
How Many Pages? Paper Length Prediction from the
Metadata

Erion Çano
Institute of Formal and Applied Linguistics

Charles University, Prague, Czech Republic
+420 951 554 279

cano@ufal.mff.cuni.cz

Ondřej Bojar
Institute of Formal and Applied Linguistics

Charles University, Prague, Czech Republic
+420 951 554 276

bojar@ufal.mff.cuni.cz

ABSTRACT

Being able to predict the length of a scientific paper may be

helpful in numerous situations. This work defines the paper length
prediction task as a regression problem and reports several

experimental results using popular machine learning models. We
also create a huge dataset of publication metadata and the
respective lengths in number of pages. The dataset will be freely
available and is intended to foster research in this domain. As

future work, we would like to explore more advanced regressors
based on neural networks and big pretrained language models.

CCS Concepts

• Information systems➝Information extraction

• AppliedComputing➝Document capture.

Keywords

page length prediction; corpus creation; research articles

1. INTRODUCTION
Many research papers from various disciplines are regularly
published in online libraries. For example, the number of monthly

submissions on Arxiv is currently higher than 16 thousand and is
rapidly growing (June 2020 statistics from Arxiv website). One
important aspect of a publication is its citation count dynamics in

time which is being predicted using various techniques [1, 2].

Another important aspect is the relation between several attributes
with each other and especially the way they statistically c ombine

with stylistic metrics forming different writing styles [3]. There
could be scenarios in which predicting the length of research

papers based on their other attributes could be very helpful.
Despite depending also on the layout, the length of a document in

number of pages should correlate with other publication metadata
and stylistic metrics as well. Understanding these latent relations

could be useful for meta-research and important in vibrant
applications such as plagiarism detection [4-6].

In this work, we focus on the length of the publications and

propose a novel task as a regression problem: paper length

prediction based on the metadata. We explored several online
libraries and observed that many paper attributes are not always
available. They still provide publication details such as title,

authors, abstract, but length can be missing or hard to retrieve. To

foster research in this direction, we crawled a big network of
publication metadata [7] and created OAGL, a large dataset of

paper attributes that we are freely releasing online.
1
 It comprises

about 17.5 million data samples with paper attributes and the
corresponding length in number of pages, all stored as JSON

lines. We also experimented with popular regression models on a
small subset of OAGL to provide some initial baselines for the

community. From our observations, basic regression models do
not work well. However, ensemble models produce good results

when their parameters are optimized. They also work better if
trained with more features. Contrary, simple NN (Neural
Network) models with static word embeddings are not very
accurate. We believe that NN models based on big language

models like BERT or GPT-2 [8, 9] that represent both words and

contexts of text features (e.g., paper abstract) may provide better
results.

2. OAGL DATASET CREATION
Creating and using datasets of scientific articles has become

common recently [10-13]. There are several initiatives that crawl

websites for integrating research resources in big and unified data
networks. ArnetMiner [14] is one of such attempts that links
together research data in a common network. One of its

byproducts is the OAG (Open Academic Graph) data collection of
scientific publications [7]. It is organized as a set of records
containing article metadata like title, authors, abstract, keywords,
page length, publication year, isbn, issn, venue and more. To

produce an abundant collection of publication metadata and the
respective page lengths, we used the OAG bundle. We decided to
retrieve records with at least five categories which should be the
most important: title, keywords, abstract, publication year and

page length. Most of the obtained records do still contain other
types of data like number of citations, isbn, venue, volume, etc.

Various publication records had very long or very short text
attributes. For this reason, we ignored every record with a title not

within 3 - 50 tokens, abstract not in the range of 40 - 400 tokens,
keywords not within 2 - 20, and page length not in the range 2 -
50. Finally, we removed the duplicate entries and reached a total
size of about 17.5 million records (precisely 17528680). Table 1

shows some statistics of the whole OAGL and the train,
validation, and test splits (3500, 500, and 1000 samples each) we
used for our experiments.

2
 The titles and abstracts are on average

11.96 and 144.86 tokens long, with standard deviations 4.49 and

74.98 respectively. The number of keywords in each paper is also
highly variable with a mean of 6.74 and a deviation of 5.49. The

average paper length is 6.65 pages. We also noticed that about 90
% of the papers were published between 2000 and 2010. A data

sample example from OAGL is illustrated in Table 2.

