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Abstract

We present an extensive evaluation of three

recently proposed methods for contextualized

embeddings on 89 corpora in 54 languages

of the Universal Dependencies 2.3 in three

tasks: POS tagging, lemmatization, and de-

pendency parsing. Employing the BERT,

Flair and ELMo as pretrained embedding in-

puts in a strong baseline of UDPipe 2.0,

one of the best-performing systems of the

CoNLL 2018 Shared Task and an overall win-

ner of the EPE 2018, we present a one-to-

one comparison of the three contextualized

word embedding methods, as well as a com-

parison with word2vec-like pretrained em-

beddings and with end-to-end character-level

word embeddings. We report state-of-the-art

results in all three tasks as compared to results

on UD 2.2 in the CoNLL 2018 Shared Task.

1 Introduction

We publish a comparison and evaluation of three

recently proposed contextualized word embedding

methods: BERT (Devlin et al., 2018), Flair (Akbik

et al., 2018) and ELMo (Peters et al., 2018), in 89

corpora which have a training set in 54 languages

of the Universal Dependencies 2.3 in three tasks:

POS tagging, lemmatization and dependency pars-

ing. Our contributions are the following:

• Meaningful massive comparative evaluation

of BERT (Devlin et al., 2018), Flair (Akbik

et al., 2018) and ELMo (Peters et al., 2018)

contextualized word embeddings, by adding

them as input features to a strong baseline of

UDPipe 2.0, one of the best performing sys-

tems in the CoNLL 2018 Shared Task (Ze-

man et al., 2018) and an overall winner of the

EPE 2018 Shared Task (Fares et al., 2018).

• State-of-the-art results in POS tagging,

lemmatization and dependency parsing in

UD 2.2, the dataset used in CoNLL 2018

Shared Task (Zeman et al., 2018).

• We report our best results on UD 2.3. The

addition of contextualized embeddings im-

provements range from 25% relative error re-

duction for English treebanks, through 20%

relative error reduction for high resource lan-

guages, to 10% relative error reduction for all

UD 2.3 languages which have a training set.

2 Related Work

A new type of deep contextualized word repre-

sentation was introduced by Peters et al. (2018).

The proposed embeddings, called ELMo, were ob-

tained from internal states of deep bidirectional

language model, pretrained on a large text corpus.

Akbik et al. (2018) introduced analogous contex-

tual string embeddings called Flair, which were

obtained from internal states of a character-level

bidirectional language model. The idea of ELMos

was extended by Devlin et al. (2018), who instead

of a bidirectional recurrent language model em-

ploy a Transformer (Vaswani et al., 2017) archi-

tecture.

The Universal Dependencies1 project (Nivre

et al., 2016) seeks to develop cross-linguistically

consistent treebank annotation of morphology and

syntax for many languages. The latest version

UD 2.3 (Nivre et al., 2018) consists of 129 tree-

banks in 76 languages, with 89 of the treebanks

containing a train a set and being freely available.

The annotation consists of UPOS (universal POS

tags), XPOS (language-specific POS tags), Feats

(universal morphological features), Lemmas, de-

pendency heads and universal dependency labels.

In 2017 and 2018, CoNLL Shared Tasks Mul-

tilingual Parsing from Raw Text to Universal De-

pendencies (Zeman et al., 2017, 2018) were held

in order to stimulate research in multi-lingual POS

1
https://universaldependencies.org/
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Figure 1: UDPipe 2.0 architecture overview.

tagging, lemmatization and dependency parsing.

The system of Che et al. (2018) is one of the

three winners of the CoNLL 2018 Shared Task.

The authors employed manually trained ELMo-

like contextual word embeddings, reporting 7.9%

error reduction in LAS parsing performance.

3 Methods

Our baseline is the UDPipe 2.0 (Straka, 2018)

participant system from the CoNLL 2018 Shared

Task (Zeman et al., 2018). The system is avail-

able at http://github.com/CoNLL-UD-2018/

UDPipe-Future.

A graphical overview of the UDPipe 2.0 is

shown in Figure 1. In short, UDPipe 2.0 is a multi-

task model predicting POS tags, lemmas and de-

pendency trees jointly. After embedding input

words, two shared bidirectional LSTM (Hochre-

iter and Schmidhuber, 1997) layers are performed.

Then, tagger and lemmatizer specific bidirectional

LSTM layer is executed, with softmax classi-

fiers processing its output and generating UPOS,

XPOS, Feats and Lemmas. The lemmas are gen-

erated by classifying into a set of edit scripts which

process input word form and produce lemmas by

performing character-level edits on the word pre-

fix and suffix. The lemma classifier additionally

takes the character-level word embeddings as in-

put.

Finally, the output of the two shared LSTM lay-

ers is processed by a parser specific bidirectional

LSTM layer, whose output is then passed to a bi-

affine attention layer (Dozat and Manning, 2016)

producing labeled dependency trees. We refer the

readers for detailed treatment of the architecture

and the training procedure to Straka (2018).

