
75 Languages, 1 Model: Parsing Universal Dependencies Universally

Dan Kondratyuk1,2 and Milan Straka1

1Charles University, Institute of Formal and Applied Linguistics
2Saarland University, Department of Computational Linguistics

dankondratyuk@gmail.com, straka@ufal.mff.cuni.cz

Abstract

We present UDify, a multilingual multi-task
model capable of accurately predicting uni-
versal part-of-speech, morphological features,
lemmas, and dependency trees simultaneously
for all 124 Universal Dependencies treebanks
across 75 languages. By leveraging a multi-
lingual BERT self-attention model pretrained
on 104 languages, we found that fine-tuning
it on all datasets concatenated together with
simple softmax classifiers for each UD task
can meet or exceed state-of-the-art UPOS,
UFeats, Lemmas, (and especially) UAS, and
LAS scores, without requiring any recurrent
or language-specific components. We evaluate
UDify for multilingual learning, showing that
low-resource languages benefit the most from
cross-linguistic annotations. We also evalu-
ate for zero-shot learning, with results suggest-
ing that multilingual training provides strong
UD predictions even for languages that nei-
ther UDify nor BERT have ever been trained
on. Code for UDify is available at https://
github.com/hyperparticle/udify.

1 Introduction

In the absence of annotated data for a given lan-
guage, it can be considerably difficult to create
models that can parse the language’s text accu-
rately. Multilingual modeling presents an attrac-
tive way to circumvent this low-resource limita-
tion. In a similar way learning a new language
can enhance the proficiency of a speaker’s previ-
ous languages (Abu-Rabia and Sanitsky, 2010), a
model which has access to multilingual informa-
tion can begin to learn generalizations across lan-
guages that would not have been possible through
monolingual data alone. Works such as McDonald
et al. (2011); Naseem et al. (2012); Duong et al.
(2015); Ammar et al. (2016); de Lhoneux et al.
(2018); Kitaev and Klein (2018); Mulcaire et al.
(2019) consistently demonstrate how pairing the

“The best optimizer is grad student descent”

The best op ##timi ##zer is grad student descent

...
BERT

x→x (optimizer)

Layer Attention

4 (is)

nsubj

Number=Sing

NOUN

Dependency Head

Dependency Tag

Lemma

UFeats

UPOS

Figure 1: An illustration of the UDify network ar-
chitecture with task-specific layer attention, inputting
word tokens and outputting UD annotations for each
token.

training data of similar languages can boost eval-
uation scores of models predicting syntactic infor-
mation like part-of-speech and dependency trees.
Multilinguality not only can improve a model’s
evaluation performance, but can also reduce the
cost of training multiple models for a collection
of languages (Johnson et al., 2017; Smith et al.,
2018).

However, scaling to a higher number of lan-
guages can often be problematic. Without an
ample supply of training data for the considered
languages, it can be difficult to form appropri-
ate generalizations and especially difficult if those

ar
X

iv
:1

90
4.

02
09

9v
3 

 [
cs

.C
L

] 
 2

5 
A

ug
 2

01
9

https://github.com/hyperparticle/udify
https://github.com/hyperparticle/udify


languages are distant from each other. But re-
cent techniques in language model pretraining
can profit from a drastically larger supply of un-
supervised text, demonstrating the capability of
transferring contextual sentence-level knowledge
to boost the parsing accuracy of existing NLP
models (Howard and Ruder, 2018; Peters et al.,
2018; Devlin et al., 2018).

One such model, BERT (Devlin et al., 2018),
introduces a self-attention (Transformer) network
that results in state-of-the-art parsing performance
when fine-tuning its contextual embeddings. And
with the release of a multilingual version pre-
trained on the entirety of the top 104 resourced
languages of Wikipedia, BERT is remarkably ca-
pable of capturing an enormous collection of
cross-lingual syntactic information. Conveniently,
these languages nearly completely overlap with
languages supported by the Universal Dependen-
cies treebanks, which we will use to demonstrate
the ability to scale syntactic parsing up to 75 lan-
guages and beyond.

The Universal Dependencies (UD) framework
provides syntactic annotations consistent across a
large collection of languages (Nivre et al., 2018;
Zeman et al., 2018). This makes it an excel-
lent candidate for analyzing syntactic knowledge
transfer across multiple languages. UD offers
tokenized sentences with annotations ideal for
multi-task learning, including lemmas (LEMMAS),
treebank-specific part-of-speech tags (XPOS),
universal part-of-speech tags (UPOS), morpho-
logical features (UFEATS), and dependency edges
and labels (DEPS) for each sentence.

We propose UDify, a semi-supervised multi-
task self-attention model automatically producing
UD annotations in any of the supported UD lan-
guages. To accomplish this, we perform the fol-
lowing:

1. We input all sentences into a pretrained
multilingual BERT network to produce con-
textual embeddings, introduce task-specific
layer-wise attention similar to ELMo (Peters
et al., 2018), and decode each UD task simul-
taneously using softmax classifiers.

2. We apply a heavy amount of regularization
to BERT, including input masking, increased
dropout, weight freezing, discriminative fine-
tuning, and layer dropout.

3. We train and fine-tune the model on the en-

tirety of UD by concatenating all available
training sets together.

We evaluate our model with respect to UDPipe
Future, one of the winners of the CoNLL 2018
Shared Task on Multilingual Parsing from Raw
Text to Universal Dependencies (Straka, 2018; Ze-
man et al., 2018). In addition, we analyze lan-
guages that multilingual training benefits predic-
tion the most, and evaluate the model for zero-
shot learning, i.e., treebanks which do not have
a training set. Finally, we provide evidence from
our experiments and other related work to help ex-
plain why pretrained self-attention networks excel
in multilingual dependency parsing.

Our work uses the AllenNLP library built
for the PyTorch framework. Code for UD-
ify and a release of the fine-tuned BERT
weights are available at https://github.
com/hyperparticle/udify.

2 Multilingual Multi-Task Learning

In this section, we detail the multilingual training
setup and the UDify multi-task model architecture.
See Figure 1 for an architecture diagram.

2.1 Multilingual Pretraining with BERT

We leverage the provided BERT base multilingual
cased pretrained model1, with a self-attention net-
work of 12 layers, 12 attention heads per layer, and
hidden dimensions of 768 (Devlin et al., 2018).
The model was trained by predicting randomly
masked input words on the entirety of the top 104
languages with the largest Wikipedias. BERT uses
a wordpiece tokenizer (Wu et al., 2016), which
segments all text into (unnormalized) sub-word
units.

2.2 Cross-Linguistic Training Issues

Table 1 displays a list of vocabulary sizes, indicat-
ing that UD treebanks possess nearly 1.6M unique
tokens combined. To sidestep the problem of a
ballooning vocabulary, we use BERT’s wordpiece
tokenizer directly for all inputs. UD expects pre-
dictions to be along word boundaries, so we take
the simple approach of applying the tokenizer to
each word using UD’s provided segmentation. For
prediction, we use the outputs of BERT corre-
sponding to the first wordpiece per word, ignoring

1https://github.com/google-research/
bert/blob/master/multilingual.md

https://github.com/hyperparticle/udify
https://github.com/hyperparticle/udify
https://github.com/google-research/bert/blob/master/multilingual.md
https://github.com/google-research/bert/blob/master/multilingual.md


TOKEN VOCAB SIZE

Word Form 1,588,655
BERT Wordpieces 119,547
UPOS 17
XPOS 19,126
UFeats 23,974
Lemmas (tags) 109,639
Deps 251

Table 1: Vocabulary sizes of words and tags over all of
UD v2.3, with a total of 12,032,309 word tokens and
668,939 sentences.

the rest2.
In addition, the XPOS annotations are not uni-

versal across languages, or even across treebanks.
Because each treebank can possess a different an-
notation scheme for XPOS which can slow down
inference, we omit training and evaluation of
XPOS from our experiments.

2.3 Multi-Task Learning with UD

For predicting UD annotations, we employ a
multi-task network based on UDPipe Future
(Straka, 2018), but with all embedding, encoder,
and projection layers replaced with BERT. The re-
maining components include the prediction layers
for each task detailed below, and layer attention
(see Section 3.1). Then we compute softmax cross
entropy loss on the output logits to train the net-
work. For more details on reasons behind archi-
tecture choices, see Appendix A.

UPOS As is standard for neural sequence tag-
ging, we apply a softmax layer along each word
input, computing a probability distribution over
the tag vocabulary to predict the annotation string.

UFeats Identical to UPOS prediction, we
treat each UFeats string as a separate token in
the vocabulary. We found this to produce higher
evaluation accuracy than predicting each morpho-
logical feature separately. Only a small subset
of the full Cartesian product of morphological
features is valid, eliminating invalid combinations.

Lemmas Similar to Chrupała (2006); Müller
et al. (2015), we reduce the problem of lemmatiza-
tion to a sequence tagging problem by predicting a
class representing an edit script, i.e., the sequence
of character operations to transform the word form
to the lemma. To precompute the tags, we first find

2We found last, max, or average pooling of the word-
pieces were not any better or worse for evaluation. Kitaev
and Klein (2018) report similar results.

the longest common substring between the form
and the lemma, and then compute the shortest
edit script converting the prefix and suffix of the
form into the prefix and suffix of the lemma using
the Wagner–Fischer algorithm (Wagner and Fis-
cher, 1974). Upon predicting a lemma edit script,
we apply the edit operations to the word form to
produce the final lemma. See also Straka (2018)
for more details. We chose this approach over a
sequence-to-sequence architecture like Bergmanis
and Goldwater (2018) or Kondratyuk et al. (2018),
as this significantly reduces training efficiency.