1
 OAGL is available at: http://hdl.handle.net/11234/1-3257

2
 Values of * attributes may vary based on the text preprocessing.

Table 1. Statistics of the complete OAGL dataset and our experimentation splits

Attribute
Total

Mean Std

Train

Mean Std

Val

Mean Std

Test

Mean Std

Title tokens* 11.96 4.49 13.37 4.77 13.27 4.84 12.97 4.67

Abstract tokens* 144.86 74.98 159.01 65.09 155.35 61.06 154.53 59.02

Keywords 6.74 5.49 5.73 3.3 5.59 2.85 5.49 2.31

Page length 6.65 4.87 6.95 5.27 7.16 4.46 7.2 5.39

Table 2. A data sample example from OAGL dataset

“title”: “Efficiency of wipe sampling on hard surfaces for pesticides and PCB residues in dust.", “abstract”:

“Pesticides and polychlorinated biphenyls (PCBs) are commonly found in house dust and have been
described as a valuable matrix to assess indoor pesticide and PCB contamination. The aim of this study
was to assess the efficiency and precision of cellulose wipe for collecting 48 pesticides, eight PCBs, and
one synergist at environmental concentrations. First, the efficiency and repeatability of wipe collection

were determined for pesticide and PCB residues that were directly spiked onto three types of household

floors (tile, laminate, and hardwood). Second, synthetic dust was used to assess the capacity of the wipe
to collect dust. Third, we assessed the efficiency and repeatability of wipe collection of pesticides and
PCB residues that was spiked onto synthetic dust and then applied to tile. In the first experiment, the

overall collection efficiency was highest on tile (38%) and laminate (40%) compared to hardwood (34%),
p < 0.001. The second experiment confirmed that cellulose wipes can efficiently collect dust (82% collection
efficiency). The third experiment showed that the overall collection efficiency was higher in the presence
of dust (72% vs. 38% without dust, p < 0.001). Furthermore, the mean repeatability also improved when

compounds were spiked onto dust (< 30% for the majority of compounds). To our knowledge, this is the
first study to assess the efficiency of wipes as a sampling method using a large number of compounds
at environmental concentrations and synthetic dust. Cellulose wipes appear to be efficient to sample
the pesticides and PCBs that adsorb onto dust on smooth and hard surfaces.”, “keywords”: [“collection

efficiency”, “dust”, “pesticides”, “polychlorinated biphenyls”, “wipes”], “year”: 2015, “venue”: “The Science
of the total environment", “n citation”: 16, “issn”: “1879-1026”, “volume”: 505, “plength”: 10

Table 3. Different vectorizer scores with basic regression models

Vectorizer
Linear Regr

MSE MAE R2

MLP Regr

MSE MAE R2

SV Regr

MSE MAE R2

Tfidf 30.01 3.9 -0.03 28.71 3.81 0.01 28.03 3.29 0.04

Hash 32.37 4.15 -0.11 29.24 3.87 -0.06 26.84 3.19 0.08

Count 35.35 4.39 -0.21 30.9 3.89 -0.06 26.63 3.19 0.08

Union 35.21 4.38 -0.21 29.53 3.82 -0.02 26.63 3.12 0.08

3. OBSERVATIONS ON BASIC FEATURES
We ran several experiments with various regression models on a

small subset of OAGL. At the beginning of each trial, we
performed a few more processing steps, lowercasing the text
fields and clearing the messy symbols in each sample.
Furthermore, we used Stanford CoreNLP [15] to tokenize the

titles and the abstracts. Our goal was to observe the role of
different feature packs in the success of the length prediction task.
The most important document attributes are the title, the abstract
and the keywords. They are highly related with paper topics and

should incorporate latent correlations with the page length. A
primitive way to combine those three strings together is by simply
concatenating them. We used different vector space models [16-
18] for representing the common string and regression models for

predicting the paper length.

In this first set of experiments, we vectorized the joint string of
each paper record with tfidf, count, hash, and a union of the three
of them. We also explored three machine learning models: an LR

(Linear Regression), an SVR (Support Vector Regression) that

uses the concept of support vectors [19] and an MLP (Multi-Layer
Perceptron) for regression [20, 21] with their default parameters.

