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Abstract
Recent developments in sequence-to-sequence learning with neural networks have considerably improved the quality of automatically
generated text summaries and document keywords, stipulating the need for even bigger training corpora. Metadata of research
articles are usually easy to find online and can be used to perform research on various tasks. In this paper, we introduce two
huge datasets for text summarization (OAGSX) and keyword generation (OAGKX) research, containing 34 million and 23 mil-
lion records, respectively. The data were retrieved from the Open Academic Graph which is a network of research profiles and
publications. We carefully processed each record and also tried several extractive and abstractive methods of both tasks to create
performance baselines for other researchers. We further illustrate the performance of those methods previewing their outputs. In
the near future, we would like to apply topic modeling on the two sets to derive subsets of research articles from more specific disciplines.
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1. Introduction
The ongoing tendency towards data-driven solutions for
more and more tasks such as MT (Machine Translation),
TS (Text Summarization), KG (Keyword Generation), and
other tasks related to natural languages has created incen-
tives for crawling the Web to produce large text corpora of
various types. Furthermore, recent open data initiatives of
governments1 and other institutions that encourage the pub-
lication of more data on the Web have induced the same
effect. From academia, there are initiatives such as Arnet-
Miner (Tang et al., 2008) that try to integrate existing sci-
entific data from various resources in common networks for
easier retrieval and exploitation. Among the various types
of texts published in the Web, the metadata of research arti-
cles (e.g., titles, abstracts, keywords, etc.) are probably the
easiest to find in large quantities, since they are usually not
restricted. In fact, small corpora of research articles were
used since the 90s to explore extractive KG (Witten et al.,
1999; Turney, 1999) and TS (Mani and Bloedorn, 1997;
Goldstein et al., 2000) techniques.
Research on these tasks has switched from the extractive
paradigm to the recent abstractive one that is based on
sequence-to-sequence learning with neural networks. The
respective models are usually data-hungry, emphasizing the
need for larger corpora in both TS and KG tasks. In this
paper, we first review the popular existing datasets used for
TS and KG research. We later describe the processing steps
we followed, starting from the retrieval of ArnetMiner OAG
(Open Academic Graph) data collection to the creation of
two novel and huge corpora: OAGSX2 and OAGKX.3 The
first one contains more than 34 million records consisting of
paper abstracts and titles. It is suitable for TS experiments
(more specifically for title generation which is a form of
TS). The second one contains roughly 23 million abstracts,
titles, and lists of keywords and is best suited for KG exper-

1https://www.data.gov/open-gov
2http://hdl.handle.net/11234/1-3079
3http://hdl.handle.net/11234/1-3062

iments. The data samples in the two corpora were carefully
examined and various statistics about the text lengths and
the lexical similarities between abstracts, titles, and key-
words are presented.
We also explored the performance scores (ROUGE for TS
and F1@k for KG) of existing extractive and abstractive
TS and KG solutions, trying them on evaluation minisets
derived from OAGSX and OAGKX. According to our re-
sults, the recent abstractive methods based on sequence-to-
sequence learning take a considerable time to train but per-
form better than the extractive methods on both tasks. To
the best of our knowledge, our two data collections are the
biggest of their kind that can be found online for free. We
release them under the Creative Commons By 4.0 License.
As future work, we would like to perform topic recogni-
tion on the articles of the two collections. This may lead to
the creation of many subsets of research articles data from
more specific scientific disciplines.