Deps We use the graph-based biaffine attention
parser developed by Dozat and Manning (2016);
Dozat et al. (2017), replacing the bidirectional
LSTM layers with BERT. The final embeddings
are projected through arc-head and arc-dep feed-
forward layers, which are combined using biaffine
attention to produce a probability distribution of
arc heads for each word. We then decode each tree
with the Chu-Liu/Edmonds algorithm (Chu, 1965;
Edmonds, 1967).

3 Fine-Tuning BERT on UD Annotations

We employ several strategies for fine-tuning
BERT for UD prediction, finding that regulariza-
tion is absolutely crucial for producing a high-
scoring network.

3.1 Layer Attention

Empirical results suggest that when fine-tuning
BERT, combining the output of the last several
layers is more beneficial for the downstream tasks
than just using the last layer (Devlin et al., 2018).
Instead of restricting the model to any subset of
layers, we devise a simple layer-wise dot-product
attention where the network computes a weighted
sum of all intermediate outputs of the 12 BERT
layers using the same weights for each token. This
is similar to how ELMo mixes the output of mul-
tiple recurrent layers (Peters et al., 2018).

More formally, let wi be a trainable scalar for
BERT embeddings BERTij at layer i with a to-
ken at position j, and let c be a trainable scalar. We
compute contextual embeddings e(task) such that

e
(task)
j = c

∑
i

BERTij · softmax(w)i (1)

To prevent the UD classifiers from overfitting
to the information in any single layer, we devise



layer dropout, where at each training step, we set
each parameter wi to −∞ with probability 0.1.
This effectively redistributes probability mass to
all other layers, forcing the network to incorporate
the information content of all BERT layers. We
compute layer attention per task, using one set of
c,w parameters for each of UPOS, UFeats, Lem-
mas, and Deps.

3.2 Transfer Learning with ULMFiT

The ULMFiT strategy defines several useful meth-
ods for fine-tuning a network on a pretrained lan-
guage model (Howard and Ruder, 2018). We ap-
ply the same methods, with a few minor modifica-
tions.

We split the network into two parameter groups,
i.e., the parameters of BERT and all other param-
eters. We apply discriminative fine-tuning, setting
the base learning rate of BERT to be 5e−5 and
1e−3 everywhere else. We also freeze the BERT
parameters for the first epoch to increase training
stability.

While ULMFiT recommends decaying the
learning rate linearly after a linear warmup, we
found that this is prone to training divergence
in self-attention networks, introducing vanishing
gradients and underfitting. Instead, we apply an
inverse square root learning rate decay with lin-
ear warmup (Noam) seen in training Transformer
networks for machine translation (Vaswani et al.,
2017).

3.3 Input Masking

The authors of BERT recommend not to mask
words randomly with [MASK] when fine-tuning
the network. However, we discovered that mask-
ing often reduces the tendency of the classifiers
to overfit to BERT by forcing the network to rely
on the context of surrounding words. This word
dropout strategy has been observed in other works
showing improved test performance on a variety
of NLP tasks (Iyyer et al., 2015; Bowman et al.,
2016; Clark et al., 2018; Straka, 2018).

4 Experiments

We evaluate UDify with respect to every test set
in each treebank. As there are too many results
to fit within one page, we display a salient subset
of scores and compare them with UDPipe Future.
The full results are listed in Appendix A.

We do not directly reference metrics from other

models in the CoNLL 2018 Shared Task, as the
tables of results do not assume gold word segmen-
tation and may not provide a fair comparison. In-
stead, we retrained the open source UDPipe Fu-
ture model using gold segmentation and report re-
sults here due to its architectural similarity to UD-
ify and its strong performance.

Note that the UDPipe Future baseline does not
itself use BERT. Evaluation of BERT utilization
in UDPipe Future can be found in Straka et al.
(2019).

4.1 Datasets

For all experiments, we use the full Universal
Dependencies v2.3 corpus available on LINDAT
(Nivre et al., 2018). We omit the evaluation of
datasets that do not have their training annotations
freely available, i.e., Arabic NYUAD (ar nyuad),
English ESL (en esl), French FTB (fr ftb), Hindi
English HEINCS (qhe heincs), and Japanese BC-
CWJ (ja bccwj).

To train the multilingual model, we concatenate
all available training sets together, similar to Mc-
Donald et al. (2011). Before each epoch, we shuf-
fle all sentences and feed mixed batches of sen-
tences to the network, where each batch may con-
tain sentences from any language or treebank, for
a total of 80 epochs3.

4.2 Hyperparameters

A summary of hyperparameters can be found in
Table 6 in Appendix A.1.

4.3 Probing for Syntax

Hewitt and Manning (2019) introduce a structural
probe for identifying dependency structures in
contextualized word embeddings. This probe eval-
uates whether syntax trees (i.e., unlabeled undi-
rected dependency trees) can be easily extracted as
a global property of the embedding space using a
linear transformation of the network’s contextual
word embeddings. The probe trains a weighted
adjacency matrix on the layers of contextual em-
beddings produced by BERT, identifying a lin-
ear transformation where squared L2 distance be-
tween embedding vectors encodes the distance be-
tween words in the parse tree. Edges are decoded
by computing the minimum spanning tree on the
weight matrix (the lowest sum of edge distances).

3 We train on a GTX 1080 Ti for approximately 25 days.
See Appendix A.1 for more details



TREEBANK MODEL UPOS FEATS LEM UAS LAS

Czech PDT
(cs pdt)

UDPipe 99.18 97.23 99.02 93.33 91.31
Lang 99.18 96.87 98.72 94.35 92.41
UDify 99.18 96.85 98.56 94.73 92.88
UDify+Lang 99.24 97.44 98.93 95.07 93.38

German GSD
(de gsd)

UDPipe 94.48 90.68 96.80 85.53 81.07
Lang 94.77 91.73 96.34 87.54 83.39
UDify 94.55 90.65 94.82 87.81 83.59
UDify+Lang 95.29 91.94 96.74 88.11 84.13

English EWT
(en ewt )

UDPipe 96.29 97.10 98.25 89.63 86.97
Lang 96.82 97.27 97.97 91.70 89.38
UDify 96.21 96.17 97.35 90.96 88.50
UDify+Lang 96.57 96.96 97.90 91.55 89.06

Spanish AnCora
(es ancora)

UDPipe 98.91 98.49 99.17 92.34 90.26
Lang 98.60 98.14 98.52 92.82 90.52
UDify 98.53 97.84 98.09 92.99 90.50
UDify+Lang 98.68 98.25 98.68 93.35 91.28

French GSD
(fr gsd)

UDPipe 97.63 97.13 98.35 90.65 88.06
Lang 98.05 96.26 97.96 92.77 90.61
UDify 97.83 96.59 97.48 93.60 91.45
UDify+Lang 97.96 96.73 98.17 93.56 91.45

Russian
SynTagRus
(ru syntagrus)

UDPipe 99.12 97.57 98.53 93.80 92.32
Lang 98.90 96.58 95.16 94.40 92.72
UDify 98.97 96.35 94.43 94.83 93.13
UDify+Lang 99.08 97.22 96.58 95.13 93.70

Belarusian HSE
(be hse)

UDPipe 93.63 73.30 87.34 78.58 72.72
Lang 95.88 76.12 84.52 83.94 79.02
UDify 97.54 89.36 85.46 91.82 87.19
UDify+Lang 97.25 85.02 88.71 90.67 86.98

Buryat BDT
(bxr bdt)

UDPipe 40.34 32.40 58.17 32.60 18.83
Lang 52.54 37.03 54.64 29.63 15.82
UDify 61.73 47.86 61.06 48.43 26.28
UDify+Lang 61.73 42.79 58.20 33.06 18.65

Upper Sorbian
UFAL
(hsb ufal)

UDPipe 62.93 41.10 68.68 45.58 34.54
Lang 73.70 46.28 58.02 39.02 28.70
UDify 84.87 48.63 72.73 71.55 62.82
UDify+Lang 87.58 53.19 71.88 71.40 60.65

Kazakh KTB
(kk ktb)

UDPipe 55.84 40.40 63.96 53.30 33.38
Lang 73.52 46.60 57.84 50.38 32.61
UDify 85.59 65.14 77.40 74.77 63.66
UDify+Lang 81.32 60.50 67.30 69.16 53.14

Lithuanian HSE
(lt hse)

UDPipe 81.70 60.47 76.89 51.98 42.17
Lang 83.40 54.34 58.77 51.23 38.96
UDify 90.47 68.96 67.83 79.06 69.34
UDify+Lang 84.53 56.98 58.21 58.40 39.91

Table 2: Test set scores for a subset of high-
resource (top) and low-resource (bottom) languages
in comparison to UDPipe Future without BERT, with
3 UDify configurations: Lang, fine-tune on the tree-
bank. UDify, fine-tune on all UD treebanks combined.
UDify+Lang, fine-tune on the treebank using BERT
weights saved from fine-tuning on all UD treebanks
combined.