The simplest baseline system uses only end-to-

end word embeddings trained specifically for the

task. Additionally, the UDPipe 2.0 system also

employs the following two embeddings:

• word embeddings (WE): We use FastText

word embeddings (Bojanowski et al., 2017)

of dimension 300, which we pretrain for each

language on Wikipedia using segmentation

and tokenization trained from the UD data.2

• character-level word embeddings (CLE):

We employ bidirectional GRUs of dimension

256 in line with Ling et al. (2015): we rep-

resent every Unicode character with a vec-

tor of dimension 256, and concatenate GRU

output for forward and reversed word char-

acters. The character-level word embeddings

are trained together with UDPipe network.

Optionally, we add pretrained contextual word

embeddings as another input to the neural net-

work. Contrary to finetuning approach used by the

BERT authors (Devlin et al., 2018), we never fine-

tune the embeddings.

• BERT (Devlin et al., 2018): We employ

three pretrained models of dimension 768:3

an English one for the English treebanks

(Base Uncased), a Chinese one for Chi-

nese and Japanese treebanks (Base Chinese)

and a multilingual one (Base Multilingual

Uncased) for all other languages. We pro-

duce embedding of a UD word as an average

of BERT subword embeddings this UD word

2We use -minCount 5 -epoch 10 -neg 10 options and
keep at most one million most frequent words.

3From https://github.com/google-research/bert.

http://github.com/CoNLL-UD-2018/UDPipe-Future
http://github.com/CoNLL-UD-2018/UDPipe-Future
https://github.com/google-research/bert


WE CLE Bert UPOS XPOS UFeats Lemma UAS LAS MLAS BLEX

90.14 88.51 86.50 88.64 79.43 73.55 56.52 60.84

WE 94.91 93.51 91.89 92.10 85.98 81.73 68.47 70.64

CLE 95.75 94.69 93.43 96.24 86.99 82.96 71.06 75.78

WE CLE 96.39 95.53 94.28 96.51 87.79 84.09 73.30 77.36

Base 96.35 95.08 93.56 93.29 89.31 85.69 74.11 75.45

WE Base 96.62 95.54 94.08 93.77 89.49 85.96 74.94 76.27

CLE Base 96.86 95.96 94.85 96.64 89.76 86.29 76.20 79.87

WE CLE Base 97.00 96.17 94.97 96.66 89.81 86.42 76.54 80.04

Table 1: BERT Base compared to word embeddings (WE) and character-level word embeddings (CLE). Results

for 72 UD 2.3 treebanks with train and development sets and non-empty Wikipedia.

Language Bert UPOS XPOS UFeats Lemma UAS LAS MLAS BLEX

English Base 97.38 96.97 97.22 97.71 91.09 88.22 80.48 82.38

English Multi 97.36 96.97 97.29 97.63 90.94 88.12 80.43 82.22

Chinese Base 97.07 96.89 99.58 99.98 90.13 86.74 79.67 83.85

Chinese Multi 96.27 96.25 99.37 99.99 87.58 83.96 76.26 81.04

Japanese Base 98.24 97.89 99.98 99.53 95.55 94.27 87.64 89.24

Japanese Multi 98.17 97.71 99.99 99.51 95.30 93.99 87.17 88.77

Table 2: Comparison of multilingual and language-specific BERT models on 4 English treebanks (each experiment

repeated 3 times), and on Chinese-GSD and Japanese-GSD treebanks.

was decomposed into, and we average the last

four layers of the BERT model.

• Flair (Akbik et al., 2018): Pretrained contex-

tual word embeddings of dimension 4096 for

available languages.4

• ELMo (Peters et al., 2018): Pretrained con-

textual word embeddings of dimension 512,

available only for English.

We evaluate the metrics defined in Zeman et al.

(2018) using the official evaluation script.5 When

reporting results for multiple treebanks, we com-

pute macro-average of their scores (following the

CoNLL 2018 Shared Task).

4 Results

Table 1 displays results for 72 UD 2.3 treebanks

with train and development sets and non-empty

Wikipedia (raw corpus for the WE), considering

WE, CLE and Base BERT embeddings. Both

WE and CLE bring substantial performance boost,

with CLE providing larger improvements, espe-

cially for lemmatization and morphological fea-

4Models available in Jan 2018, for languages bg, cs, de,
en, fr, nl, pl, pt, sl, sv.

5
http://universaldependencies.org/conll18/

conll18_ud_eval.py

tures. Combining WE and CLE shows that the

improvements are complementary and using both

embeddings yields further increase.

Employing only the BERT embeddings results

in significant improvements, compared to both

WE and CLE individually, with highest increase

for syntactic parsing, less for morphology and

worse performance for lemmatization than CLE.