2. Background
2.1. Text Summarization
Automatic TS research explores intelligent methods to
compress text documents into shorter summaries that ex-
press the main ideas of the source. It is mostly driven by
our need to have shorter and easy-to-read summaries of
long documents for saving reading time. Sometimes, we
also need to have summaries of conversation threads (e.g.,
emails or chat messages). Multi-document TS is important
when we want concise information from a set of documents
and summaries of conclusions from meetings (minuting) or
other event discussions. Another type of summarization
aims to create short client reviews about different aspects
of certain products or services. Title generation is yet an-
other form of TS which is about paraphrasing the content
of a text to produce an appropriate title for it.
There are two fundamental approaches for performing TS.
The extractive way tries to select the most important and
relevant parts from the source document and combines
them to produce a shorter summary which is concise, co-

https://www.data.gov/open-gov
http://hdl.handle.net/11234/1-3079
http://hdl.handle.net/11234/1-3062
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herent and readable. In this case, the target or output text
contains verbatim copies of words or phrases taken from
the source or input. The abstractive approach, on the other
hand, learns to paraphrase the information required for the
summary, instead of directly copying it from the source.
This is somehow better, but the methodology is more com-
plex and requires more resources. The TS research of the
90s and early 00s was mostly based on extractive meth-
ods. The respective techniques used unsupervised learning
(Goldstein et al., 2000; Barzilay and Elhadad, 1997), su-
pervised learning (Wong et al., 2008; Fukumoto, 2004) or
graph methods (Erkan and Radev, 2004; Mani and Bloe-
dorn, 1997) to select the most important lexical units from
the source documents.
The abstractive approach has become popular in recent
years, following the progress in sequence-to-sequence
learning with neural networks (the encoder-decoder frame-
work). LSTM neural networks (Hochreiter and Schmid-
huber, 1997) are combined and enhanced with advanced
mechanisms like the attention of Bahdanau et al. (2015)
for a more effective learning of the alignments between the
text sequences. Attention allows the model to focus on dif-
ferent segments of the input during generation and was suc-
cessfully used by Rush et al. (2015) to summarize news ar-
ticles. The problem of unknown words (not seen in source
texts) was also mitigated by the copying technique (Gu et
al., 2016; Gulcehre et al., 2016). Furthermore, the coverage
(Tu et al., 2016a) and intra-attention (Paulus et al., 2017)
mechanisms were proposed to alleviate word repetitions in
the summaries, a notorious problem of the encoder-decoder
models.
Scoring results were pushed even further just recently by
mixing reinforcement learning concepts such as policy gra-
dient (Rennie et al., 2017) into the encoder-decoder archi-
tecture. It optimizes the learning objective (higher summa-
rization score) and still keeps an appropriate quality of the
produced summaries. A recent performance comparison of
various abstractive TS methods can be found in Çano and
Bojar (2019a).

2.2. Keyphrase Generation
Keyphrase generation is the process of analyzing a docu-
ment and producing sets of one or a few words (keywords
or keyphrases, used interchangeably) that best represent its
main concepts or topics. These keywords are frequently
utilized nowadays to annotate digital objects (e.g., research
articles, books, product descriptions, etc.) and quickly find
them in digital libraries, online stores, etc. A keyword
string is a concatenation of several keywords (commas or
semicolons are typically used as separators) attached to one
of those objects. The need to process large amounts of
documents with missing keywords created incentives for
research in automatic KG since the 90s. The popular su-
pervised learning algorithms of that time were used by au-
thors like Turney (2000) or Witten et al. (1999) in combi-
nation with lexical features to extract keywords from the
documents. Furthermore, graph-based methods (Rose et
al., 2010; Wan and Xiao, 2008) or other unsupervised KG
methods (Campos et al., 2018; Nart and Tasso, 2014) were
proposed later in the 00s.