We train the structural probe on unmodified
and fine-tuned BERT using the default hyperpa-
rameters of Hewitt and Manning (2019) to evalu-

MODEL CONFIGURATION UPOS FEATS LEM UAS LAS

UDPipe w/o BERT 93.76 91.04 94.63 84.37 79.76

UDify Task Layer Attn 93.40 88.72 90.41 85.69 80.43
UDify Global Layer Attn 93.12 87.53 89.03 85.07 79.49
UDify Sum Layers 93.02 87.20 88.70 84.97 79.33

Table 3: Ablation comparing the average of scores
over all treebanks: task-specific layer attention (4 sets
of c,w computed for the 4 UD tasks), global layer at-
tention (one set of c,w for all tasks), and simple sum
of layers (c = 1 and w = ).

TREEBANK UPOS FEATS LEM UAS LAS

Breton KEB br keb 63.67 46.75 53.15 63.97 40.19
Tagalog TRG tl trg 61.64 35.27 75.00 64.73 39.38
Faroese OFT fo oft 77.86 35.71 53.82 69.28 61.03
Naija NSC pcm nsc 56.59 52.75 97.52 47.13 33.43
Sanskrit UFAL sa ufal 40.21 18.45 37.60 41.73 19.80

Table 4: Test set results for zero-shot learning, i.e., no
UD training annotations available. Languages that are
pretrained with BERT are bolded.

TREEBANK MODEL UUAS

English EWT (en ewt) BERT 65.48
BERT+finetune en ewt 79.67

Table 5: UUAS test scores calculated on the predic-
tions produced by the syntactic structural probe (Hewitt
and Manning, 2019) using the English EWT treebank,
on the unmodified multilingual cased BERT model and
the same BERT model fine-tuned on the treebank.

ate whether the representations affected by fine-
tuning BERT on dependency trees would more
closely match the structure of these trees.

5 Results

We show scores of UPOS, UFeats (FEATS), and
Lemma (LEM) accuracies, along with unlabeled
and labeled attachment scores (UAS, LAS) eval-
uated using the offical CoNLL 2018 Shared Task
evaluation script.4 Results for a salient subset
of high-resource and low-resource languages are
shown in Table 2, with a comparison between
UDPipe Future and UDify fine-tuning on all lan-
guages. In addition, the table compares UDify
with fine-tuning on either a single language or
both languages (fine-tuning multilingually, then
fine-tuning on the language with the saved multi-
lingual weights) to provide a reference point for
multilingual influences on UDify. We provide

4https://universaldependencies.org/
conll18/evaluation.html

https://universaldependencies.org/conll18/evaluation.html
https://universaldependencies.org/conll18/evaluation.html


1 2 3 4 5 6 7 8 9 10 11 12
BERT Layer #

#4

#3

#2

#1

0

1
W
ei
gh

t

UPOS
UFeat 
Lemma 
Dep 

Figure 2: The unnormalized BERT layer attention
weights wi contributing to layer i for each task after
training. A linear change in weight scales each BERT
layer exponentially due to the softmax in Equation 1

a full table of scores for all treebanks in Ap-
pendix A.4.

A more comprehensive overview is shown in
Table 3, comparing different attention strategies
applied to UDify. We display an average of scores
over all (89) treebanks with a training set. For
zero-shot learning evaluation, Table 4 displays a
subset of test set evaluations of treebanks that
do not have a training set, i.e., Breton, Tagalog,
Faroese, Naija, and Sanskrit. We plot the layer at-
tention weights w after fine-tuning BERT in Fig-
ure 2, showing a set of weights per task. And Ta-
ble 5 compares the unlabeled undirected attach-
ment scores (UUAS) of dependency trees pro-
duced using a structural probe on both the un-
modified multilingual cased BERT model and the
extracted BERT model fine-tuned on the English
EWT treebank.

6 Discussion

In this section, we discuss the most notable fea-
tures of the results.

6.1 Model Performance

On average, UDify reveals a strong set of re-
sults that are comparable in performance with the
state-of-the-art in parsing UD annotations. UD-
ify excels in dependency parsing, exceeding UD-
Pipe Future by a large margin especially for low-
resource languages. UDify slightly underperforms
with respect to Lemmas and Universal Features,
likely due to UDPipe Future additionally using
character-level embeddings (Santos and Zadrozny,
2014; Ling et al., 2015; Ballesteros et al., 2015;
Kim et al., 2016), while (for simplicity) UDify

does not. Additionally, UDify severely under-
performs the baseline on a few low-resource lan-
guages, e.g., cop scriptorum. We surmise that this
is due to using mixed batches on an unbalanced
training set, which skews the model towards pre-
dicting larger treebanks more accurately. How-
ever, we find that fine-tuning on the treebank in-
dividually with BERT weights saved from UDify
eliminates most of these gaps in performance.

Echoing results seen in Smith et al. (2018),
UDify also shows strong improvement leveraging
multilingual data from other UD treebanks. In
low-resource cases, fine-tuning BERT on all tree-
banks can be far superior to fine-tuning mono-
lingually. A second round of fine-tuning on an
individual treebank using UDify’s BERT weights
can improve this further, especially for treebanks
that underperform the baseline. However, for
languages that are already display strong results,
we typically notice worse evaluation performance
across all the evaluation metrics. This indi-
cates that multilingual fine-tuning really is supe-
rior to single language fine-tuning with respect
to these high-performing languages, showing im-
provements of up to 20% reduction in error.

Interestingly, Slavic languages tend to perform
the best with multilingual training. While lan-
guages like Czech and Russian possess the largest
UD treebanks and do not differ as much in perfor-
mance from monolingual fine-tuning, evidenced
by the improvements over single-language fine-
tuning, we can see a large degree of morpho-
logical and syntactic structure has transferred to
low-resource Slavic languages like Upper Sorbian,
whose treebank contains only 646 sentences. But
this is not only true of Slavic languages, as the Tur-
kic language Kazakh (with less than 1,000 training
sentences) has also improved significantly.

The zero-shot results indicate that fine-tuning
on BERT can result in reasonably high scores on
languages that do not have a training set. It can
be seen that a combination of BERT pretraining
and multilingual learning can improve predictions
for Breton and Tagalog, which implies that the
network has learned representations of syntax that
cross lingual boundaries. Furthermore, despite the
fact that neither BERT nor UDify have directly
observed Faroese, Naija, or Sanskrit, we see un-
usually high performance in these languages. This
can be partially attributed to each language closely
resembling another: Faroese is very close to Ice-



Moving fields to the category and series areas
.

.
. .

. .
.

..
.

.

.

. .

Moving fields to the category and series areas
.

.
. .

. .
.

.
.

.
.

.

. .

We land and spill out and go our separate ways .
. .

.
.

. . .
. . .

.. .
.

. ..

.
.

.

BERT

We land and spill out and go our separate ways .
. .

.
.

. . .
. . .

. .

.

. ..
.

.. .

UDify
Figure 3: Examples of minimum spanning trees produced by the syntactic probe are shown below each sentence,
evaluated on BERT (left) and on UDify (right). Gold dependency trees are shown above each sentence in black.
Matched and unmatched spanning tree edges are shown in blue and red respectively.

landic, Naija (Nigerian Pidgin) is a variant of En-
glish, and Sanskrit is an ancient Indian language
related to Greek, Latin, and Hindi.

Table 3 shows that layer attention on BERT for
each task is beneficial for test performance, much
more than using a global weighted average. In
fact, Figure 2 shows that each task prefers the lay-
ers of BERT differently, uniquely extracting the
optimal information for a task. All tasks favor
the information content in the last 3 layers, with
a tendency to disprefer layers closer to the in-
put. However, an interesting observation is that for
Lemmas and UFeats, the classifier prefers to also
incorporate the information of the first 3 layers.
This meshes well with the linguistic intuition that
morphological features are more closely related to
the surface form of a word and rely less on con-
text than other syntactic tasks. Curiously enough,
the middle layers are highly dispreferred, mean-
ing that the most useful processing for multilin-
gual syntax (tagging, dependency parsing) occurs
in the last 3-4 layers. The results released by Ten-
ney et al. (2019) also agree with the intuition be-
hind the weight distribution above, showing how
the different layers of BERT generate hierarchical
information like a traditional NLP pipeline, start-
ing with low-level syntax (e.g., POS tagging) and
building up to high-level syntactic and semantic
dependency parsing.

6.2 Effect of Syntactic Fine-Tuning on BERT

Even without any supervised training, BERT en-
codes its syntax in the embedding’s distance close
to human-annotated dependencies. But more no-
tably, the results in Table 5 show that fine-tuning
BERT on Universal Dependencies significantly
boosts UUAS scores when compared to the gold
dependency trees, an error reduction of 41%.

This indicates that the self-attention weights have
learned a linearly-transformable representation of
its vectors more closely resembling annotated de-
pendency trees defined by linguists. Even with just
unsupervised pretraining, a global structural prop-
erty of the vector space of the BERT weights al-
ready produces a decent representation of the de-
pendency tree in the squared L2 distance. Fol-
lowing this, it should be no surprise that train-
ing with a non-linear graph-based dependency de-
coder would produce even higher quality depen-
dency trees.

6.3 Attention Visualization

We performed a high-level visual analysis of
the BERT attention weights to see if they have
changed on any discernible level. Our obser-
vations reveal something notable: the attention
weights tend to be more sparse, and are more of-
ten sensitive to constituent boundaries like clauses
and prepositions. Figure 4 illustrates this point,
showing the attention weights of a particular atten-
tion head on an example sentence. We find similar
behavior in 13 additional attention heads for the
provided example sentence.

