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Abstract

We present our contribution to the SIGMOR-
PHON 2019 Shared Task: Crosslinguality and
Context in Morphology, Task 2: contextual
morphological analysis and lemmatization.

We submitted a modification of the UDPipe
2.0, one of best-performing systems of the
CoNLL 2018 Shared Task: Multilingual Pars-
ing from Raw Text to Universal Dependencies
and an overall winner of the The 2018 Shared
Task on Extrinsic Parser Evaluation.

As our first improvement, we use the pre-
trained contextualized embeddings (BERT) as
additional inputs to the network; secondly, we
use individual morphological features as reg-
ularization; and finally, we merge the selected
corpora of the same language.

In the lemmatization task, our system exceeds
all the submitted systems by a wide margin
with lemmatization accuracy 95.78 (second
best was 95.00, third 94.46). In the morpho-
logical analysis, our system placed tightly sec-
ond: our morphological analysis accuracy was
93.19, the winning system’s 93.23.

1 Introduction

This work describes our participant system in the
SIGMORPHON 2019 Shared Task: Crosslingual-
ity and Context in Morphology. We contributed a
system in Task 2: contextual morphological analy-
sis and lemmatization.

Given a segmented and tokenized text in a
CoNLL-U format with surface forms (column 2)
as in the following example:
# sent-id = 1
# text = They buy and sell books.
1 They _ _ _ _ ...
2 buy _ _ _ _ ...
3 and _ _ _ _ ...
4 sell _ _ _ _ ...
5 books _ _ _ _ ...
6 . _ _ _ _ ...

the task is to infer lemmas (column 3) and mor-
phological analysis (column 6) in the form of con-
catenated morphological features:
# sent-id = 1
# text = They buy and sell books.
1 They they _ _ N;NOM;PL ...
2 buy buy _ _ V;SG;1;PRS ...
3 and and _ _ CONJ ...
4 sell sell _ _ V;PL;3;PRS ...
5 books book _ _ N;PL ...
6 . . _ _ PUNCT ...

The SIGMORPHON 2019 data consists of 66
distinct languages in 107 corpora (McCarthy et al.,
2018).

We submitted a modified UDPipe 2.0 (Straka,
2018), one of the three winning systems of the
CoNLL 2018 Shared Task: Multilingual Parsing
from Raw Text to Universal Dependencies (Zeman
et al., 2018) and an overall winner of the The 2018
Shared Task on Extrinsic Parser Evaluation (Fares
et al., 2018).

Our improvements to the UDPipe 2.0 are three-
fold:
• We use the pretrained contextualized embed-

dings (BERT) as additional inputs to the net-
work (described in Section 3.3).
• Apart from predicting the whole POS tag, we

regularize the model by also predicting indi-
vidual morphological features (Section 3.4).
• In some languages, we merge all the corpora

of the same language (Section 3.5).
Our system placed first in lemmatization and

closely second in morphological analysis.
We give an overview of the related work in Sec-

tion 2, we describe our methodology in Section 3,
the results with ablation experiments are given in
Section 4 and we conclude in Section 5.

2 Related Work

A new type of deep contextualized word repre-
sentation was introduced by Peters et al. (2018).



The proposed embeddings, called ELMo, were ob-
tained from internal states of deep bidirectional
language model, pretrained on a large text corpus.
The idea of ELMos was extended by Devlin et al.
(2018), who instead of a bidirectional recurrent
language model employ a Transformer (Vaswani
et al., 2017) architecture.

The Universal Dependencies project (Nivre
et al., 2016) seeks to develop cross-linguistically
consistent treebank annotation of morphology and
syntax for many languages. In 2017 and 2018
CoNLL Shared Tasks Multilingual Parsing from
Raw Text to Universal Dependencies (Zeman
et al., 2017, 2018), the goal was to process raw
texts into tokenized sentences with POS tags, lem-
mas, morphological features and dependency trees
of Universal Dependencies. Straka (2018) was
one of the winning systems of the 2018 shared
task, performing the POS tagging, lemmatization
and dependency parsing jointly. Another winning
system of Che et al. (2018) employed manually
trained ELMo-like contextual word embeddings
and ensembling, reporting 7.9% error reduction in
LAS parsing performance.