The above extractive KG solutions were very successful be-
cause of their simplicity and execution speed. However,
extractive KG suffers from a serious inherent handicap: its
inability to produce absent keywords (keywords not ap-
pearing in the source text). Meng et al. (2017) analyzed
the author’s keywords in popular corpora. They observed
that absent and present (keywords that also appear in the
source text) keywords assigned by paper authors are almost
equally frequent. It is thus a serious drawback to com-
pletely ignore the absent keywords.
The recent advances in language representation (Mikolov
et al., 2013; Pennington et al., 2014) and sequence-to-
sequence learning (Bahdanau et al., 2015; Vaswani et al.,
2017) motivated several researchers like Meng et al. (2017)
or Zhang and Xiao (2018) to explore abstractive KG in the
context of the encoder-decoder framework. The encoder-
decoder network structures were initially utilized to per-
form MT and got quick adoption on similar tasks like TS
and KG that are also based on the sequence-to-sequence
transformation between source and target texts. Further-
more, same as in TS research, various reinforcement learn-
ing concepts like adaptive rewards that are being explored
are raising the performance scores even higher (Chan et al.,
2019). Abstractive KG is now a vibrant research direction
with more than a dozen of publications only in the last three
years. More comprehensive surveys of KG literature can
found in other recent publications like (Papagiannopoulou
and Tsoumakas, 2019) and (Çano and Bojar, 2019b).

2.3. Scientific Article Data Sources
The current hype of deep neural networks has created
strong incentives for producing data collections by crawl-
ing the web. The richest sets of language resources are used
for machine translation (Resnik and Smith, 2003; Tiede-
mann, 2012; Mahata et al., 2016; Shi et al., 2005) and
for sentiment analysis (Bosco et al., 2013; Çano and Bo-
jar, 2019c; Maas et al., 2011; Çano and Morisio, 2019;
Jiménez Zafra et al., 2015). They are mostly driven by the
information technology giants that continuously improve
their language-related applications and marketing compa-
nies to understand customers’ perceptions about various
online products.
TS and KG research of the 90s and early 00s was mostly
based on extractive methods that did not rely on big training
corpora. Things gradually changed in the late 00s with the
rising popularity of the encoder-decoder framework. The
current TS and KG methods are also highly dependent on
the big language corpora since they are mainly based on
sequence-to-sequence learning with neural networks. Some
of the most popular corpora in TS and KG literature are
presented in Table 1. One of the first big datasets was the
annotated English Gigaword (Napoles et al., 2012) used for
abstractive TS by Rush et al. (2015). It contains about nine
million news articles and headline summaries. Each head-
line was paired with the first sentence of the corresponding
article to create the training base for the experiments.
Newsroom (Grusky et al., 2018) is a very recent and het-
erogeneous bundle of about 1.3 million news articles. It
contains writings published from 1998 to 2017 by 38 ma-
jor newsrooms. Another recent dataset of news articles
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Reference Name Content # Docs
Napoles et al. (2012) Gigaword News 9 M
Grusky et al. (2018) Newsroom News 1.3 M
Nallapati et al. (2016) CNN/DM News 287 K
Hyperlink DUC-2004 News 500
Hulth (2003) Inspec Papers 2000
Krapivin et al. (2010) Krapivin Papers 2304
Kim et al. (2010) SemEval Papers 244
Meng et al. (2017) KP20k Papers 567 K
Nikolov et al. (2018) tit-gen Papers 900 K
Nikolov et al. (2018) abs-gen Papers 5 M