We see that some of the attention structure re-
mains after fine-tuning. Previously, the atten-
tion head was mostly sensitive to previous words
and punctuation. But after fine-tuning, it demon-
strates more fine-grained attention towards imme-
diate wordpieces, prepositions, articles, and adjec-
tives. We found similar evidence in other atten-
tion heads, which implies that fine-tuning on UD
produces attention that more closely resembles lo-
calized dependencies within constituents. We also
find that BERT base heavily preferred to attend to
punctuation, while UDify BERT does to a much
lesser degree.



Figure 4: Visualization of BERT attention head 4 at layer 11, comparing the attended words on an English sentence
between BERT base and UDify BERT after fine-tuning. The right column indicates the attended words (keys) with
respect to the words in the left column (queries). Darker lines indicate stronger attention weights.

6.4 Factors that Enable BERT to Excel at
Dependency Parsing and Multilinguality

Goldberg (2019) assesses the syntactic capabili-
ties of BERT and concludes that BERT is remark-
ably capable of processing syntactic tasks despite
not being trained on any supervised data. Con-
ducting similar experiments, Vig (2019) and Sileo
(2019) visualize the attention heads within each
BERT layer, showing a number of distinct atten-
tion patterns, including attending to previous/next
words, related words, punctuation, verbs/nouns,
and coreference dependencies.

This neat delegation of certain low-level in-
formation processing tasks to the attention heads
hints at why BERT might excel at processing syn-
tax. We see that from the analysis on BERT fine-
tuned with syntax using the syntactic probe and at-
tention visualization, BERT produces a represen-
tation that keeps constituents close in its vector
space, and improves this representation to more
closely resemble human annotated dependency
trees when fine-tuned on UD as seen in Figure 3.
Furthermore, Ahmad et al. (2018) provide results
consistent with their claim that self-attention net-
works can be more robust than recurrent networks
to the change of word order, observing that self-
attention networks capture less word order infor-
mation in their architecture, which is what allows
them to generally perform better at cross-lingual

parsing. Wu and Dredze (2019) also analyze mul-
tilingual BERT and report that the model retains
both language-independent as well as language-
specific information related to each input sentence,
and that the shared embedding space with the
input wordpieces correlates strongly with cross-
lingual generalization.

From the evidence above, we can see that the
combination of strong regularization paired with
the ability to capture long-range dependencies
with self-attention and contextual pretraining on
an enormous corpus of raw text are large con-
tributors that enable robust multilingual modeling
with respect to dependency parsing. Pretraining
self-attention networks introduces a strong syntac-
tic bias that is capable of generalizing across lan-
guages. The dependencies seen in the output de-
pendency trees are highly correlated with the im-
plicit dependencies learned by the self-attention,
showing that self-attention is remarkably capable
of modeling syntax by picking up on common syn-
tactic patterns in text. The introduction of multi-
lingual data also shows that these attention heads
provide a surprising amount of capacity that do
not degrade the performance considerably when
compared to monolingual training. E.g., Devlin
et al. (2018) report that the fine-tuning on the mul-
tilingual BERT model results in a small degrada-
tion in English fine-tune performance with 104



pretrained languages compared to an equivalent
model pretrained only on English. This also hints
that the BERT model can be compressed signif-
icantly without compromising heavily on evalua-
tion performance.

7 Related Work

This work’s main contribution in combining tree-
banks for multilingual UD parsing is most simi-
lar to the Uppsala system for the CoNLL 2018
Shared Task (Smith et al., 2018). Uppsala com-
bines treebanks of one language or closely related
languages together over 82 treebanks and parses
all UD annotations in a multi-task pipeline archi-
tecture for a total of 34 models. This approach
reduces the number of models required to parse
each language while also showing results that are
no worse than training on each treebank individu-
ally, and in especially low-resource cases, signif-
icantly improved. Combining UD treebanks in a
language-agnostic way was first introduced in Vi-
lares et al. (2016), which train bilingual parsers on
pairs of UD treebanks, showing similar improve-
ments.

Other efforts in training multilingual models in-
clude Johnson et al. (2017), which demonstrate a
machine translation model capable of supporting
translation between 12 languages. Recurrent mod-
els have also shown to be capable of scaling to
a larger number of languages as seen in Artetxe
and Schwenk (2018), which define a scalable ap-
proach to train massively multilingual embeddings
using recurrent networks on an auxiliary task, e.g.,
natural language inference. Schuster et al. (2019)
produce context-independent multilingual embed-
dings using a novel embedding alignment strat-
egy to allow models to improve the use of cross-
lingual information, showing improved results in
dependency parsing.

8 Conclusion

We have proposed and evaluated UDify, a mul-
tilingual multi-task self-attention network fine-
tuned on BERT pretrained embeddings, capable of
producing annotations for any UD treebank, and
exceeding the state-of-the-art in UD dependency
parsing in a large subset of languages while being
comparable in tagging and lemmatization accu-
racy. Strong regularization and task-specific layer
attention are highly beneficial for fine-tuning, and
coupled with training multilingually, also reduce

the number of required models to train down to
one. Multilingual learning is most beneficial for
low-resource languages, even ones that do not pos-
sess a training set, and can be further improved
by fine-tuning monolingually using BERT weights
saved from UDify’s multilingual training. All
these results indicate that self-attention networks
are remarkably capable of capturing syntactic pat-
terns, and coupled with unsupervised pretraining
are able to scale to a large number of languages
without degrading performance.

Acknowledgments

The work described herein has been sup-
ported by OP VVV VI LINDAT/CLARIN
project of the Ministry of Education, Youth
and Sports of the Czech Republic (project
CZ.02.1.01/0.0/0.0/16 013/0001781) and it has
been supported and has been using language
resources developed by the LINDAT/CLARIN
project of the Ministry of Education, Youth
and Sports of the Czech Republic (project
LM2015071).

Dan Kondratyuk has been supported by the
Erasmus Mundus program in Language & Com-
munication Technologies (LCT), and by the Ger-
man Federal Ministry of Education and Re-
search (BMBF) through the project DEEPLEE
(01IW17001).

References
Salim Abu-Rabia and Ekaterina Sanitsky. 2010. Ad-

vantages of bilinguals over monolinguals in learn-
ing a third language. Bilingual Research Journal,
33(2):173–199.

Wasi Uddin Ahmad, Zhisong Zhang, Xuezhe Ma,
Eduard Hovy, Kai-Wei Chang, and Nanyun Peng.
2018. On difficulties of cross-lingual transfer with
order differences: A case study on dependency pars-
ing. arXiv preprint arXiv:1811.00570.

Waleed Ammar, George Mulcaire, Miguel Ballesteros,
Chris Dyer, and Noah A Smith. 2016. Many lan-
guages, one parser. Transactions of the Association
for Computational Linguistics, 4:431–444.

Mikel Artetxe and Holger Schwenk. 2018. Mas-
sively multilingual sentence embeddings for zero-
shot cross-lingual transfer and beyond. arXiv
preprint arXiv:1812.10464.

Miguel Ballesteros, Chris Dyer, and Noah A Smith.
2015. Improved transition-based parsing by model-
ing characters instead of words with lstms. In Pro-
ceedings of the 2015 Conference on Empirical Meth-



ods in Natural Language Processing, pages 349–
359.

Toms Bergmanis and Sharon Goldwater. 2018. Con-
text sensitive neural lemmatization with lematus. In
Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long Papers), volume 1, pages 1391–
1400.

Samuel R Bowman, Luke Vilnis, Oriol Vinyals, An-
drew M Dai, Rafal Jozefowicz, and Samy Ben-
gio. 2016. Generating sentences from a continuous
space. CoNLL 2016, page 10.

Grzegorz Chrupała. 2006. Simple data-driven
context-sensitive lemmatization. Procesamiento del
Lenguaje Natural, 37.

Yoeng-Jin Chu. 1965. On the shortest arborescence of
a directed graph. Scientia Sinica, 14:1396–1400.

Kevin Clark, Minh-Thang Luong, Christopher D Man-
ning, and Quoc V Le. 2018. Semi-supervised se-
quence modeling with cross-view training. arXiv
preprint arXiv:1809.08370.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Timothy Dozat and Christopher D Manning. 2016.
Deep biaffine attention for neural dependency pars-
ing. arXiv preprint arXiv:1611.01734.

Timothy Dozat, Peng Qi, and Christopher D Manning.
2017. Stanford’s graph-based neural dependency
parser at the conll 2017 shared task. Proceedings
of the CoNLL 2017 Shared Task: Multilingual Pars-
ing from Raw Text to Universal Dependencies, pages
20–30.

Long Duong, Trevor Cohn, Steven Bird, and Paul
Cook. 2015. Low resource dependency parsing:
Cross-lingual parameter sharing in a neural network
parser. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics
and the 7th International Joint Conference on Natu-
ral Language Processing (Volume 2: Short Papers),
volume 2, pages 845–850.

Jack Edmonds. 1967. Optimum branchings. Journal
of Research of the national Bureau of Standards B,
71(4):233–240.

Yoav Goldberg. 2019. Assessing bert’s syntactic abili-
ties. arXiv preprint arXiv:1901.05287.

John Hewitt and Christopher D Manning. 2019. A
structural probe for finding syntax in word represen-
tations. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics.