Considering BERT versus WE+CLE, BERT offers

higher parsing performance, comparable UPOS

accuracy, worse morphological features and sub-

stantially lower lemmatization performance. We

therefore conclude that the representation com-

puted by BERT captures higher-level syntactic and

possibly even semantic meaning, while provid-

ing less information about morphology and ortho-

graphical composition required for lemmatization.

Combining BERT and CLE results in an in-

creased performance, especially for morphologi-

cal features and lemmatization. The addition of

WE provides minor improvements in all metrics,

suggesting that the BERT embeddings encompass

substantial amount of information which WE adds

to CLE. In total, adding BERT embeddings to a

baseline with WE and CLE provides a 16.9% rel-

ative error reduction for UPOS tags, 12% for mor-

http://universaldependencies.org/conll18/conll18_ud_eval.py
http://universaldependencies.org/conll18/conll18_ud_eval.py


WE CLE Bert Flair UPOS XPOS UFeats Lemmas UAS LAS MLAS BLEX

92.77 89.59 88.88 91.52 82.59 77.89 61.52 65.89

WE 96.63 94.48 94.01 94.82 88.55 85.25 73.38 75.74

CLE 96.80 95.11 94.64 97.31 88.88 85.51 74.37 78.87

WE CLE 97.32 95.88 95.44 97.62 89.55 86.46 76.42 80.36

Base 97.49 95.68 95.17 95.45 91.48 88.69 78.61 80.14

WE Base 97.65 96.11 95.58 95.86 91.59 88.84 79.30 80.79

CLE Base 97.79 96.45 95.94 97.75 91.74 88.98 79.97 83.43

WE CLE Base 97.89 96.58 96.09 97.78 91.80 89.09 80.30 83.59

Flair 97.69 96.22 95.69 96.49 90.43 87.57 77.91 80.06

WE Flair 97.77 96.37 95.87 96.62 90.53 87.69 78.37 80.37

CLE Flair 97.72 96.40 95.94 97.77 90.58 87.74 78.47 81.94

WE CLE Flair 97.76 96.50 96.06 97.85 90.66 87.83 78.73 82.16

WE CLE Base Flair 98.00 96.80 96.30 97.87 91.92 89.32 80.78 83.96

Table 3: Flair compared to word embeddings (WE), character-level word embeddings (CLE) and BERT Base.

phological features, 4.3% for lemmatization, and

14.5% for labeled dependency parsing.

The influence of multilingual and language-

specific BERT models is analyzed in Table 2. Sur-

prisingly, averaged results of the four English tree-

banks show very little decrease when using the

multilingual BERT model compared to English-

specific one, most likely owing to the fact that

English is the largest language used to train the

multilingual model. Contrary to English, the

Chinese BERT model shows substantial improve-

ments compared to a multilingual model when uti-

lized on the Chinese-GSD treebank, and minor im-

provements on the Japanese-GSD treebank.

Note that according to the above comparison,

the substantial improvements offered by BERT

embeddings can be achieved using a single multi-

lingual model, opening possibilities for interesting

language-agnostic approaches.

4.1 Flair

Table 3 shows the experiments in which WE, CLE,

Flair and BERT embeddings are added to the base-

line, averaging results for 23 UD 2.3 treebanks for

which the Flair embeddings were available.

Comparing Flair and BERT embeddings, the

former demonstrates higher performance in POS

tagging, morphological features, and lemmati-

zation, while achieving worse results in depen-

dency parsing, suggesting that Flair embeddings

capture more morphological and orthographical

information. A comparison of Flair+WE+CLE

with BERT+WE+CLE shows that the introduc-

tion of WE+CLE embeddings to BERT encom-

passes nearly all information of Flair embeddings,

as demonstrated by BERT+WE+CLE achieving

better performance in all tasks but lemmatization,

where it is only slightly behind Flair+WE+CLE.

The combination of all embeddings produces

best results in all metrics. In total, addition of

BERT and Flair embeddings to a baseline with

WE and CLE provides a 25.4% relative error re-

duction for UPOS tags, 18.8% for morphological

features, 10% for lemmatization and 21% for la-

beled dependency parsing.

4.2 ELMo

Given that pretrained ELMo embeddings are avail-

able for English only, we present results for

ELMo, Flair, and BERT contextualized embed-

dings on four macro-averaged English UD 2.3

treebanks in Table 4.

Flair and BERT results are consistent with

the previous experiments. Employing solely

ELMo embeddings achieves best POS tagging

and lemmatization compared to using only BERT

or Flair, with dependency parsing performance

higher than Flair, but lower than BERT. Therefore,

ELMo embeddings seem to encompass the most

morphological and ortographical features com-

pared to BERT and Flair, more syntactical features

than Flair, but less than BERT.

When comparing ELMo with Flair+WE+CLE,

the former surpass the latter in all metrics but

lemmatization (and lemmatization performance

is equated when employing ELMo+WE+CLE).