Table 1: Summary and keyword generation datasets

is CNN/Dailymail of Nallapati et al. (2016). It has be-
come the most popular corpus for text summarization ex-
periments. This dataset provides a rich collection of news
articles and the corresponding multi-sentence summaries
(news highlights). It is thus very suitable for training and
testing summarization models of longer texts. DUC-2004
is another dataset that was originally created for the Docu-
ment Understanding Conference.4 It has been mostly used
as an evaluation baseline, given its small size. It consists of
500 document-summary pairs curated by human experts.
Besides using news articles, it is also possible to exploit
texts of scientific articles for TS research. In fact, those
kinds of texts have been used since long ago to conduct KG
research. There are many relatively small datasets of scien-
tific publications and the corresponding keywords that have
been used for many years to test extractive or graph-based
KG methods. One of the most popular KG datasets is In-
spec released by Hulth (2003). It consists of 2000 paper
titles (1500 for training and 500 for testing), abstracts and
keywords from journals of Information Technology, pub-
lished from 1998 to 2002.
Krapivin et al. (2010) released another collection of papers
that has been frequently used in the literature. It consists
of 2304 computer science papers published by ACM from
2003 to 2005. The advantage of this dataset is the avail-
ability of the full paper texts together with the correspond-
ing metadata. A smaller dataset is SemEval of Kim et al.
(2010) that was originally created for the Semantic Evalua-
tion task. It contains 244 papers that belong to conference
and workshop proceedings.
A few years ago, Meng et al. (2017) released KP20k which
is today the most popular KG dataset. It contains 567830
Computer Science articles, 527830 used for training, 20 K
for validation and 20 K for testing. This dataset has been
used for training and comparing various recent abstractive
KG methods. Nikolov et al. (2018) raised the data sizes
even more by retrieving many scientific papers from li-
braries of biomedical research.5 The authors derived and
released two big (900 K and 5 M) corpora for TS (predict-
ing abstracts from paper bodies) and title generation (pre-
dicting titles from abstracts).
Crawling public digital libraries or websites for text re-

4https://duc.nist.gov/duc2004/
5https://www.nlm.nih.gov

Attribute Title Abstract
Total 449 M 6 B
Min / Max 3 / 25 50 / 400
Mean (Std) 13.1 (5.1) 182.2 (89.2)
Jindex 6.7 % (3.9 %)
Overlap 77 % (18 %)
Total size 34 408 509 title-abstracts

Table 2: Token statistics of OAGSX

Attribute Title Abstract Keywords
Total 290 M 4 B 270 M
Min / Max 3 / 25 50 / 400 2 / 60
Mean (Std) 12.8 (4.9) 175.1 (86.5) 11.9 (7.5)
Jindex 7.1 % (4 %) 6 % (4.8 %)
Overlap 78 % (17 %) 68 % (25 %)
Total size 22 674 436 title-abstract-keywords

Table 3: Token statistics of OAGKX

sources is an ongoing trend. ArnetMiner (Tang et al., 2008)
is an initiative to integrate scientific data (publications, re-
searcher profiles and more) from various resources in a
common and unified network. A derivative product is the
OAG data collection of scientific publications (Sinha et al.,
2015). Each record is a JSON line with publication meta-
data like authors, title, abstract, keywords, year and more.
In the following section, we describe the processing steps
we performed on OAG collection to derive OAGSX and
OAGKX datasets.

3. OAGSX and OAGKX Corpora
For producing large TS and KG text collections, we uti-
lized the text fields of the OAG bundle. From that same
article set, we filtered the records containing at least the ti-
tle and the abstract for OAGSX and those with the title,
abstract, and keywords for OAGKX. We dropped the du-
plicate entries in each of our two collections. As a result,
the samples inside each of the corpora are unique (there is
still overlapping between OAGSX and OAGKX samples,
since they were both derived from the OAG collection).
An automatic language identifier6 was used to remove the
records with abstracts not in English. We also cleared the
messy symbols and lowercased everything. Finally, Stan-
ford CoreNLP (Manning et al., 2014) was used to tokenize
the title and abstract texts.
After the preprocessing steps, we observed the size and to-
ken lengths of the records. Since there were many outliers
(e.g., records with very long or very short abstracts), we
removed all records with a title not in the range of 3-25
tokens and abstract not within 50-400 tokens. In the case
of OAGKX, we also removed samples with keyword string
not in the range of 2-60 tokens or 2-12 keywords. After
this, OAGSX was reduced to a total of about 34.4 million
records. OAGKX, on the other hand, shrank to about 22.6
million records.