The Universal Morphology (UniMorph) is also
a project seeking to provide annotation schema
for morphosyntactic details of language (Sylak-
Glassman, 2016). Each POS tag consists of a
set of morphological features, each belonging to
a morphological category (also called a dimension
of meaning).

3 Methods

3.1 Architecture Overview

Our baseline is the UDPipe 2.0 (Straka,
2018). The original UDPipe 2.0 is available at
http://github.com/CoNLL-UD-2018/
UDPipe-Future. Here, we describe the overall
architecture, focusing on the modifications made
for the SIGMORPHON 2019. The resulting model
is presented in Figure 1.

In short, UDPipe 2.0 is a multi-task model pre-
dicting POS tags, lemmas and dependency trees.
For the SIGMORPHON 2019, we naturally train
and predict only the POS tags (morphosyntac-
tic features) and lemmas. After embedding input
words, three shared bidirectional LSTM (Hochre-
iter and Schmidhuber, 1997) layers are performed.
Then, softmax classifiers process the output and
generate the lemmas and POS tags (morphosyn-
tactic features).
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Figure 1: The overall system architecture

The lemmas are generated by classifying into a
set of edit scripts which process input word form
and produce lemmas by performing character-
level edits on the word prefix and suffix. The
lemma classifier additionally takes the character-
level word embeddings as input. The lemmatiza-
tion is further described in Section 3.2.

The input word embeddings are the same as in
the UDPipe 2.0 (Straka, 2018):

• end-to-end word embeddings,
• word embeddings (WE): We use FastText

word embeddings (Bojanowski et al., 2017)
of dimension 300, which we pretrain for each
language on plain texts provided by CoNLL
2017 UD Shared Task, using segmentation
and tokenization trained from the UD data.1

For languages not present in the CoNLL 2017
UD Shared Task, we use pretrained embed-
dings from (Grave et al., 2018), if available.
• character-level word embeddings (CLE):

We employ bidirectional GRUs (Cho et al.,
2014; Graves and Schmidhuber, 2005) of di-
mension 256 in line with (Ling et al., 2015):
we represent every Unicode character with
a vector of dimension 256, and concatenate
GRU output for forward and reversed word
characters. The character-level word embed-
dings are trained together with UDPipe net-
work.

We refer the readers for detailed description
of the architecture and the training procedure to

1We use -minCount 5 -epoch 10 -neg 10 options.

http://github.com/CoNLL-UD-2018/UDPipe-Future
http://github.com/CoNLL-UD-2018/UDPipe-Future


Lemma Rule Casing Script Edit Script Most Frequent Examples
↓0;d¦ all lowercase do nothing the→the to→to and→and
↑0¦↓1;d¦ first upper, then lower do nothing Bush→Bush Iraq→Iraq Enron→Enron
↓0;d¦- all lowercase remove last character your→you an→a years→year
↓0;abe all lowercase ignore form, use be is→be was→be ’s→be
↑0;d¦ all uppercase do nothing I→I US→US NASA→NASA
↓0;d¦-- all lowercase remove last 2 chars been→be does→do called→call
↓0;d¦--- all lowercase remove last 3 chars going→go being→be looking→look
↓0;d--+b¦ all lowercase change first 2 chars to b are→be ’re→be Are→be
↓0;d¦-+v+e all lowercase change last char to ve has→have had→have Has→have
↓0;d¦---+e all lowercase change last 3 chars to e having→have using→use making→make
↓0;d¦-+o→ all lowercase change last but 1 char to o n’t→not knew→know grew→grow

Table 1: Eleven most frequent lemma rules in English EWT corpus, ordered from the most frequent one.

Straka (2018).
The main modifications to the UDPipe 2.0 are

the following:

• contextualized embeddings (BERT): We
add pretrained contextual word embeddings
as another input to the neural network. We
describe this modification in Section 3.3.
• regularization with individual morpholog-

ical features: We predict not only the full
POS tag, but regularize the model by also
predicting individual morphological features,
which is described in Section 3.4.
• corpora merging: In some cases, we merge

the corpora of the same language. We de-
scribe this step in Section 3.5.

Furthermore, we also employ model ensem-
bling, which we describe in Section 3.6.