Jeremy Howard and Sebastian Ruder. 2018. Universal
language model fine-tuning for text classification. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), volume 1, pages 328–339.

Mohit Iyyer, Varun Manjunatha, Jordan Boyd-Graber,
and Hal Daumé III. 2015. Deep unordered com-
position rivals syntactic methods for text classifica-
tion. In Proceedings of the 53rd Annual Meeting of
the Association for Computational Linguistics and
the 7th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers), vol-
ume 1, pages 1681–1691.

Melvin Johnson, Mike Schuster, Quoc V Le, Maxim
Krikun, Yonghui Wu, Zhifeng Chen, Nikhil Thorat,
Fernanda Viégas, Martin Wattenberg, Greg Corrado,
et al. 2017. Googles multilingual neural machine
translation system: Enabling zero-shot translation.
Transactions of the Association for Computational
Linguistics, 5:339–351.

Yoon Kim, Yacine Jernite, David Sontag, and Alexan-
der M Rush. 2016. Character-aware neural language
models. In Thirtieth AAAI Conference on Artificial
Intelligence.

Nikita Kitaev and Dan Klein. 2018. Multilingual
constituency parsing with self-attention and pre-
training. arXiv preprint arXiv:1812.11760.

Daniel Kondratyuk, Tomáš Gavenčiak, Milan Straka,
and Jan Hajič. 2018. Lemmatag: Jointly tagging
and lemmatizing for morphologically rich languages
with brnns. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Pro-
cessing, pages 4921–4928.

Miryam de Lhoneux, Johannes Bjerva, Isabelle Augen-
stein, and Anders Søgaard. 2018. Parameter sharing
between dependency parsers for related languages.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
4992–4997.

Wang Ling, Chris Dyer, Alan W Black, Isabel Tran-
coso, Ramon Fermandez, Silvio Amir, Luis Marujo,
and Tiago Luis. 2015. Finding function in form:
Compositional character models for open vocabu-
lary word representation. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1520–1530.

Ryan McDonald, Slav Petrov, and Keith Hall. 2011.
Multi-source transfer of delexicalized dependency
parsers. In Proceedings of the conference on empir-
ical methods in natural language processing, pages
62–72. Association for Computational Linguistics.

Phoebe Mulcaire, Jungo Kasai, and Noah Smith.
2019. Polyglot contextual representations im-
prove crosslingual transfer. arXiv preprint
arXiv:1902.09697.



Thomas Müller, Ryan Cotterell, Alexander Fraser, and
Hinrich Schütze. 2015. Joint lemmatization and
morphological tagging with lemming. In Proceed-
ings of the 2015 Conference on Empirical Methods
in Natural Language Processing, pages 2268–2274.

Tahira Naseem, Regina Barzilay, and Amir Globerson.
2012. Selective sharing for multilingual dependency
parsing. In Proceedings of the 50th Annual Meet-
ing of the Association for Computational Linguis-
tics: Long Papers-Volume 1, pages 629–637. Asso-
ciation for Computational Linguistics.

Joakim Nivre, Mitchell Abrams, Željko Agić, and
Ahrenberg. 2018. Universal dependencies 2.3. LIN-
DAT/CLARIN digital library at the Institute of For-
mal and Applied Linguistics (ÚFAL), Faculty of
Mathematics and Physics, Charles University.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proc. of NAACL.

Cicero D Santos and Bianca Zadrozny. 2014. Learning
character-level representations for part-of-speech
tagging. In Proceedings of the 31st International
Conference on Machine Learning (ICML-14), pages
1818–1826.

Tal Schuster, Ori Ram, Regina Barzilay, and Amir
Globerson. 2019. Cross-lingual alignment of con-
textual word embeddings, with applications to
zero-shot dependency parsing. arXiv preprint
arXiv:1902.09492.

Damien Sileo. 2019. Understanding bert transformer:
Attention isnt all you need. Towards Data Science.

Aaron Smith, Bernd Bohnet, Miryam de Lhoneux,
Joakim Nivre, Yan Shao, and Sara Stymne. 2018. 82
treebanks, 34 models: Universal dependency pars-
ing with multi-treebank models. In Proceedings of
the CoNLL 2018 Shared Task: Multilingual Pars-
ing from Raw Text to Universal Dependencies, pages
113–123, Brussels, Belgium. Association for Com-
putational Linguistics.

Milan Straka. 2018. UDPipe 2.0 prototype at CoNLL
2018 UD shared task. In Proceedings of the CoNLL
2018 Shared Task: Multilingual Parsing from Raw
Text to Universal Dependencies, pages 197–207,
Brussels, Belgium. Association for Computational
Linguistics.

Milan Straka, Jana Straková, and Jan Hajič. 2019.
Evaluating Contextualized Embeddings on 54 Lan-
guages in POS Tagging, Lemmatization and Depen-
dency Parsing. arXiv preprint arXiv:1908.07448.

Ian Tenney, Dipanjan Das, and Ellie Pavlick. 2019.
Bert rediscovers the classical nlp pipeline. arXiv
preprint arXiv:1905.05950.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, pages 5998–6008.

Jesse Vig. 2019. Visualizing attention in transformer-
based language models. arXiv preprint
arXiv:1904.02679.

David Vilares, Carlos Gómez-Rodrı́guez, and
Miguel A Alonso. 2016. One model, two lan-
guages: training bilingual parsers with harmonized
treebanks. In Proceedings of the 54th Annual
Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), volume 2,
pages 425–431.

Robert A Wagner and Michael J Fischer. 1974. The
string-to-string correction problem. Journal of the
ACM (JACM), 21(1):168–173.

Shijie Wu and Mark Dredze. 2019. Beto, bentz, be-
cas: The surprising cross-lingual effectiveness of
bert. arXiv preprint arXiv:1904.09077.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, et al. 2016. Google’s neural ma-
chine translation system: Bridging the gap between
human and machine translation. arXiv preprint
arXiv:1609.08144.

Daniel Zeman, Jan Hajič, Martin Popel, Martin Pot-
thast, Milan Straka, Filip Ginter, Joakim Nivre, and
Slav Petrov. 2018. CoNLL 2018 shared task: Mul-
tilingual parsing from raw text to universal depen-
dencies. In Proceedings of the CoNLL 2018 Shared
Task: Multilingual Parsing from Raw Text to Univer-
sal Dependencies, pages 1–21, Brussels, Belgium.
Association for Computational Linguistics.

A Appendix

In this section, we detail and explain hyperparam-
eter choices and miscellaneous details related to
model training and display the full tables of eval-
uation results of UDify across all UD languages.

A.1 Hyperparameters
Upon concatenating all training sets, we shuffle
all the sentences, bundle them into batches of 32
sentences each, and train UDify for a total of 80
epochs before stopping. We hold the learning rate
constant until we unfreeze BERT in the second
epoch, where we and linearly warm up the learn-
ing rate for the next 8,000 batches and then apply
inverse square root learning rate decay for the re-
maining epochs. For the dependency parser, we
use feedforward tag and arc dimensions of 300

http://hdl.handle.net/11234/1-2895
http://www.aclweb.org/anthology/K18-2011
http://www.aclweb.org/anthology/K18-2011
http://www.aclweb.org/anthology/K18-2011
http://www.aclweb.org/anthology/K18-2020
http://www.aclweb.org/anthology/K18-2020
http://arxiv.org/abs/1908.07448
http://arxiv.org/abs/1908.07448
http://arxiv.org/abs/1908.07448
http://www.aclweb.org/anthology/K18-2001
http://www.aclweb.org/anthology/K18-2001
http://www.aclweb.org/anthology/K18-2001


HYPERPARAMETER VALUE

Dependency tag dimension 256
Dependency arc dimension 768
Optimizer Adam
β1, β2 0.9, 0.99
Weight decay 0.01
Label Smoothing 0.03
Dropout 0.5
BERT dropout 0.2
Mask probability 0.2
Layer dropout 0.1
Batch size 32
Epochs 80
Base learning rate 1e−3

BERT learning rate 5e−5

Learning rate warmup steps 8000
Gradient clipping 5.0

Table 6: A summary of model hyperparameters.

and 800 respectively. We apply a small weight de-
cay penalty of 0.01 to ensure that the weights re-
main small after each update. For optimization we
use the Adam optimizer and we compute softmax
cross entropy loss to train the network. We use
a default β1 value of 0.9 and lower the β2 value
from the typical 0.999 to 0.99. The reasoning is
to increase the decay rate of the second moment
in the Adam optimizer to reduce the chance of the
optimizer being too optimistic with respect to the
gradient history. We clip the gradient updates to
a maximum L2 magnitude of 5.0. A summary of
hyperparameters can be found in Table 6.

To speed up training, we employ bucketed
batching, sorting all sentences by their length and
grouping similar length sentences into each batch.
However, to ensure that most sentences do not
get grouped within the same batch, we fuzz the
lengths of each sentence by a maximum of 10% of
its true length when grouping sentences together.

Despite using all the regularization strategies
shown previously, we still observe overfitting and
must apply more aggressive techniques. To fur-
ther regularize the network, we also increase the
attention and hidden dropout rates of BERT from
0.1 to 0.2, and we also apply a dropout rate of
0.5 to all BERT layers before computing layer at-
tention for each of the four tasks and applying a
layer dropout with probability 0.1. We increase
the masking probability of each wordpiece from
0.15 to 0.2.