6https://pypi.org/project/langid

https://duc.nist.gov/duc2004/
https://duc.nist.gov/duc2004/
https://www.nlm.nih.gov
https://pypi.org/project/langid
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Attribute Value
Total 133 295 056
Min / Max 2 / 12
Mean (Std) 5.9 (3.1)
Present 52.7 % (28.3 %)
Absent 47.3 % (28.3 %)

Table 4: Keyword statistics of OAGKX

Some further statistics of the two final datasets are pre-
sented in Tables 2 and 3. In the case of OAGSX, the average
title and abstract lengths are about 13.1 and 182.2 tokens
respectively (standard deviation is always given in paren-
thesis). The corresponding values in OAGKX are 12.8 and
175.1 (slightly lower). For OAGKX we also see that the
keyphrase strings contain 11.9 tokens on average. We also
wanted to observe the lexical similarity between the titles
and abstracts. One way for this is to compute the Jaccard
similarity (Jindex in Tables 2 and 3) of the whole token sets
using the following equation:

J(A,B) =
|T ∩A|
|T ∪A|

=
|T ∩A|

|T |+ |A| − |T ∩A|
(1)

where T is the set of unique tokens in the title and A is
the set of unique tokens in the abstract. In OAGSX, the
Jaccard similarity between abstracts and titles is 6.7 %. In
OAGKX, it is 7.1 % between the abstracts and titles and
6 % between abstracts and keyword strings. Another indi-
cator is the overlap o(s, t) = |{s}∩{t}|

|{t}| which represents
the fraction of unique target tokens t (e.g., in the title or
in the keyword string excluding punctuation symbols) that
overlap with a source token (e.g., in abstract) s. The over-
laps between titles and abstracts are very similar (77 % and
78 %) in both datasets. In the case of OAGKX, the overlap
between abstracts and keyword strings is 68 %.
We further analyzed the keyword distribution in OAGKX
(Table 4). There is a total of about 133 million keywords,
with an average of 5.9 keywords per article. In abstrac-
tive KG experiments, it is also important to know the distri-
bution of present and absent keywords. The present rate
p(s, k) = |k ∩ s|

|k| is the fraction of the keywords k that
also appear in the source text s. This is similar to the
overlap, with the difference that there might be token rep-
etitions within each counted keyword. The absent rate
a(s, k) = |k|−|k ∩ s|

|k| is its complement or the fraction of
keywords k that do not appear in the source text s. From
Table 4 we see that the present and absent keywords in
OAGKX are almost evenly distributed (52.7 % and 47.3 %
each). This observation is in line with that of Meng et al.
(2017), emphasizing once again the importance of the ab-
sent keywords.
Another interesting exploration we wanted to perform was
the identification of the topics (or research domains) in each
dataset record to report the corresponding statistics. This
could lead to the creation of many subsets of OAGSX and
OAGKX with scientific articles from more specific disci-
plines (clustering together the articles from the same re-
search direction). Unfortunately, topic modeling was not

easy to perform on OAGSX and OAGKX, given the huge
size of the two corpora and our limited computational re-
sources. It thus remains a potential future work.
We still inspected a few of the samples from each dataset
manually. Their texts mostly belong to papers from
biomedical disciplines but there are also papers about psy-
chology, geology, or various technical directions. To our
best knowledge, OAGSX and OAGKX are the largest avail-
able collections of scientific paper metadata that can be
used for TS and KG experiments. Their importance is thus
twofold: (i) They can supplement existing collections if
more training samples are required. (ii) They can serve as
sources for deriving article subsets of more specific scien-
tific disciplines or domains.

4. Evaluation Experiments
We tried various extractive and abstractive methods for TS
and KG on evaluation subsets from two corpora. In the fol-
lowing sections, we report the achieved performance scores
of the automatic evaluation process. We also illustrate the
output of each method with examples.