3

The respective MSE (Mean Squared Error), MAE (Mean

Absolute Error) and R2 (R squared) scores are reported in Table
3. As we can see, the SVR performs better than the two other
models. Regarding the vectorizers, tfidf performs best when

combined with the LR and the MLP regressors. In the case of

SVR, the count vectorizer leads. The union of the three does not
seem to improve the feature extraction process. It is still worth to
note that these observations are raw since no parameter

optimization was performed, neither on the vectorizers nor on the

regression models.

We ran a second set of experiments using two NNs on the same
feature combination as above. The simplest model we tried is
composed of an embedding layer for the text vectorization and a

dense layer of 100 neurons followed by the output layer. We used
static word embeddings of 300 dimensions from three sources: the

3
https://scikit-learn.org/stable/supervised_learning.html

6 billion tokens collection of Common Crawl
4
 trained with Glove

[22], the 840 billion tokens collection of Common Crawl trained
with Glove, and the 100 billion tokens collection of Google

News
5
 trained with Word2vec [23, 24]. The embedding layer is

not trainable (we actually noticed that tuning the embeddings on
our data negatively impacts performance) and serves only to

create the vector space representation of the words. The maximal

length of each word sequence was set to 400. As training
optimizer we used Adam with its default parameters [25]. The
training continued for 5 epochs with a batch size of 32.

The other NN structure is the NgramCNN architecture designed

and used for sentiment analysis [26]. It is composed of an
embedding layer for the word representation and several 1-
dimensional convolution layers (feature extraction branches) of
increasing filter sizes that extract unigrams, bigrams, trigrams or

even longer word patterns (the W hyperparameter). The
convolution layers are followed by max-pooling (or global max-
pooling) layers and are repeated several times (the L
hyperparameter). The branches are finally concatenated and a

dense layer is used for regression, as it is illustrated in Figure 5 on
page 12 of [26]. In this work, we used a very simple variant, with

three branches of convolutions and a single pooling iteration (W
=3 and L = 1). The embedding layer, and the training parameters

were kept at the same values as in the other NN model. MSE,
MAE and R2 scores for this second set of experiments are shown
in Table 4. In general, we see that the scores are somehow better
than those of Table 3. From the results, we notice that Glove

embeddings perform better than word2vec ones. Regarding the
two models, NgramCNN outruns the one-layer NN in all the three
metrics.

Table 4. NN and NgramCNN scores on static embeddings

Embeddings
OneLayerNN

MSE MAE R2

NgramCNN

MSE MAE R2

CC6B-Glove 25.553.610.12 24.68 3.230.15

CC840B-Glove 25.51 3.290.12 24.56 3.170.15

Google-W2V 26.1 3.3 0.1 25.06 3.2 0.14

4. ANALYZING MORE FEATURES
The scores reported in Tables 3 and 4 indicate that concatenating
the title, the abstract and the keywords in a common string and
vectorizing them together is not a good practice. Adding other

paper metadata could also improve the regression results. For this
reasons, we decided to run a third set of experiments adding
publication venue, year and citations as extra features. The venue
is a string indicating the conference or journal where the paper

was published. The publication year and the number of citations
are integers. Furthermore, we decided to vectorize the title,
abstract, keywords, and venue independently using tfidf (the best
vectorizer from the first set of experiments) and stacking them as

columns in the feature matrix.

Once again, we used the LR, the SVR, and the MLP regressor but
now we tried three ensemble models as well. An RF (Random

4
https://nlp.stanford.edu/projects/glove/

5
https://code.google.com/archive/p/word2vec

Forest) is an example of a bagging ensemble method that aims to
increase the strength and accuracy of learning algorithms [27, 28].
It runs in parallel and works well with different types of features.

Contrary, boosting methods represent sequential ensembles that
try to turn weak models into stronger ones by correcting the
erroneous classifications of each iteration [29-31]. One of the

most popular implementations is GB (Gradient Boosting)

algorithm that is based on decision trees. XGBoost (Extreme
Gradient Boosting) is a fast implementation that reduces the
search space of possible feature splits [32]. The three of these
ensemble methods work well on both classification and regression

tasks. We examined the new feature pack of our OAGL subset

using tfidf vectorizer and these six regression algorithms, trying to
optimize their most important parameters. The results of the
default models and of the optimized ones are presented in Table 5.