WE CLE Bert Flair Elmo UPOS XPOS UFeats Lemmas UAS LAS MLAS BLEX

92.31 91.18 92.11 93.67 82.16 77.27 63.00 66.20

WE 95.69 95.30 96.15 96.27 86.98 83.59 73.29 75.40

CLE 95.50 95.04 95.65 97.06 86.86 83.10 72.60 75.53

WE CLE 96.33 95.86 96.44 97.32 87.83 84.52 75.08 77.65

Base 96.88 96.46 96.94 96.18 90.98 87.98 79.66 79.94

WE Base 97.04 96.66 97.07 96.38 91.19 88.20 80.08 80.41

CLE Base 97.21 96.82 97.08 97.61 91.23 88.32 80.42 82.38

WE CLE Base 97.38 96.97 97.22 97.70 91.09 88.22 80.48 82.38

Flair 96.88 96.45 96.99 97.01 89.50 86.42 78.03 79.36

WE Flair 97.06 96.56 97.03 97.12 89.68 86.67 78.55 79.85

CLE Flair 97.00 96.52 97.04 97.57 89.75 86.72 78.56 80.56

WE CLE Flair 97.02 96.55 97.12 97.63 89.67 86.64 78.41 80.48

Elmo 97.23 96.83 97.25 97.13 90.15 87.26 79.47 80.49

WE Elmo 97.24 96.84 97.28 97.12 90.25 87.34 79.49 80.57

CLE Elmo 97.21 96.81 97.23 97.62 90.22 87.30 79.51 81.32

WE CLE Elmo 97.21 96.82 97.27 97.63 90.33 87.42 79.66 81.50

WE CLE Base Flair 97.45 97.08 97.36 97.76 91.25 88.45 80.94 82.79

WE CLE Base Elmo 97.42 97.05 97.41 97.68 91.09 88.26 80.81 82.48

WE CLE Base Flair Elmo 97.44 97.08 97.43 97.67 91.08 88.28 80.76 82.47

Table 4: ELMo, Flair and BERT contextualized word embeddings for four macro-averaged English UD 2.3 tree-

banks. All experiments were performed three times and averaged.

System UPOS XPOS UFeats Lemmas UAS LAS MLAS BLEX

UDPipe 2.0 WE+CLE 95.84 94.96 94.24 95.89 85.53 82.11 72.12 75.74
UDPipe 2.0 WE+CLE+BERT 96.23 95.43 94.74 96.03 87.33 84.20 75.15 78.30
UDPipe 2.0 WE+CLE+BERT 3-model ensemble 96.32 95.55 94.90 96.16 87.64 84.60 75.76 78.88

Original UDPipe 2.0 ST entry (Straka, 2018) 95.73 94.79 94.11 95.12 85.28 81.83 71.71 74.67

HIT-SCIR Harbin (Che et al., 2018) 3-model ensemble 96.23 95.16 91.20 93.42 87.61 84.37 70.12 75.05

HIT-SCIR Harbin (Che et al., 2018) w/o ensembling 83.75

Stanford (Qi et al., 2018) 95.93 94.95 94.14 95.25 86.56 83.03 72.67 75.46

TurkuNLP (Kanerva et al., 2018) 95.41 94.47 93.82 96.08 85.32 81.85 71.27 75.83

Table 5: CoNLL 2018 UD Shared Task results on treebanks with development sets (so called big treebanks in the

shared task).

Furthermore, morphological feature gener-

ation performance of ELMo is better than

BERT+WE+CLE. These results indicate that

ELMo capture a lot of information present in

WE+CLE, which is further promoted by the

fact that ELMo+WE+CLE shows very little

improvements compared to ELMo only (with the

exception of lemmatization profiting from CLE).

Overall, the best-performing model on English

treebanks is BERT+Flair+WE+CLE, with the ex-

ception of morphological features, where ELMo

helps marginally. The relative error reduction

compared to WE+CLE range from 30.5% for

UPOS tagging, 26% for morphological features,

16.5% for lemmatization and 25.4% for labeled

dependency parsing.

4.3 CoNLL 2018 Shared Task Results

Given that the inputs in the CoNLL 2018 Shared

Task are raw texts, we reuse tokenization and

segmentation employed by original UDPipe 2.0.

Also, we pretrain WE not only on Wikipedia,

but on all plaintexts provided by the shared tasks

organizers. The resulting F1 scores of UDPipe

2.0 WE+CLE and WE+CLE+BERT on treebanks

with development sets (so called big treebanks in

the shared task) are presented in Table 5.

The inclusion of BERT embeddings results

in state-of-the-art single-model performance in

UPOS, XPOS, UFeats, MLAS, and BLEX met-



rics, and state-of-the-art ensemble performance in

all metrics.

4.4 BERT and Flair Improvement Levels

To investigate which languages benefit most from

BERT embeddings, Figure 2 presents relative er-

ror reductions in UPOS tagging, lemmatization,

and unlabeled and labeled dependency parsing,

as a function of logarithmic size of the respec-

tive Wikipedia (which corresponds to the size of

BERT Multilingual model training data). The

results indicate that consistently with intuition,

larger amount of data used to pretrain the BERT

model leads to higher performance.