4.1. Title Generation
For the title generation experiments, we formed three eval-
uation subsets from OAGSX: a training set of 1 million
samples, a validation set of 10 thousand samples and a test
set of 10 thousand samples. To reduce the vocabulary size
(important for abstractive text summarizers), we further re-
placed number patterns with the # symbol in each of them.
The most simple and raw baseline we used is Random-k
(Random-1 in our case) which splits the source text into
sentences and randomly picks k of them as its summary.
In our case, since we are generating the title of the arti-
cles, we randomly pick only one of the abstract sentences
as the predicted title. Random-1 can be considered as the
lowest scoring boundary since it uses no intelligence at all.
Another popular baseline is Lead-k (Lead-1 in our case).
It is based on the concept of “summary lead”, which con-
cisely explains the main idea of a text in its first sentence or
first few sentences. Lead-1 picks the first sentence from the
source text to generate its title.
LexRank is a stochastic graph-based method for assessing
the importance of textual units in a source text (Erkan and
Radev, 2004). When used to perform extractive TS, it com-
putes the importance of those units using the concept of
eigenvector centrality in the graph. The top k units (the top
sentence in this case) are returned as the best summary of
the document.
One of the abstractive text summarizers we used is Point-
Cov of See et al. (2017) which is based on the encoder-
decoder framework. In each decoding step, it implements
the pointing/copying mechanism (Gu et al., 2016; Gulcehre
et al., 2016) to compute a generation probability. The latter
is used to decide whether the next word should be predicted
or directly copied from the source sequence. Another fea-
ture is the implementation of the coverage mechanism (Tu
et al., 2016a) which helps to avoid word repetitions in the
target sequence. We trained PointCov with a hidden layer
of 256 dimensions and word embeddings of 128 dimen-
sions.
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The other abstractive summarizer we picked is the Trans-
former model that represents one of the most important
achievements in sequence-to-sequence learning of the last
years (Vaswani et al., 2017). It is totally based on the at-
tention mechanism, removing all recurrent or convolutional
structures. Although it was primarily designed for MT,
the Transformer can also work for text summarization. It
basically learns the alignments between the input (source)
texts and the output (target) summaries. As documented
by Çano and Bojar (2019a), Transformer reveals the high-
est data efficiency scores on the popular TS datasets. We
used the Transformer model with four layers in both en-
coder and decoder blocks, 512 dimensions in each layer,
including the embedding layers, 200 K training steps, and
8000 warm-up steps. Both PointCov and Transformer were
trained with Adam optimizer (Kingma and Ba, 2014) us-
ing α = 0.001, β1 = 0.9, β2 = 0.999 and ε = 10−8 and
mini-batches of 16 training samples. We used two NVIDIA
GTX 1080Ti GPUs at once for the training process.

Random-1, Lead-1, and LexRank (the three extractive
methods) were directly applied in the test set of 10 thou-
sand examples. For PointCov and Transformer, we used
all the three evaluation subsets. ROUGE-1, ROUGE-2, and
ROUGE-L scores (Lin, 2004) were computed by compar-
ing the title outputs of each method with the titles of the
original papers. The results are presented in Table 5.

As we expected, Random-1 is the worst in all three ROUGE
scores. Lead-1 performs well, reaching a peak score of
33.8 % in ROUGE-1. It is actually slightly better than
LexRank in all the three metrics. Transformer and Point-
Cov, which are the two abstractive neural networks we
tried, perform better than the three extractive methods.
They achieve similar results, but the Transformer leads with
a peak score of 37.27 % in ROUGE-1. It is also important to
note that the three extractive methods took only a few min-
utes to produce the outputs. PointCov and Transformer, on
the other hand, required 3 – 4 days for the training.

An abstract, its author’s title, and the titles predicted by the
above five methods are illustrated in Table 6. As we can
see, all the methods have generated titles that are longer
than those of the authors. The titles of Lead-1 and LexRank
are very similar, both based on the first sentence of the ab-
stract. The transformer has produced a very long title with
an unfinished sentence. This problem could be fixed by us-
ing a lower value for the length of the target text. PointCov
has generated a shorter sentence than the Transformer, but
it is not very coherent.