Comparing the new scores of the LR, SVR, MLP models against
the ones of Table 3, we notice considerable improvements. The
LR and the MLP perform significantly better with new feature
pack and are further improved by the parameter optimization

process. The default SVR scores are slightly worse, but the
optimized scores are significantly better, with R2 jumping up
from -0.05 to 0.19.

Table 5. Optimized model scores

Model
Default Params

MSE MAE R2

GS Params

MSE MAE R2

LR 23.89 3.45 0.18 22.54 3.3 0.22

SVR 30.43 3.51 -0.05 23.58 3.14 0.19

MLP 24.19 3.39 0.17 22.72 3.26 0.22

RF 25.05 3.27 0.14 23.5 3.06 0.19

GB 22.44 3.14 0.23 21.6 3.04 0.26

XGB 22.36 3.12 0.23 21.16 3.05 0.27

The ensemble learners perform better, even with their default
parameters. The RF is the weakest of the three, reaching an MSE
of 23.5, an MAE of 3.06, and an R2 of 0.19 when optimized. GB

and XGB perform similarly and reach optimized 21.6 and 21.16
MSE scores respectively. Moreover, XGB reached a 0.27 R2
score which is the highest we got in all the experiments. It is
worth noting that XGB was not only the most accurate, but also

the fastest ensemble learner. Furthermore, the parameter sets we
searched were not exhaustive and further improvements could be

achieved. Unfortunately, there are no literature baselines we could
compare our results with. The optimal parameters we found for

each model are presented in Table 6. Furthermore, we provide the
source code to reproduce the experiments online.

6
 We tried to

further improve the results by adding some more statistical
features like number of words in the title, number of words in the

abstract, number of keywords, and number of capitalized words.

There was no significant difference in the results, though. A final
fact we observed was the insignificant role of certain numeric
scalers (we tried MinMaxScaler and MaxAbsScaler) on year and

citations features.

6
https://github.com/erionc/paper-length

Table 6. Top gridsearch parameters of the vectorizer and regressor in each model

Model Optimal Parameter Values

LR vec

reg

ngram range: (1,3), norm: l2, smooth idf: True, stop words: None, sublineartf: True

copy X: True, fit intercept: True, normalize: False

SVR vec

reg

ngram range: (1,3), norm: None, smooth idf: True, stop words: None, sublineartf: True

C: 10, gamma: auto, kernel: poly, shrinking: True

MLP vec

reg

ngram range: (1,2), norm: l2, smooth idf: True, stop words: None, sublineartf: True

hidden layer sizes: (100,), alpha: 0.00005, solver: adam

RF vec

reg

ngram range: (1,3), norm: None, smooth idf: True, stop words: None, sublineartf: False

n estimators: 60, max features: auto, bootstrap: True, oob score: True

GB vec

reg

ngram range: (1,3), norm: None, smooth idf: True, stop words: None, sublineartf: True

n estimators: 100, max features: auto, max depth: 6

XGB vec

reg

ngram range: (1,3), norm: None, smooth idf: True, stop words: None, sublineartf: False

n estimators: 70, eta: 0.008, gamma: 0.15, max depth: 6

5. CONCLUSIONS AND FUTURE WORK
In this paper, we proposed a novel task: predicting paper length

using various publication details as features. We also created a
large dataset of publication metadata that will be freely available.
It is intended to encourage experimentation with various types of
predictive models on this research direction. From our initial

experiments, we noticed that basic regression models are not very
accurate, leading to error rates that are relatively high.

Optimized ensemble models work better and may produce
satisfying results with better feature processing and combinations.

As future work, we would like to try neural network structures
based on pretrained language models that are becoming very
popular in language-related tasks. Given the large size of the data
we dispose, we also want to examine the task from the data

efficiency viewpoint [33], checking the scalability of the

prediction scores when more training sample are used. A deeper
understanding of the hidden relations between document length,
publication attributes and other writing metrics could be

invaluable for many applications and tasks.