With all these regularization strategies and hy-
perparameter choices combined, we are able to
fine-tune BERT for far more epochs before the net-
work starts to overfit, i.e., 80 as opposed to around

102 103 104 105

Train Sentences

0.3

0.2

0.1

0.0

0.1

0.2

0.3

LA
S 

Di
ffe

re
nc

e

Figure 5: A plot of the difference in LAS between
UDify and UDPipe Future with respect to the number
of training sentences in each treebank.

10. Even so, we believe even more regularization
can improve test performance.

The final multilingual UDify model was trained
over approximately 25 days on an NVIDIA GTX
1080 Ti taking an average of 8 hours per epoch.
We use half-precision (fp16) training to be able to
keep the BERT model in memory. One notable
aspect of training is that while we observed the
model start to level out in validation performance
at around epoch 30, the model continually made
small, incremental improvements over each sub-
sequent epoch, resulting in far higher scores than
if the model training was terminated early. This
can be partially attributed to the decaying inverse
square root learning rate.

Due to the high training times, we are only
able to report on a small number of training ex-
periments for the most relevant and useful results.
Prior to developing the final model, we conducted
fine-tuning experiments on pairs of languages to
find a set of hyperparameters that worked best for
multilingual learning. After this, we gradually
scaled up training to 3 languages, 5 languages, 15
languages, and then finally the model presented
above. We had high doubts, and wanted to see
where the limit was in multilingual training. We
were pleasantly surprised to find that this simple
training scheme was able to scale up so well to all
UD treebanks.

A.2 Training Size Effect on Performance

To gain a better understanding of where the largest
score improvements in UDify occur, we plot the
LAS improvement UDify provides over UDPipe
Future for each treebank, ordered by the size
(number of sentences) of the training set, see Fig-



102 103 104 105

Train Sentences

0.0

0.2

0.4

0.6

0.8

1.0
LA

S

UDPipe Future
UDify

Figure 6: A plot of LAS between with respect to the
number of training sentences in each treebank.

ure 5. The results show that the largest improve-
ments tend to occur on small treebanks with less
than 3,000 training examples. For absolute LAS
values, see Figure 6, which indicates that more
training resources tend to improve evaluation per-
formance overall.

A.3 Miscellaneous Details

Our results show that modeling language-specific
properties is not strictly necessary to achieve high-
performing cross-lingual representations for de-
pendency parsing, though we caution that the
model can also likely be improved by these tech-
niques.

Fine-tuning BERT on UD introduces a syntac-
tic bias in the network, and we are interested in
observing any differences in transfer learning by
fine-tuning this new “UD-BERT” on other tasks.
We leave a comprehensive evaluation of injecting
syntactic bias into language models with respect
to knowledge transfer for future work.

We note that saving the weights of BERT and
fine-tuning a second round can improve perfor-
mance as demonstrated in Stickland et al. (2019).
The improvements of UDify+Lang over just UD-
ify can be partially attributed to this, but we can
see that even these improvements can be inferior
to fine-tuning on all UD treebanks.

BERT limits its positional encoding to 512
wordpieces, causing some sentences in UD to be
too long to fit into the model. We use a slid-
ing window approach to break up long sentences
into windows of 512 wordpieces, overlapping each
window by 256 wordpieces. After feeding the
windows into BERT, we select the first 256 word-
pieces of each window and any remaining word-
pieces in the last window to represent the contex-

tual embeddings of each word in the original sen-
tence.

A.4 Full Results of UD Scores
We show in Tables 7, 8, 9, and 10 UDify scores
evaluated on all 124 treebanks with the official
CoNLL 2018 Shared Task evaluation script. For
comparison, we also include the full test evalua-
tion of UDPipe Future on the subset of 89 tree-
banks with a training set. We also add a column
indicating the size of each treebank, i.e., the num-
ber of sentences in the training set.



TREEBANK MODEL UPOS UFEATS LEMMAS UAS LAS CLAS MLAS BLEX SIZE

Afrikaans AfriBooms UDPipe 98.25 97.66 97.46 89.38 86.58 81.44 77.66 77.82 1.3k
UDify 97.48 96.63 95.23 86.97 83.48 77.42 70.57 70.93 1.3k

Akkadian PISANDUB UDify 19.92 99.51 2.32 27.65 4.54 3.27 1.04 0.30 0

Amharic ATT UDify 15.25 43.95 58.04 17.38 3.49 4.88 0.23 2.53 0

Ancient Greek PROIEL UDPipe 97.86 92.44 93.51 85.93 82.11 77.70 67.16 71.22 15.0k
UDify 91.20 82.29 76.16 78.91 72.66 66.07 50.79 47.27 15.0k

Ancient Greek Perseus UDPipe 93.27 91.39 85.02 78.85 73.54 67.60 53.87 53.19 11.5k
UDify 85.67 81.67 70.51 70.51 62.64 55.60 39.15 35.05 11.5k

Arabic PADT UDPipe 96.83 94.11 95.28 87.54 82.94 79.77 73.92 75.87 6.1k
UDify 96.58 91.77 73.55 87.72 82.88 79.47 70.52 50.26 6.1k

Arabic PUD UDify 79.98 40.32 0.00 76.17 67.07 65.10 10.67 0.00 0

Armenian ArmTDP UDPipe 93.49 82.85 92.86 78.62 71.27 65.77 48.11 60.11 561
UDify 94.42 76.90 85.63 85.63 78.61 73.72 46.80 59.14 561

Bambara CRB UDify 30.86 57.96 20.42 30.28 8.60 6.56 1.04 0.76 0

Basque BDT UDPipe 96.11 92.48 96.29 86.11 82.86 81.79 72.33 78.54 5.4k
UDify 95.45 86.80 90.53 84.94 80.97 79.52 63.60 71.56 5.4k

Belarusian HSE UDPipe 93.63 73.30 87.34 78.58 72.72 69.14 46.20 58.28 261
UDify 97.54 89.36 85.46 91.82 87.19 85.05 71.54 68.66 261

Breton KEB UDify 62.78 47.12 51.31 63.52 39.84 35.14 4.64 16.34 0

Bulgarian BTB UDPipe 98.98 97.82 97.94 93.38 90.35 87.01 83.63 84.42 8.9k
UDify 98.89 96.18 93.49 95.54 92.40 89.59 83.43 80.44 8.9k

Buryat BDT UDPipe 40.34 32.40 58.17 32.60 18.83 12.36 1.26 6.49 20
UDify 61.73 47.45 61.03 48.43 26.28 20.61 5.51 11.68 20

Cantonese HK UDify 67.11 91.01 96.01 46.82 32.01 33.35 14.29 31.26 0

Catalan AnCora UDPipe 98.88 98.37 99.07 93.22 91.06 87.18 84.48 86.18 13.1k
UDify 98.89 98.34 98.14 94.25 92.33 89.27 86.21 86.61 13.1k

Chinese CFL UDify 83.75 82.72 98.75 62.46 42.48 43.46 21.07 42.22 0

Chinese GSD UDPipe 94.88 99.22 99.99 84.64 80.50 76.79 71.04 76.78 4.0k
UDify 95.35 99.35 99.97 87.93 83.75 80.33 74.36 80.28 4.0k

Chinese HK UDify 82.86 86.47 100.00 65.53 49.32 47.84 22.85 47.84 0

Chinese PUD UDify 92.68 98.40 100.00 79.08 56.51 55.22 40.92 55.22 0

Coptic Scriptorium UDPipe 94.70 96.35 95.49 85.58 80.97 72.24 64.45 68.48 371
UDify 27.17 52.85 55.71 27.58 10.82 6.50 0.19 1.44 371

Croatian SET UDPipe 98.13 92.25 97.27 91.10 86.78 84.11 73.61 81.19 7.0k
UDify 98.02 89.67 95.34 94.08 89.79 87.70 72.72 82.00 7.0k

Czech CAC UDPipe 99.37 96.34 98.57 92.99 90.71 88.84 84.30 87.18 23.5k
UDify 99.14 95.42 98.32 94.33 92.41 91.03 84.68 89.21 23.5k

Czech CLTT UDPipe 98.88 91.59 98.25 86.90 84.03 80.55 71.63 79.20 861
UDify 99.17 93.66 98.86 91.69 89.96 87.59 79.50 86.79 861

Czech FicTree UDPipe 98.55 95.87 98.63 92.91 89.75 86.97 81.04 85.49 10.2k
UDify 98.34 91.82 98.13 95.19 92.77 90.99 77.77 88.39 10.2k

Czech PDT UDPipe 99.18 97.23 99.02 93.33 91.31 89.64 86.15 88.60 68.5k
UDify 99.18 96.69 98.52 94.73 92.88 91.64 87.13 89.95 68.5k

Czech PUD UDify 97.93 93.98 96.94 92.59 87.95 84.85 77.39 82.81 0

Danish DDT UDPipe 97.78 97.33 97.52 86.88 84.31 81.20 76.29 78.51 4.4k
UDify 97.50 95.41 94.60 87.76 84.50 81.60 73.76 75.15 4.4k

Dutch Alpino UDPipe 96.83 96.33 97.09 91.37 88.38 83.51 77.28 79.82 12.3k
UDify 97.67 97.66 95.44 94.23 91.21 87.32 82.81 80.76 12.3k

Dutch LassySmall UDPipe 96.50 96.42 97.41 90.20 86.39 81.88 77.19 78.83 5.8k
UDify 96.70 96.57 95.10 94.34 91.22 88.03 82.06 81.40 5.8k

Table 7: The full test results of UDify on 124 treebanks (part 1 of 4). The SIZE column indicates the number of
training sentences.