Method R1 R2 RL

Random-1 22.67 8.02 18.44
Lead-1 33.83 16.8 28.14
LexRank 29.4 12.83 24.03
PointCov 36.12 18.88 30.21
Transformer 37.27 19.12 30.78

Table 5: Results on OAGSX

Abstract: the central bank ’s lender of last resort role
was developed by a series of authors in the very late
eighteenth and through the nineteenth centuries . it
was tested in practice in a number of countries and was
found to be effective in providing monetary stability in
the face of adverse shocks . there have recently been
attempts to broaden the role to make the central bank
responsible for the stability of asset markets , or for
protecting individual banks and there have recently also
been claims that an international lender of last resort is
necessary . this article considers and rejects these pro-
posed extensions to the classic lender of last resort role
Author’s title: the lender of last resort reconsidered
Random-1 title: this article considers and rejects these
proposed extensions to the classic lender of last resort
role
Lead-1 title: the central bank ’s lender of last resort
role was developed by a series of authors in the very
late eighteenth and through the nineteenth centuries
LexRank title: the central bank ’s lender of last resort
role was developed in the late eighteenth and through
the nineteenth centuries
PointCov title: the central bank ’s lender and its impli-
cations for the stability of asset comparative analysis
Transformer title: the central bank ’s lender of last
resort role and its implications for the stability of asset
markets : a comparative analysis of the central and in
the lender of the

Table 6: KE scores on OAGKX

Method F1@5 F1@7 F1@10
TopicRank 17.12 20.81 20.75
RAKE 16.36 18.84 18.91
Maui 24.58 23.49 23.6
CopyRNN 28.15 28.93 28.96
CovRNN 27.76 29.15 29.04

Table 7: KE scores on OAGKX

4.2. Keyphrase Generation
We ran similar experiments on three evaluation sets derived
from OAGKX: a training set of 631705 samples, a valida-
tion set of 10 thousand samples and a test set of 10 thousand
samples. Once again, we tried and compared both extrac-
tive and abstractive KG methods. We used TopicRank of
Bougouin et al. (2013) which is a popular graph-based ex-
tractive method that makes use of the PageRank algorithm
(Brin and Page, 1998). It first uses clustering to group lex-
ical units of the same topic. Then, it uses the graph-based
ranking algorithm to score each topic cluster that is formed.
At the end, one keyword is picked from each of the ranked
clusters.
RAKE proposed by Rose et al. (2010) is one of the
fastest available methods for extractive KG. It first removes
punctuation symbols together with the stop words of the
specified language and then creates a graph of word co-
occurrences. Candidate words or phrases are scored based
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Abstract: a complex polysaccharide accumulation was
observed in the central nervous system ( cns ) of rats
treated with d-penicillamine similar to lafora-like bod-
ies . they have histochemical similarities comparable to
bodies described in previous studies of lafora disease
. the clinical usefulness of d-penicillamine has been
limited by many side effects including renal damage
. it is suggested that , in addition to d-penicillamine
nephropathy , there are toxic effects of this drug on the
cns
Title: polysaccharide accumulation in the central ner-
vous system of d-penicillamine treated rats
Author’s keywords: polysaccharide , central nervous
system , side effect , d-penicillamine , lafora-like bod-
ies , nephropathy
TopicRank keywords: central nervous system , d-
penicillamine , accumulation , polysaccharide accumu-
lation , cns , d-penicillamine effect , drug , lafora bodies
, clinical , rats
RAKE keywords: clinical , polysaccharide , central
nervous , rats , polysaccharide accumulation , lafora
disease , renal damage , accumulation , lafora, cns
Maui keywords: central , central system , system , d-
penicillamine , polysaccharide accumulation , polysac-
charide , accumulation , lafora-like , lafora, bodies
CopyRNN keywords: central nervous , d-
penicillamine , side effect , side , newborn rats ,
rat ileostomy , pregnant rats, nephropathy , mortality
of rats , mortality
CovRNN keywords: side effect , central nervous ,
polysaccharide , rats , lafora bodies , polysaccharide ef-
fect , d-penicillamine , polysaccharide-derived , albino
rats , trinitrobenzene sulfonic acid