To compare BERT and Flair embeddings,

Figure 3 displays relative error improvements

of Flair+WE+CLE, BERT+WE+CLE and

BERT+Flair+WE+CLE models compared to

WE+CLE, this time as a function of logarithmic

training data size. Generally the relative error

reduction decrease with the increasing amount

of training data. Furthermore, the difference

between Flair and BERT is clearly visible, with

BERT excelling in dependency parsing and Flair

in lemmatization.

4.5 UD 2.3 Detailed Performance

Table 6 shows a detailed evaluation of all 89

freely available UD 2.3 treebanks with a train

set, comparing the WE+CLE baseline to the best

performing WE+CLE+BERT+Flair (where Flair

available) model.

The evaluation includes also 13 treebanks

whose languages are not part of BERT Multilin-

gual model. For these treebanks, the effect of us-

ing BERT embeddings is mixed, as can be ob-

served in the Table 6 indicating which UD lan-

guages were not part of BERT training. UPOS

tagging, unlabeled and labeled dependency pars-

ing profits from BERT embedding utilization, with

averaged relative error reduction of 3.8%, 2%, and

0.8%, respectively. On the other hand, lemmatiza-

tion performance deteriorates, with −2.2% aver-

aged relative error reduction.

Averaged across all treebanks, relative error im-

provement of BERT+Flair embeddings inclusion

is 15% for UPOS tagging, 2.4% for lemmatization

and 11.5% for labeled dependency parsing.

5 Conclusions

We presented a thorough evaluation of the BERT,

Flair, and ELMo contextualized embeddings in 89

languages of the UD in POS tagging, lemmatiza-

tion, and dependency parsing. We conclude that

addition of any of the contextualized embeddings

as additional inputs to a neural network results

in substantial performance increase. Our findings

show that the BERT embeddings yield the greatest

improvements, reaching state-of-the-art results in

CoNLL 2018 Shared Task and contain most com-

plementary information as compared to word- and

character-level word embeddings, while Flair em-

beddings encompass the morphological and ortho-

graphical information.
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Figure 2: Relative error improvements on UD 2.3 treebanks which have a training set and their language is included

in BERT model. The baseline model uses WE and CLE, and the improved model also uses BERT Multilingual

contextualized embeddings. The value on the x-axis is the logarithmic size of the corresponding Wikipedia, which

corresponds to training data size of the BERT Multilingual model.
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Figure 3: Relative error improvements of the baseline with WE+CLE and a model additionally including Flair

and/or BERT Multilingual contextual embeddings. The value on the x-axis is the logarithmic UD train data size.



Language
BERT UDPipe 2.0 with WE+CLE UDPipe 2.0 with WE+CLE+BERT+Flair where available
Train UPOS XPOS UFeats Lemmas UAS LAS MLAS BLEX UPOS XPOS UFeats Lemmas UAS LAS MLAS BLEX

Afrikaans-AfriBooms 98.25 94.48 97.66 97.46 89.38 86.58 77.66 77.82 98.73 95.82 98.49 97.60 90.71 88.35 81.14 80.17

Ancient Greek-PROIEL ✗ 97.86 98.08 92.44 93.51 85.93 82.11 67.16 71.22 97.75 97.99 92.29 93.26 85.87 82.08 66.89 70.68

Ancient Greek-Perseus ✗ 93.27 86.22 91.39 85.02 78.85 73.54 53.87 53.19 92.95 85.46 90.94 84.59 78.55 72.96 52.92 52.62
Arabic-PADT 96.83 93.97 94.11 95.28 87.54 82.94 73.92 75.87 96.98 94.57 94.72 95.43 89.01 84.62 76.28 77.81

Armenian-ArmTDP 93.49 — 82.85 92.86 78.62 71.27 48.11 60.11 95.30 — 86.89 93.61 82.86 76.60 56.15 65.53

Basque-BDT 96.11 — 92.48 96.29 86.11 82.86 72.33 78.54 96.48 — 93.32 96.43 87.63 84.50 74.91 80.10

Belarusian-HSE 93.63 89.80 73.30 87.34 78.58 72.72 46.20 58.28 96.24 93.27 79.67 89.22 88.49 83.21 58.44 69.11

Bulgarian-BTB 98.98 97.00 97.82 97.94 93.38 90.35 83.63 84.42 99.20 97.57 98.22 98.25 95.34 92.62 87.00 87.59

Buryat-BDT ✗ 40.34 — 32.40 58.17 32.60 18.83 1.26 6.49 45.50 — 33.49 57.42 35.88 18.28 1.48 5.82
Catalan-AnCora 98.88 98.88 98.37 99.07 93.22 91.06 84.48 86.18 99.06 99.06 98.60 99.25 94.49 92.74 87.36 88.90