TREEBANK MODEL UPOS UFEATS LEMMAS UAS LAS CLAS MLAS BLEX SIZE

English EWT UDPipe 96.29 97.10 98.25 89.63 86.97 84.02 79.00 82.36 12.5k
UDify 96.21 96.02 97.28 90.96 88.50 86.25 79.80 83.39 12.5k

English GUM UDPipe 96.02 96.82 96.85 87.27 84.12 78.55 73.51 74.68 2.9k
UDify 95.44 94.12 93.15 89.14 85.73 83.03 72.55 74.30 2.9k

English LinES UDPipe 96.91 96.31 96.45 84.15 79.71 77.44 71.38 73.22 2.7k
UDify 95.31 91.34 94.50 87.33 83.71 82.95 68.62 76.23 2.7k

English PUD UDify 96.18 93.50 94.20 91.52 88.66 87.83 75.61 80.57 0

English ParTUT UDPipe 96.10 95.51 97.74 90.29 87.27 82.58 76.44 80.33 1.8k
UDify 96.16 92.61 96.45 92.84 90.14 86.28 74.59 82.01 1.8k

Erzya JR UDify 46.66 31.82 45.73 31.90 16.38 10.83 0.58 2.83 0

Estonian EDT UDPipe 97.64 96.23 95.30 88.00 85.18 83.62 78.72 78.51 24.4k
UDify 97.44 95.13 86.56 89.53 86.67 85.17 79.20 69.31 24.4k

Faroese OFT UDify 77.46 35.20 51.09 67.24 59.26 51.17 2.39 21.92 0

Finnish FTB UDPipe 96.65 96.62 95.49 90.68 87.89 85.11 80.58 81.18 15.0k
UDify 93.80 90.38 88.80 86.37 81.40 81.01 68.16 70.15 15.0k

Finnish PUD UDify 96.48 93.84 84.64 89.76 86.58 86.64 77.83 69.12 0

Finnish TDT UDPipe 97.45 95.43 91.45 89.88 87.46 85.87 80.43 76.64 12.2k
UDify 94.43 90.48 82.89 86.42 82.03 82.62 70.89 63.66 12.2k

French GSD UDPipe 97.63 97.13 98.35 90.65 88.06 84.35 79.76 82.39 14.5k
UDify 97.83 96.17 97.34 93.60 91.45 88.54 81.61 84.51 14.5k

French PUD UDify 91.67 59.65 100.00 88.36 82.76 81.74 25.24 81.74 0

French ParTUT UDPipe 96.93 94.43 95.70 92.17 89.63 84.62 75.22 78.07 804
UDify 96.12 88.36 93.97 90.55 88.06 83.19 63.03 74.03 804

French Sequoia UDPipe 98.79 98.09 98.57 92.37 90.73 87.55 84.51 85.93 2.2k
UDify 97.89 88.97 97.15 92.53 90.05 86.67 67.98 82.52 2.2k

French Spoken UDPipe 95.91 100.00 96.92 82.90 77.53 71.82 68.24 69.47 1.2k
UDify 96.23 98.67 96.59 85.24 80.01 75.40 69.74 72.77 1.2k

Galician CTG UDPipe 97.84 99.83 98.58 86.44 83.82 78.58 72.46 77.21 2.3k
UDify 96.51 97.10 97.08 84.75 80.89 74.62 65.86 72.17 2.3k

Galician TreeGal UDPipe 95.82 93.96 97.06 82.72 77.69 71.69 63.73 68.89 601
UDify 94.59 80.67 94.93 84.08 76.77 73.06 49.76 66.99 601

German GSD UDPipe 94.48 90.68 96.80 85.53 81.07 76.26 58.82 72.13 13.8k
UDify 94.55 90.43 94.42 87.81 83.59 80.03 61.27 72.48 13.8k

German PUD UDify 89.49 30.66 94.77 89.86 84.46 80.50 2.10 72.95 0

Gothic PROIEL UDPipe 96.61 90.73 94.75 85.28 79.60 76.92 66.70 72.93 3.4k
UDify 95.55 85.97 80.57 85.61 79.37 76.26 63.09 58.65 3.4k

Greek GDT UDPipe 97.98 94.96 95.82 92.10 89.79 85.71 78.60 79.72 1.7k
UDify 97.72 93.29 89.43 94.33 92.15 88.67 77.89 71.83 1.7k

Hebrew HTB UDPipe 97.02 95.87 97.12 89.70 86.86 81.45 75.52 78.14 5.2k
UDify 96.94 93.41 94.15 91.63 88.11 83.04 72.55 74.87 5.2k

Hindi HDTB UDPipe 97.52 94.15 98.67 94.85 91.83 88.21 78.49 86.83 13.3k
UDify 97.12 92.59 98.23 95.13 91.46 87.80 75.54 86.10 13.3k

Hindi PUD UDify 87.54 22.81 100.00 71.64 58.42 53.03 3.32 53.03 0

Hungarian Szeged UDPipe 95.76 91.75 95.05 84.04 79.73 78.65 67.63 73.63 911
UDify 96.36 86.16 90.19 89.68 84.88 83.93 64.27 72.21 911

Indonesian GSD UDPipe 93.69 95.58 99.64 85.31 78.99 76.76 67.74 76.38 4.5k
UDify 93.36 93.32 98.37 86.45 80.10 78.05 66.93 76.31 4.5k

Indonesian PUD UDify 76.10 44.23 100.00 77.47 56.90 54.88 7.41 54.88 0

Irish IDT UDPipe 92.72 82.43 90.48 80.39 72.34 63.48 46.49 55.32 567
UDify 90.49 71.84 81.27 80.05 69.28 60.02 34.39 43.07 567

Italian ISDT UDPipe 98.39 98.11 98.66 93.49 91.54 87.34 84.28 85.49 13.1k
UDify 98.51 98.01 97.72 95.54 93.69 90.40 86.54 86.70 13.1k

Italian PUD UDify 94.73 58.16 96.08 94.18 91.76 90.05 25.55 83.74 0

Italian ParTUT UDPipe 98.38 97.77 98.16 92.64 90.47 85.05 81.87 82.99 1.8k
UDify 98.21 98.38 97.55 95.96 93.68 89.83 86.83 86.44 1.8k

Table 8: The full test results of UDify on 124 treebanks (part 2 of 4).



TREEBANK MODEL UPOS UFEATS LEMMAS UAS LAS CLAS MLAS BLEX SIZE

Japanese GSD UDPipe 98.13 99.98 99.52 95.06 93.73 88.35 86.37 88.04 7.1k
UDify 97.08 99.97 98.80 94.37 92.08 86.19 82.99 85.12 7.1k

Japanese Modern UDify 74.94 96.14 79.70 74.99 55.62 42.67 30.89 35.47 0

Japanese PUD UDify 97.89 99.98 99.31 94.89 93.62 87.92 84.86 87.15 0

Kazakh KTB UDPipe 55.84 40.40 63.96 53.30 33.38 27.06 4.82 15.10 32
UDify 85.59 65.49 77.18 74.77 63.66 61.84 34.23 45.51 32

Komi Zyrian IKDP UDify 59.92 39.32 57.56 36.01 22.12 17.45 1.54 6.80 0

Komi Zyrian Lattice UDify 38.57 29.45 55.33 28.85 12.99 10.79 0.72 3.28 0

Korean GSD UDPipe 96.29 99.77 93.40 87.70 84.24 82.05 79.74 76.35 4.4k
UDify 90.56 99.63 82.84 82.74 74.26 71.72 65.94 57.58 4.4k

Korean Kaist UDPipe 95.59 100.00 94.30 88.42 86.48 84.12 80.72 79.22 23.0k
UDify 94.67 99.98 85.89 87.57 84.52 82.05 78.27 68.99 23.0k

Korean PUD UDify 64.43 60.47 70.47 63.57 46.89 45.29 16.26 30.94 0

Kurmanji MG UDPipe 53.36 41.54 69.58 45.23 34.32 29.41 2.74 19.39 21
UDify 60.23 37.78 58.08 35.86 20.40 14.75 1.42 7.28 21

Latin ITTB UDPipe 98.34 96.97 98.99 91.06 88.80 86.40 82.35 85.71 16.8k
UDify 98.48 95.81 98.08 92.43 90.12 87.93 82.24 85.97 16.8k

Latin PROIEL UDPipe 97.01 91.53 96.32 83.34 78.66 76.20 67.40 73.65 15.9k
UDify 96.79 89.49 91.79 84.85 80.52 77.96 67.18 71.00 15.9k

Latin Perseus UDPipe 88.40 79.10 81.45 71.20 61.28 56.32 41.58 45.09 1.3k
UDify 90.96 82.09 81.08 78.33 69.60 65.95 50.26 51.33 1.3k

Latvian LVTB UDPipe 96.11 93.01 95.46 87.20 83.35 80.90 71.92 76.64 7.2k
UDify 96.02 89.78 91.00 89.33 85.09 82.34 69.51 72.58 7.2k

Lithuanian HSE UDPipe 81.70 60.47 76.89 51.98 42.17 38.93 18.17 28.70 154
UDify 90.47 70.00 67.17 79.06 69.34 66.00 36.21 36.35 154