6. ACKNOWLEDGMENTS
This research work was supported by the project no. 19-
26934X(NEUREM3) of the Czech Science Foundation and
ELITR (H2020-ICT-2018-2-825460) of the EU.

7. REFERENCES
[1] Ali Abrishami and SadeghAliakbary. 2019. Predicting

citation counts based ondeep neural network

learningtechniques. Journal of Informetrics13, 2 (2019),
485 – 499.

[2] Xuanmin Ruan, Yuanyang Zhu, Jiang Li, and Ying Cheng.

2020. Predicting the citation counts of individual papers via a
BP neural network. Journal of Informetrics 14, 3 (2020),
101039.

[3] David I. Holmes. 1998. The Evolution of Stylometry in
Humanities Scholarship. Literary and Linguistic Computing
13, 3 (09 1998), 111–117.

[4] Bela Gipp and Norman Meuschke. 2011. Citation Pattern

Matching Algorithms for Citation-Based Plagiarism
Detection: Greedy Citation Tiling, Citation Chunking and
Longest Common Citation Sequence. In Proceedings of the

11th ACM Symposium on Document Engineering (Mountain

View, California, USA) (DocEng ’11). Association for
Computing Machinery, New York, NY, USA, 249–258.

[5] Bela Gipp, Norman Meuschke, and Joeran Beel. 2011.

Comparative Evaluation of Text- and Citation-Based
Plagiarism Detection Approaches Using Guttenplag. In

Proceedings of the 11th Annual International ACM/IEEE
Joint Conference on Digital Libraries (Ottawa, Ontario,
Canada) (JCDL ’11). Association for Computing Machinery,
New York, NY, USA, 255–258.

[6] Krisztián Monostori, Arkdy Zaslavsky, and Heinz Schmidt.

2000. Document Overlap Detection System for Distributed
Digital Libraries. In Proceedings of the Fifth ACM
Conference on Digital Libraries (San Antonio, Texas, USA)
(DL ’00). Association for Computing Machinery, New York,
NY, USA, 226–227.

[7] Arnab Sinha, Zhihong Shen, Yang Song, Hao Ma, Darrin

Eide, Bo-June (Paul) Hsu, and Kuansan Wang. 2015. An
Overview of Microsoft Academic Service (MAS) and

Applications. In Proceedings of the 24th International
Conference on World Wide Web (Florence, Italy) (WWW ’15

Companion). ACM, New York, NY, USA,
243–246.

[8] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. 2019. BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding. In Proceedings

of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short Papers).
Association for Computational Linguistics, Minneapolis,
Minnesota, 4171–4186.

[9] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario
Amodei, and Ilya Sutskever. 2018. Language Models are
Unsupervised Multitask Learners. (2018).

[10] Erion Çano and Ondřej Bojar. 2019. Keyphrase Generation:
A Multi-Aspect Survey. In 2019 25th Conference of Open
Innovations Association (FRUCT). Helsinki, Finland, 85–94.

[11] Erion Çano and Ondřej Bojar. 2020. Two Huge Title and

Keyword Generation Corpora of Research Articles. In
Proceedings of The 12th Language Resources and

Evaluation Conference. European Language Resources
Association, Marseille, France, 6663–6671.

[12] Erion Çano, Riccardo Coppola, Eleonora Gargiulo, Marco
Marengo, and Maurizio Morisio. 2017. Mood-Based On-Car

Music Recommendations. In Industrial Networks and
Intelligent Systems, Leandros A. Maglaras, Helge Janicke,
and Kevin Jones (Eds.). Springer International Publishing,
Cham, 154–163.

[13] Mikalai Krapivin, Aliaksandr Autayeu, Maurizio Marchese,

Enrico Blanzieri, and Nicola Segata. 2010. Keyphrases
Extraction from Scientific Documents. In The Role of Digital
Libraries in a Time of Global Change, Gobinda Chowdhury,
Chris Koo, and Jane Hunter (Eds.).

[14] Jie Tang, Jing Zhang, Limin Yao, Juanzi Li, Li Zhang, and

Zhong Su. 2008. ArnetMiner: Extraction and Mining of

Academic Social Networks. In Proceedings of the 14th ACM
SIGKDD International Conference on Knowledge Discovery
and Data Mining (Las Vegas, Nevada, USA) (KDD ’08).
ACM, New York, NY, USA, 990–998.