Chinese-GSD 94.88 94.72 99.22 99.99 84.64 80.50 71.04 76.78 97.07 96.89 99.58 99.98 90.13 86.74 79.67 83.85

Coptic-Scriptorium ✗ 94.72 93.52 96.27 95.53 85.69 81.08 64.65 68.65 94.55 93.15 96.44 95.73 85.10 80.52 65.16 68.81

Croatian-SET 98.13 — 92.25 97.27 91.10 86.78 73.61 81.19 98.45 — 93.27 97.64 93.20 89.35 77.08 84.44

Czech-CAC 99.37 96.66 96.34 98.57 92.99 90.71 84.30 87.18 99.44 96.94 96.62 98.73 93.59 91.50 85.84 88.47

Czech-CLTT 98.88 91.18 91.59 98.25 86.90 84.03 71.63 79.20 99.32 92.67 92.88 98.22 89.59 87.01 75.53 82.13

Czech-FicTree 98.55 95.04 95.87 98.63 92.91 89.75 81.04 85.49 98.82 96.16 96.88 98.84 94.34 91.87 84.80 88.16

Czech-PDT 99.18 97.28 97.23 99.02 93.33 91.31 86.15 88.60 99.34 97.71 97.67 99.12 94.43 92.56 88.09 90.22

Danish-DDT 97.78 — 97.33 97.52 86.88 84.31 76.29 78.51 98.21 — 97.77 97.72 89.32 87.24 80.58 81.93

Dutch-Alpino 96.83 94.80 96.33 97.09 91.37 88.38 77.28 79.82 97.55 95.87 97.34 97.28 94.12 91.78 83.12 84.42

Dutch-LassySmall 96.50 95.08 96.42 97.41 90.20 86.39 77.19 78.83 96.87 95.91 96.97 97.55 93.07 89.88 82.00 83.26

English-EWT 96.29 96.10 97.10 98.25 89.63 86.97 79.00 82.36 97.59 97.41 97.82 98.84 92.50 90.40 84.41 87.03

English-GUM 96.02 95.90 96.82 96.85 87.27 84.12 73.51 74.68 96.93 96.73 97.59 97.22 91.47 88.80 80.14 80.62

English-LinES 96.91 95.62 96.31 96.45 84.15 79.71 71.38 73.22 97.86 96.94 97.48 96.87 87.28 83.48 77.45 78.36

English-ParTUT 96.10 95.83 95.51 97.74 90.29 87.27 76.44 80.33 97.43 97.25 96.54 98.09 93.75 91.12 81.74 85.13

Estonian-EDT 97.64 98.27 96.23 95.30 88.00 85.18 78.72 78.51 97.83 98.36 96.42 95.44 89.46 86.77 80.62 80.17

Finnish-FTB 96.65 95.39 96.62 95.49 90.68 87.89 80.58 81.18 96.97 95.61 96.73 95.57 91.68 89.02 82.25 82.69

Finnish-TDT 97.45 98.12 95.43 91.45 89.88 87.46 80.43 76.64 97.57 98.24 95.80 91.68 91.66 89.49 82.89 78.57

French-GSD 97.63 — 97.13 98.35 90.65 88.06 79.76 82.39 97.98 — 97.42 98.43 92.55 90.31 82.66 85.09

French-ParTUT 96.93 96.47 94.43 95.70 92.17 89.63 75.22 78.07 97.64 97.35 95.12 96.06 94.51 92.47 80.50 82.19

French-Sequoia 98.79 — 98.09 98.57 92.37 90.73 84.51 85.93 99.32 — 98.62 98.89 94.88 93.81 89.10 90.08

French-Spoken 95.91 97.30 — 96.92 82.90 77.53 68.24 69.47 97.23 97.48 — 96.75 86.27 81.40 73.26 73.36

Galician-CTG 97.84 97.47 99.83 98.58 86.44 83.82 72.46 77.21 98.06 97.70 99.83 98.81 86.94 84.43 73.72 78.33

Galician-TreeGal 95.82 92.46 93.96 97.06 82.72 77.69 63.73 68.89 97.30 95.01 96.03 97.71 86.62 82.62 72.29 76.24

German-GSD 94.48 97.31 90.68 96.80 85.53 81.07 58.82 72.13 95.18 97.95 91.72 96.77 88.11 84.06 63.33 75.44

Gothic-PROIEL ✗ 96.66 97.23 90.77 94.72 85.27 79.60 66.71 72.86 96.72 97.22 90.58 94.47 85.53 79.69 66.86 72.52
Greek-GDT 97.98 97.99 94.96 95.82 92.10 89.79 78.60 79.72 98.25 98.25 95.76 95.88 93.92 92.16 82.29 82.14

Hebrew-HTB 97.02 97.03 95.87 97.12 89.70 86.86 75.52 78.14 97.50 97.50 96.18 97.24 91.78 89.22 78.85 80.80

Hindi-HDTB 97.52 97.04 94.15 98.67 94.85 91.83 78.49 86.83 97.58 97.19 94.24 98.67 95.56 92.50 79.32 87.66

