation which the classifier might take advantage of.
However, because the centering decreases the accuracy, we can interpret this as removing information
about the language.

For further comparison, we conduct the same experiment with aligned word embeddings for 44
languages (Joulin et al., 2018), the language ID accuracy is 99.5% with a drop to 2.3% being the same as
assigning language by chance which supports our intuition about centering being a removal of frequent
patterns. Note however, that such an experiment cannot be considered language identification because
we need to know the language in advance to use the matching embeddings table, so the accuracy is not
comparable with other experiments.

Language Similarity. Figure 2 is a tSNE plot (Maaten and Hinton, 2008) of the language centroids,
showing that the similarity of the centroids tends to correspond to the similarity of the languages. Table 2
confirms that the hierarchical clustering of the language centroids mostly corresponds to the language
families.

XLM-R not only has a slightly worse performance in language ID, but also has worse performance
in capturing language similarity. We hypothesize that this is because of the different approaches used in
training the models. The next-sentence prediction used to train mBERT leads to stronger language-specific
information because this sort of information is helpful in determining if two sentences are adjacent.

2https://fasttext.cc/docs/en/aligned-vectors.html
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the 8th layer of cased mBERT on a tSNE plot with highlighted language
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UDify 80.03
lng-free 80.59
XLM-R 69.35
Distil 81.30
random 62.14

Table 2: Clustering of lan-
guage centroids, evaluated with
V-Measure against genealogical
language families with at least
three mBERT languages.

SWE mBERT UDify lng-free Distil XLM-R

[cls] — .639 .462 .549 .420 —
[cls], cent. — .684 .660 .686 .505 —
[cls], proj. — .915 .933 .697 .830 —

mean-pool .113 .776 .314 .755 .600 .883
mean-pool, cent. .496 .838 .564 .828 .770 .923
mean-pool, proj. .650 .983 .906 .983 .980 .996

Table 3: Average accuracy for sentence retrieval over all 30 language pairs compared to static bilingual
word embeddings (SWE).

Parallel Sentence Retrieval. Results in Table 3 reveal that the representation centering dramatically
improves the retrieval accuracy, showing that it makes the representations more language-neutral. However,
an explicitly learned projection of the representations leads to a much greater improvement, reaching a
close-to-perfect accuracy, even though the projection was fitted on relatively small parallel data. The
accuracy is usually higher for mean-pooled states than for the [cls] embedding and varies among the
languages too (see Table 4).

The accuracy also varies according to the layer of mBERT used (see Figure 3). The best-performing is
the 8th layer, both for mBERT and XLM-R. This is consistent both among models and among tasks.

Similar trends hold for all models. XLM-R significantly outperforms all models. The UDify model
that was finetuned for syntax seems to significantly lose semantic abilities. Adversarial finetuning did not
improve the performance.

cs de en es fr ru

cs — .812 .803 .821 .795 .836
de .806 — .845 .833 .818 .816
en .783 .834 — .863 .860 .809
es .805 .824 .863 — .869 .822
fr .784 .822 .861 .859 — .811
ru .828 .820 .810 .826 .817 —

cs de en es fr ru

en — .917 .935 .941 .926 .919
cs .925 — .907 .913 .896 .923
de .938 .913 — .921 .904 .912
es .936 .907 .916 — .934 .908
fr .928 .903 .917 .935 — .905
ru .920 .910 .918 .910 .903 —

Table 4: Sentence retrieval scores for the 8th layer of mBERT and XLM-R models.

Figure 2: Language centroids of the mean-pooled representations from
the 8th layer of cased mBERT on a tSNE plot with highlighted language
families.

mBERT 82.42
UDify 80.03
lng-free 80.59
XLM-R 69.35
Distil 81.30
random 62.14

Table 2: Clustering of lan-
guage centroids, evaluated with
V-Measure against genealogical
language families with at least
three mBERT languages.

SWE mBERT UDify lng-free Distil XLM-R

[cls] — .639 .462 .549 .420 —
[cls], cent. — .684 .660 .686 .505 —
[cls], proj. — .915 .933 .697 .830 —

mean-pool .113 .776 .314 .755 .600 .883
mean-pool, cent. .496 .838 .564 .828 .770 .923
mean-pool, proj. .650 .983 .906 .983 .980 .996

Table 3: Average accuracy for sentence retrieval over all 30 language pairs compared to static bilingual
word embeddings (SWE).

Parallel Sentence Retrieval. Results in Table 3 reveal that the representation centering dramatically
improves the retrieval accuracy, showing that it makes the representations more language-neutral. However,
an explicitly learned projection of the representations leads to a much greater improvement, reaching a
close-to-perfect accuracy, even though the projection was fitted on relatively small parallel data. The
accuracy is usually higher for mean-pooled states than for the [cls] embedding and varies among the
languages too (see Table 4).

The accuracy also varies according to the layer of mBERT used (see Figure 3). The best-performing is
the 8th layer, both for mBERT and XLM-R. This is consistent both among models and among tasks.