Maltese MUDT UDPipe 95.99 100.00 100.00 84.65 79.71 71.49 66.75 71.49 1.1k
UDify 91.98 99.89 100.00 83.07 75.56 65.08 58.14 65.08 1.1k

Marathi UFAL UDPipe 80.10 67.23 81.31 70.63 61.41 57.44 29.34 45.87 374
UDify 88.59 59.22 72.82 79.37 67.72 60.13 21.71 39.25 374

Naija NSC UDify 55.44 51.32 97.03 45.75 32.16 31.62 4.73 29.33 0

North Sami Giella UDPipe 92.54 90.03 88.31 78.30 73.49 70.94 62.40 61.45 2.3k
UDify 90.21 83.55 71.50 74.30 67.13 64.41 51.20 40.63 2.3k

Norwegian Bokmaal UDPipe 98.31 97.14 98.64 92.39 90.49 88.18 84.06 86.53 15.7k
UDify 98.18 96.36 97.33 93.97 92.18 90.40 85.02 87.13 15.7k

Norwegian Nynorsk UDPipe 98.14 97.02 98.18 92.09 90.01 87.68 82.97 85.47 14.2k
UDify 98.14 96.55 97.18 94.34 92.37 90.39 85.01 86.71 14.2k

Norwegian NynorskLIA UDPipe 89.59 86.13 93.93 68.08 60.07 54.89 44.47 50.98 340
UDify 95.01 93.36 96.13 75.40 69.60 65.33 56.90 62.27 340

Old Church Slavonic PROIEL UDPipe 96.91 90.66 93.11 89.66 85.04 83.41 73.63 77.81 4.1k
UDify 84.23 71.30 65.70 76.71 66.67 64.10 46.25 43.88 4.1k

Old French SRCMF UDPipe 96.09 97.81 100.00 91.74 86.83 83.85 79.91 83.85 13.9k
UDify 95.73 96.98 100.00 91.74 86.65 83.49 78.85 83.49 13.9k

Persian Seraji UDPipe 97.75 97.78 97.44 90.05 86.66 83.26 81.23 80.93 4.8k
UDify 96.22 94.73 92.55 89.59 85.84 81.98 76.65 74.74 4.8k

Polish LFG UDPipe 98.80 95.49 97.54 96.58 94.76 93.01 87.04 90.26 13.8k
UDify 98.80 87.71 94.04 96.67 94.58 93.03 76.50 85.15 13.8k

Polish SZ UDPipe 98.34 93.04 97.16 93.39 91.24 89.39 81.06 85.99 6.1k
UDify 98.36 67.11 93.92 93.67 89.20 87.31 48.47 80.24 6.1k

Portuguese Bosque UDPipe 97.07 96.40 98.46 91.36 89.04 85.19 76.67 83.06 8.3k
UDify 97.10 89.70 91.60 91.37 87.84 84.13 69.09 78.64 8.3k

Portuguese GSD UDPipe 98.31 99.92 99.30 93.01 91.63 87.67 85.96 86.94 9.7k
UDify 98.04 95.75 98.95 94.22 92.54 89.37 82.32 87.90 9.7k

Portuguese PUD UDify 90.14 51.16 99.79 87.02 80.17 74.10 17.51 74.10 0

Romanian Nonstandard UDPipe 96.68 90.88 94.78 89.12 84.20 78.91 65.93 73.44 8.0k
UDify 96.83 88.89 89.33 90.36 85.26 80.41 64.68 68.11 8.0k

Table 9: The full test results of UDify on 124 treebanks (part 3 of 4).



TREEBANK MODEL UPOS UFEATS LEMMAS UAS LAS CLAS MLAS BLEX SIZE

Romanian RRT UDPipe 97.96 97.53 98.41 91.31 86.74 82.57 79.02 81.09 8.0k
UDify 97.73 96.12 95.84 93.16 88.56 84.87 79.20 79.92 8.0k

Russian GSD UDPipe 97.10 92.66 97.37 88.15 84.37 82.66 74.07 80.03 3.9k
UDify 96.91 87.45 77.73 90.71 86.03 84.51 67.24 62.08 3.9k

Russian PUD UDify 93.06 63.60 77.93 93.51 87.14 83.96 37.25 61.86 0

Russian SynTagRus UDPipe 99.12 97.57 98.53 93.80 92.32 90.85 87.91 89.17 48.8k
UDify 98.97 96.29 94.47 94.83 93.13 91.87 86.91 85.44 48.8k

Russian Taiga UDPipe 93.18 82.87 89.99 75.45 69.11 65.31 48.81 57.21 881
UDify 95.39 88.47 90.19 84.02 77.80 75.12 59.71 65.15 881

Sanskrit UFAL UDify 37.33 17.63 37.38 40.21 18.56 15.38 0.85 4.12 0

Serbian SET UDPipe 98.33 94.35 97.36 92.70 89.27 87.08 79.14 84.18 2.9k
UDify 98.30 92.22 95.86 95.68 91.95 90.30 78.45 84.93 2.9k

Slovak SNK UDPipe 96.83 90.82 96.40 89.82 86.90 84.81 74.00 81.37 8.5k
UDify 97.46 89.30 93.80 95.92 93.87 92.86 77.33 85.12 8.5k

Slovenian SSJ UDPipe 98.61 95.92 98.25 92.96 91.16 88.76 83.85 86.89 6.5k
UDify 98.73 93.44 96.50 94.74 93.07 90.94 81.55 86.38 6.5k

Slovenian SST UDPipe 93.79 86.28 95.17 73.51 67.51 63.46 52.67 60.32 2.1k
UDify 95.40 89.81 95.15 80.37 75.03 71.19 61.32 67.24 2.1k

Spanish AnCora UDPipe 98.91 98.49 99.17 92.34 90.26 86.39 83.97 85.51 14.3k
UDify 98.53 97.89 98.07 92.99 90.50 87.26 83.43 84.85 14.3k

Spanish GSD UDPipe 96.85 97.09 98.97 90.71 88.03 82.85 75.98 81.47 14.2k
UDify 95.91 95.08 96.52 90.82 87.23 82.83 72.47 78.08 14.2k

Spanish PUD UDify 88.98 54.58 100.00 90.45 83.08 77.42 18.06 77.42 0

Swedish LinES UDPipe 96.78 89.43 97.03 86.07 81.86 80.32 66.48 77.38 2.7k
UDify 96.85 87.24 92.70 88.77 85.49 85.61 66.99 77.62 2.7k

Swedish PUD UDify 96.36 80.04 88.81 89.17 86.10 85.25 57.12 72.92 0

Swedish Sign Language SSLC UDPipe 68.09 100.00 100.00 50.35 37.94 39.51 30.96 39.51 88
UDify 63.48 96.10 100.00 40.43 26.95 30.12 23.29 30.12 88

Swedish Talbanken UDPipe 97.94 96.86 98.01 89.63 86.61 84.45 79.67 82.26 4.3k
UDify 98.11 95.92 95.50 91.91 89.03 87.26 80.72 81.31 4.3k

Tagalog TRG UDify 60.62 35.62 73.63 64.04 40.07 36.84 0.00 13.16 0

Tamil TTB UDPipe 91.05 87.28 93.92 74.11 66.37 63.71 55.31 59.58 401
UDify 91.50 83.21 80.84 79.34 71.29 69.10 53.62 54.84 401

Telugu MTG UDPipe 93.07 99.03 100.00 91.26 85.02 81.76 77.75 81.76 1.1k
UDify 93.48 99.31 100.00 92.23 83.91 79.92 76.10 79.92 1.1k

Thai PUD UDify 56.78 62.48 100.00 49.05 26.06 18.42 3.77 18.42 0

Turkish IMST UDPipe 96.01 92.55 96.01 74.19 67.56 63.83 56.96 61.37 3.7k
UDify 94.29 84.49 87.71 74.56 67.44 63.87 49.42 54.10 3.7k

Turkish PUD UDify 77.34 24.59 84.31 67.68 46.07 39.95 2.61 32.50 0

Ukrainian IU UDPipe 97.59 92.66 97.23 88.29 85.25 81.90 73.81 79.10 5.3k
UDify 97.71 88.63 94.00 92.83 90.30 88.15 72.93 81.04 5.3k

Upper Sorbian UFAL UDPipe 62.93 41.10 68.68 45.58 34.54 27.18 3.37 16.65 24
UDify 84.87 48.84 72.68 71.55 62.82 56.04 16.19 37.89 24

Urdu UDTB UDPipe 93.66 81.92 97.40 87.50 81.62 75.20 55.02 73.07 4.0k
UDify 94.37 82.80 96.68 88.43 82.84 77.00 56.70 73.97 4.0k

Uyghur UDT UDPipe 89.87 88.30 95.31 78.46 67.09 60.85 47.84 57.08 1.7k
UDify 75.88 70.80 79.70 65.89 48.80 38.95 21.75 31.31 1.7k

Vietnamese VTB UDPipe 89.68 99.72 99.55 70.38 62.56 60.03 55.56 59.54 1.4k
UDify 91.29 99.58 99.21 74.11 66.00 63.34 58.71 62.61 1.4k

Warlpiri UFAL UDify 33.44 18.15 39.17 21.66 7.96 7.49 0.00 0.88 0

Yoruba YTB UDify 50.86 78.32 85.56 37.62 19.09 16.56 6.30 12.15 0

Table 10: The full test results of UDify on 124 treebanks (part 4 of 4).