Hungarian-Szeged 95.76 — 91.75 95.05 84.04 79.73 67.63 73.63 97.09 — 93.41 95.44 88.76 85.12 74.08 79.21

Indonesian-GSD 93.69 94.19 95.58 99.64 85.31 78.99 67.74 76.38 94.09 94.93 96.03 99.66 86.47 80.40 70.01 78.19

Irish-IDT 92.72 91.44 82.43 90.48 80.39 72.34 46.49 55.32 93.22 92.00 83.78 90.56 81.43 73.47 49.05 56.50

Italian-ISDT 98.39 98.30 98.11 98.66 93.49 91.54 84.28 85.49 98.62 98.54 98.26 98.78 94.97 93.38 87.14 88.10

Italian-ParTUT 98.38 98.35 97.77 98.16 92.64 90.47 81.87 82.99 98.54 98.52 98.05 98.24 95.36 93.38 86.57 87.30

Italian-PoSTWITA 96.61 96.43 96.90 97.00 86.03 81.78 72.88 74.33 97.11 96.98 97.12 97.27 87.25 83.07 74.70 76.27

Japanese-GSD 98.13 97.81 99.98 99.52 95.06 93.73 86.37 88.04 98.24 97.89 99.98 99.53 95.55 94.27 87.64 89.24

Kazakh-KTB 55.84 52.06 40.40 63.96 53.30 33.38 4.82 15.10 63.08 60.63 43.64 64.03 57.02 38.72 7.88 18.78

Korean-GSD 96.29 90.39 99.77 93.40 87.70 84.24 79.74 76.35 96.99 91.21 99.83 93.72 89.38 86.05 82.19 78.58

Korean-Kaist 95.59 87.00 — 94.30 88.42 86.48 80.72 79.22 95.77 87.46 — 94.15 89.35 87.54 82.12 80.18

Kurmanji-MG ✗ 53.38 51.42 41.53 69.58 45.22 34.32 2.74 19.39 58.78 56.11 42.03 68.21 43.74 32.99 3.10 17.98

Latin-ITTB 98.34 96.37 96.97 98.99 91.06 88.80 82.35 85.71 98.42 96.45 97.05 99.03 91.25 89.10 82.80 86.05

Latin-PROIEL 97.01 97.15 91.53 96.32 83.34 78.66 67.40 73.65 97.15 97.21 91.54 96.18 83.34 78.70 67.29 73.52
Latin-Perseus 88.40 74.58 79.10 81.45 71.20 61.28 41.58 45.09 89.96 76.22 80.43 81.95 74.39 64.68 44.96 47.94

Latvian-LVTB 96.11 88.69 93.01 95.46 87.20 83.35 71.92 76.64 96.11 89.06 93.30 95.76 88.05 84.50 73.81 78.33

Lithuanian-HSE 81.70 79.91 60.47 76.89 51.98 42.17 18.17 28.70 88.77 86.04 66.70 76.89 64.53 54.53 26.35 34.76

Maltese-MUDT ✗ 95.99 95.69 — — 84.65 79.71 66.75 71.49 96.15 95.85 — — 85.31 80.10 67.21 71.62

Marathi-UFAL 80.10 — 67.23 81.31 70.63 61.41 29.34 45.87 83.50 — 67.96 81.31 68.45 60.44 29.58 43.75

North Sami-Giella ✗ 92.61 93.78 90.00 88.34 78.39 73.60 62.29 61.45 92.76 94.11 89.83 88.25 78.47 73.95 62.47 61.68

Norwegian-Bokmaal 98.31 — 97.14 98.64 92.39 90.49 84.06 86.53 98.59 — 97.54 98.72 93.78 92.19 86.72 88.60

Norwegian-Nynorsk 93.87 — 91.57 96.06 80.09 75.04 63.72 68.22 95.52 — 93.17 96.59 82.64 78.08 67.53 71.75

Norwegian-NynorskLIA 89.59 — 86.13 93.93 68.08 60.07 44.47 50.98 92.53 — 88.96 94.73 71.42 64.12 49.10 55.36

Old Church Slavonic-PROIEL ✗ 96.89 97.16 90.72 93.07 89.64 84.99 73.66 77.71 96.96 97.13 90.45 92.91 89.88 85.21 73.77 77.88

Old French-SRCMF ✗ 96.09 96.00 97.82 — 91.75 86.82 79.89 83.81 96.26 96.21 97.89 — 91.83 86.75 79.79 83.55

Persian-Seraji 97.75 97.70 97.78 97.44 90.05 86.66 81.23 80.93 98.17 98.05 98.13 97.21 92.01 89.07 84.36 83.40

Polish-LFG 98.80 94.56 95.49 97.54 96.58 94.76 87.04 90.26 99.16 95.91 96.57 97.85 97.44 96.03 90.14 92.09