Table 8: KE scores on OAGKX

on the degree and frequency of each word vertex in the
graph. The k top-scoring candidates are returned as key-
words. We also used Maui (Medelyan, 2009), a supervised
extractive method that uses lexical features and bagged de-
cision trees to predict whether a candidate phrase is a key-
word or not.
CopyRNN (Meng et al., 2017) was the first abstractive KG
method based on the encoder-decoder framework. Authors
implemented the copying mechanism to balance between
extracting present phrases from the source text with the
generation of absent phrases. This work was followed by
several recent studies that improve KG with various ad-
ditional mechanisms. Finally, the last method we tried
is CovRNN (Zhang and Xiao, 2018) which is very simi-
lar to CopyRNN. It tries to avoid the repeated keywords
during generation by considering the correlation between
the produced keywords at each generation step. This is
achieved by implementing the coverage mechanism of Tu
et al. (2016b).
We applied TopicRank and RAKE on the test set of 10 thou-
sand records. Because of its memory limitations, Maui was
trained on the first 30 thousand samples from the training
set and tested on the test set. For CopyRNN and CovRNN,

we used the full sizes of the three evaluation sets. For the
comparison, we used F1 scores of the full matches between
the author’s keywords and the top k keywords returned by
each method. Given that each data sample has a variable-
length keyword string, we picked the values 5, 7 and 10 for
the k parameter. The obtained results are shown in Table 7.
The first thing we can notice from the results is the fact
that F1@7 and F1@10 scores are very similar to each other
in each case. This is probably because few data samples
contain more than 7 keywords in their keyword string (the
average was 5.9). We also see that CopyRNN and Cov-
RNN perform significantly better than the first three extrac-
tive methods. They achieve very similar scores in the three
metrics. The peak score of 29.15 % is reached by Cov-
RNN on F1@7. From the three extractive methods, Maui
performs better than the other two. TopicRank performs
slightly better than RAKE. Once again, the training of the
abstractive methods based on neural networks took about 3
days whereas the results of the extractive approaches (with
the exception of Maui which was trained in few hours) were
obtained in few minutes.
The source texts and the produced keywords (top ten) of
a data sample are shown in Table 8. Apparently, both ex-
tractive and abstractive predictions are grammatically cor-
rect. However, few of the generations represent full key-
word matches. There is also a considerable number of par-
tial matches. The first four methods have produced cer-
tain word repetitions. We can also observe some “novel”
(thou incorrect) phrases like “mortality of rats” or “trini-
trobenzene sulfonic acid” that are produced by CopyRNN
and CovRNN.

5. Conclusion
Today, we can find uncountable research article data that
are freely available in digital libraries. Many relatively
small collections of those data are frequently used to run
text summarization and keyword generation experiments.
In this paper, we described the steps we followed to process
Open Academic Graph data and prepare two huge corpora:
OAGSX of more than 34 million abstracts and titles that
can be used for text summarization and OAGKX of about
23 million abstracts, titles, and keyword strings that can be
used for keyword generation. To our best knowledge, these
corpora of scientific paper metadata are the biggest freely
available online. We also performed several experiments
applying extractive and abstractive TS and KG methods on
their subsets to help establish performance benchmarks that
could be valuable to other researchers. In the future, we
plan to apply topic modeling on the two collections for de-
riving many subsets of research articles from more specific
scientific disciplines.
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Çano, E. and Bojar, O. (2019a). Efficiency metrics for
data-driven models: A text summarization case study.
In Proceedings of the 12th International Conference on
Natural Language Generation, pages 229–239, Tokyo,
Japan, October–November. Association for Computa-
tional Linguistics.
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