Similar trends hold for all models. XLM-R significantly outperforms all models. The UDify model
that was finetuned for syntax seems to significantly lose semantic abilities. Adversarial finetuning did not
improve the performance.

cs de en es fr ru

cs — .812 .803 .821 .795 .836
de .806 — .845 .833 .818 .816
en .783 .834 — .863 .860 .809
es .805 .824 .863 — .869 .822
fr .784 .822 .861 .859 — .811
ru .828 .820 .810 .826 .817 —

cs de en es fr ru

en — .917 .935 .941 .926 .919
cs .925 — .907 .913 .896 .923
de .938 .913 — .921 .904 .912
es .936 .907 .916 — .934 .908
fr .928 .903 .917 .935 — .905
ru .920 .910 .918 .910 .903 —

Table 4: Sentence retrieval scores for the 8th layer of mBERT and XLM-R models.



1 2 3 4 5 6 7 8 9 10 11 12Layer

20

40

60

80

100

R
et

ri
ev

al
ac

cu
ra

cy
%

mBERT
– centered
– projected
XLM-R
– centered
– projected
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Table 5: Maximum F1 score (usually the 8th layer) for WA across layers compared with FastAlign baseline.
For static word embeddings (SWE), we report the difference from introducing the distortion penalty.

Representation centering drastically improves accuracy. An additional 50% error reduction is achievable
via learning a projection on relatively small parallel data leading to close-to-perfect accuracy.

Word Alignment. Table 5 shows that WA based on mBERT and XLM-R representations match the
state-of-the-art aligners trained on a large parallel corpus. WA techniques based on multilingual contextual
representations can thus be used as a replacement of state-of-the-art statistical methods without the use of
parallel data.

The results show that word-level semantics is well captured by the contextual embeddings. Furthermore,
the distortion penalty does not seem to influence the alignment quality when using the contextual
embeddings, whereas for the static word embeddings, it can make a difference of 3–6 F1 points. This
shows that the contextual embeddings encode information about the relative word position in the sentence
across languages. However, their main advantage is still the context-awareness, which allows accurate
alignment of function words.

Similarly to sentence retrieval, we experimented with explicit projection trained on parallel data.
We used an expectation-maximization approach that alternately aligned the words and learned a linear
projection between the representations. This algorithm only brings a negligible improvement of .005 F1

points.

MT Quality Estimation. Table 6 reveals that measuring the distance of non-centered sentence vectors
does not correlate with MT quality at all; centering or explicit projection only leads to a mild correlation.
Unlike sentence retrieval, QE is more sensitive to subtle differences between sentences, while the
projection only seems to capture rough semantic correspondence. Note also that Pearson correlation used
as an evaluation metric for QE might not favor the cosine distance because semantic similarity might not
linearly correspond to HTER.

Supervised regression using either only the source or only MT output also shows a respectable
correlation. The source sentence embedding alone can be used for a reasonable QE. This means
that the source sentence complexity is already a strong indicator of the translation quality. The fact that
using the target sentence embedding alone leads to almost as good results as using both the source and the
hypothesis suggests that the structure of the translation hypothesis is what plays the important role. We
must interpret the modest gain from concatenating the sentence representations as QE not being a suitable
task for probing semantic properties of multilingual representations, because semantic adequacy is only a
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SWE mBERT UDify lng-free Distil XLM-R

centered .020 .005 .039 .026 .001 .001
projection .038 .163 .167 .136 .241 .190
supervised: SRC only .349 .362 .368 .349 .342 .388
supervised: TGT only .339 .352 .375 .343 .344 .408
supervised full .332 .419 .413 .411 .389 .431

Table 6: Correlation of estimated MT quality with HTER for WMT19 English-to-German translation.

marginally important aspect of MT QE.
The experiments with QE show that all tested contextual sentence representations carry information

about sentence difficulty for MT and structural plausibility, however, unlike lexical-semantic features, this
information is not accessible via simple embedding comparison.

8 Conclusions

Using a set of semantically oriented tasks, we showed that unsupervised BERT-based multilingual
contextual embeddings capture similar semantic phenomena quite similarly across different languages.
Surprisingly, in cross-lingual semantic similarity tasks, employing cosine similarity of the contextual
embeddings without any tuning or adaptation clearly and consistently outperforms cosine similarity of
static multilingually aligned word embeddings, even though these were explicitly trained to be language-
neutral using bilingual dictionaries.

Nevertheless, we found that vanilla contextual embeddings contain a strong language identity signal, as
demonstrated by their state-of-the-art performance for the language identification task. We hypothesize
this is due to the sentence-adjacency objective used during training, because language identity is a strong
feature for adjacency. We thus explored two ways of removing the language ID from the representations,
in an attempt to make them even more cross-lingual. While adversarial fine-tuning of mBERT did not meet
the expectations, a simpler unsupervised approach of language-specific centering of the representations
managed to reach the goal to some extent, leading to higher performance of the centered representations
in the probing tasks; the adequacy of the approach is also confirmed by a strong performance of the
computed language centroids in estimating language similarity. Still, an even stronger language-neutrality
of the representations can be achieved by fitting a supervised linear projection on a small set of parallel
sentences.

Although representation centering leads to satisfactory language neutrality, it still requires knowing
in advance what the language is. The future work thus should focus on representations that are more
language-neutral by default, not requiring subsequent language-dependent modifications.
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