Polish-SZ 98.34 93.25 93.04 97.16 93.39 91.24 81.06 85.99 98.91 95.12 95.08 97.53 95.73 94.25 86.66 89.89

Portuguese-Bosque 97.07 — 96.40 98.46 91.36 89.04 76.67 83.06 97.38 — 96.96 98.59 92.69 90.70 79.59 85.44

Portuguese-GSD 98.31 98.30 99.92 99.30 93.01 91.63 85.96 86.94 98.67 98.67 99.93 99.48 94.74 93.71 89.19 90.28

Romanian-Nonstandard 96.68 92.11 90.88 94.78 89.12 84.20 65.93 73.44 96.85 92.27 91.04 94.55 89.61 84.78 66.82 73.77

Romanian-RRT 97.96 97.43 97.53 98.41 91.31 86.74 79.02 81.09 98.16 97.56 97.75 98.59 92.41 88.05 81.04 82.89

Russian-GSD 97.10 96.98 92.66 97.37 88.15 84.37 74.07 80.03 97.78 97.64 94.76 97.84 90.74 87.51 79.13 83.97

Russian-SynTagRus 99.12 — 97.57 98.53 93.80 92.32 87.91 89.17 99.23 — 97.97 98.59 94.92 93.68 89.85 90.81

Russian-Taiga 93.18 99.98 82.87 89.99 75.45 69.11 48.81 57.21 95.47 99.98 86.87 91.18 80.74 75.65 57.16 63.65

Serbian-SET 98.33 — 94.35 97.36 92.70 89.27 79.14 84.18 98.71 — 95.79 97.76 94.57 91.65 83.03 87.24

Slovak-SNK 96.83 86.14 90.82 96.40 89.82 86.90 74.00 81.37 97.70 88.54 93.07 96.75 94.30 92.15 81.43 87.24

Slovenian-SSJ 98.61 95.70 95.92 98.25 92.96 91.16 83.85 86.89 98.83 96.53 96.77 98.54 94.81 93.49 87.58 90.04

Slovenian-SST 93.79 86.12 86.28 95.17 73.51 67.51 52.67 60.32 95.72 89.25 89.43 96.06 77.23 71.79 58.69 64.84

Spanish-AnCora 98.91 98.92 98.49 99.17 92.34 90.26 83.97 85.51 99.05 99.06 98.70 99.25 93.75 92.03 87.03 88.35

Spanish-GSD 96.85 — 97.09 98.97 90.71 88.03 75.98 81.47 97.36 — 97.19 99.14 92.32 90.11 79.29 84.92

Swedish Sign Language-SSLC ✗ 68.44 57.27 — — 49.82 37.94 31.34 39.47 72.34 70.92 — — 56.03 42.02 34.50 43.19

Swedish-LinES 96.78 94.75 89.43 97.03 86.07 81.86 66.48 77.38 97.77 95.97 90.39 97.50 88.16 84.55 70.13 80.81

Swedish-Talbanken 97.94 96.71 96.86 98.01 89.63 86.61 79.67 82.26 98.60 97.62 97.69 98.13 92.42 90.16 84.56 86.19

Tamil-TTB 91.05 83.81 87.28 93.92 74.11 66.37 55.31 59.58 92.61 86.53 89.89 93.97 77.68 71.14 60.67 64.74

Telugu-MTG 93.07 93.07 99.03 — 91.26 85.02 77.75 81.76 94.73 94.73 99.03 — 91.96 85.30 77.79 81.60

Turkish-IMST 96.01 95.12 92.55 96.01 74.19 67.56 56.96 61.37 96.07 95.37 93.25 96.39 76.30 70.11 59.91 64.07

Ukrainian-IU 97.59 92.66 92.66 97.23 88.29 85.25 73.81 79.10 98.20 94.63 94.43 97.65 91.65 89.36 79.97 84.24

Upper Sorbian-UFAL ✗ 62.93 — 41.10 68.68 45.58 34.54 3.37 16.65 69.69 — 43.46 66.80 48.64 38.85 5.03 17.80

Urdu-UDTB 93.66 91.98 81.92 97.40 87.50 81.62 55.02 73.07 94.28 92.37 82.47 97.56 88.55 83.03 56.58 75.05

Uyghur-UDT ✗ 89.87 92.54 88.30 95.31 78.46 67.09 47.84 57.08 89.58 92.27 88.29 95.30 79.10 67.46 48.09 57.69

Vietnamese-VTB 89.68 87.41 99.72 99.55 70.38 62.56 55.56 59.54 90.87 88.87 99.68 99.79 72.94 65.41 58.97 62.64

Total 93.71 92.52 90.56 94.35 84.23 79.59 67.36 72.05 94.71 93.69 91.50 94.51 86.34 82.01 70.66 74.75

Table 6: Results on all UD 2.3 treebanks with a train set, comparing inclusion of BERT and possibly Flair embed-

dings to WE+CLE baseline. Gold tokenization and segmentation is used.
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