[15] Christopher D. Manning, Mihai Surdeanu, John Bauer, Jenny

Finkel, Steven J. Bethard, and David McClosky. 2014. The
Stanford CoreNLP Natural Language Processing Toolkit. In
Association for Computational Linguistics (ACL) System
Demonstrations. 55–60.

[16] Karen Spärck Jones. 1972. A statistical interpretation of term

specificity and its application in retrieval. Journal of
Documentation 28 (1972), 11–21.

[17] Stephen Robertson. 2004. Understanding inverse document
frequency: On theoretical arguments for IDF. Journal of
Documentation 60 (2004).

[18] Omid Shahmirzadi, Adam Lugowski, and Kenneth Younge.
2018. Text Similarity in Vector Space Models: A
Comparative Study. CoRR abs/1810.00664 (2018).

[19] Corinna Cortes and Vladimir Vapnik. 1995. Support-Vector
Networks. Mach.Learn. 20, 3 (Sept. 1995), 273–297.

[20] A Wendemuth. 1995. Learning the unlearnable. Journal of
Physics A: Mathematical and General 28, 18 (sep 1995),
5423–5436.

[21] B. Widrow and M. A. Lehr. 1990. 30 years of adaptive
neural networks: perceptron, Madaline, and backpropagation.
Proc. IEEE 78, 9 (1990), 1415–1442.

[22] Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. GloVe: Global Vectors for Word
Representation. In Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Processing

(EMNLP). Association for Computational Linguistics, Doha,
Qatar, 1532–1543.

[23] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean.
2013. Efficient Estimation of Word Representations in
Vector Space. arXiv e-prints, Article arXiv:1301.3781 (Jan
2013). arXiv:1301.3781 [cs.CL]

[24] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado,

and Jeffrey Dean. 2013. Distributed Representations of
Words and Phrases and Their Compositionality. In
Proceedings of the 26th International Conference on Neural

Information Processing Systems - Volume 2 (Lake Tahoe,
Nevada) (NIPS’13). Curran Associates Inc., Red Hook, NY,
USA, 3111–3119.

[25] Diederik P. Kingma and Jimmy Ba. 2014. Adam: A Method
for Stochastic Optimization. http://arxiv.org/abs/1412.6980

cite arxiv:1412.6980, Comment: Published as a conference
paper at the 3rd International Conference for Learning
Representations, San Diego, 2015.

[26] Erion Çano and Maurizio Morisio. 2019. A data-driven
neural network architecture for sentiment analysis. Data
Technologies and Applications 53, 1 (2019), 2–19.

[27] J. R. Quinlan. 1996. Bagging, Boosting, and C4.S. In

Proceedings of the Thirteenth National Conference on
Artificial Intelligence - Volume 1 (Portland, Oregon)
(AAAI’96). AAAI Press, 725–730.

[28] Tin Kam Ho. 1995. Random decision forests. In Proceedings
of 3rd International Conference on Document Analysis and
Recognition, Vol. 1. Montreal, Canada, 278–282.

[29] Leo Breiman. 2001. Random Forests. Machine Learning 45,
1 (01 Oct 2001), 5–32.

[30] Jerome H. Friedman. 2000. Greedy Function Approximation:
A Gradient Boosting Machine. Annals of Statistics 29 (2000),
1189–1232.

[31] Llew Mason, Jonathan Baxter, Peter Bartlett, and Marcus
Frean. 2000. Boosting Algorithms as Gradient Descent. In In

Advances in Neural Information Processing Systems 12 . MIT
Press, 512–518.

[32] Tianqi Chen and Carlos Guestrin. 2016. XGBoost: A
Scalable Tree Boosting System. In Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (San Francisco, California,

USA) (KDD’16). Association for Computing Machinery,
New York, NY, USA, 785–794.

[33] Erion Çano and Ondřej Bojar. 2019. Efficiency Metrics for
Data-Driven Models: A Text Summarization Case Study. In

Proceedings of the 12th International Conference on Natural

Language Generation. Association for Computational
Linguistics, Tokyo, Japan, 229–239.