3.2 Lemmatization

The lemmatization is modeled as a multi-class
classification, in which the classes are the com-
plete rules which lead from input forms to the lem-
mas. We call each class encoding a transition from
input form to lemma a lemma rule. We create a
lemma rule by firstly encoding the correct casing
as a casing script and secondly by creating a se-
quence of character edits, an edit script.

Firstly, we deal with the casing by creating a
casing script. By default, word form and lemma
characters are treated as lowercased. If the lemma
however contains upper-cased characters, a rule is
added to the casing script to uppercase the corre-
sponding characters in the resulting lemma. For
example, the most frequent casing script is “keep
the lemma lowercased (don’t do anything)” and
the second most frequent casing script is “upper-
case the first character and keep the rest lower-
cased”.

As a second step, an edit script is created to con-
vert input lowercased form to lowercased lemma.
To ensure meaningful editing, the form is split to
three parts, which are then processed separately: a
prefix, a root (stem) and a suffix. The root is dis-
covered by matching the longest substring shared
between the form and the lemma; if no match-
ing substring is found (e.g., form went and lemma
go), we consider the word irregular, do not pro-
cess it with any edits and directly replace the word
form with the lemma. Otherwise, we proceed
with the edit scripts, which process the prefix and
the suffix separately and keep the root unchanged.
The allowed character-wise operations are charac-
ter copy, addition and deletion.

The resulting lemma rule is a concatenation of a
casing script and an edit script. The most common
lemma rules in English EWT corpus are presented
in Table 1, and the number of lemma rules for ev-
ery language is displayed in Tables 5 and 6.

Using the generated lemma rules, the task of
lemmatization is then reduced to a multiclass clas-
sification task, in which the artificial neural net-
work predicts the correct lemma rule.

3.3 Contextual Word Embeddings (BERT)

We add pretrained contextual word embeddings
as another input to the neural network. We
use the pretrained contextual word embeddings
called BERT (Devlin et al., 2018).2 For En-
glish, we use the native English model (BERT-Base
English), for Chinese use use the native Chi-
nese model (BERT-Base Chinese) and for all
other languages, we use the Multilingual model
(BERT-Base Uncased). All models provide con-
textualized embeddings of dimension 768.

2https://github.com/google-research/
bert

https://github.com/google-research/bert
https://github.com/google-research/bert


We average the last four layers of the BERT
model to produce the embeddings. Because BERT
utilizes word pieces, we decompose words into ap-
propriate subwords and then average the generated
embeddings over subwords belonging to the same
word.

Contrary to finetuning approach used by the
BERT authors (Devlin et al., 2018), we never fine-
tune the embeddings.

3.4 Regularization with Individual
Morphological Features

Our model predicts the POS tags as a unit, i.e.,
the whole set of morphological features at once.
There are other possible alternatives – for exam-
ple, we could predict the morphological features
individually. However, such a prediction needs
to decide which morphological categories to use
and should use a classifier capable of handling de-
pendencies between the predicted features, and all
our attempts to design such a classifier resulted
in systems with suboptimal performance. Using
a whole-set classifier alleviates the need for find-
ing a correct set of categories for a word and han-
dling the feature dependencies, but suffers from
the curse of dimensionality, especially on smaller
corpora with richer morphology.

Nevertheless, the performance of a whole-set
classifier can be improved by regularizing with
the individual morphological feature prediction.
Similarly to Kondratyuk et al. (2018), our model
predicts not only the full set of morphological
features at once, but also the individual features.
Specifically, we employ as many additional soft-
max output layers as the number of morphological
categories used in the corpus, each predicting the
corresponding feature or a special value of None.
The averaged cross-entropy loss of all predicted
categories multiplied by a weight w is added to the
training loss. The predicted features are not used
in any way during inference and act only as model
regularization.

The number of full POS tags (complete sets
of morphological features), individual morpho-
logical features and number of used morphologi-
cal categories for every corpus is provided in Ta-
bles 5 and 6.

3.5 Corpora Merging
Given that the shared task data consists of multiple
corpora for some of the languages, it is a natural
approach to concatenate all corpora of the same

language and use the resulting so-called merged
model for prediction on individual corpora.

In theory, concatenating all corpora of the same
language should be always beneficial consider-
ing the universal scheme used for annotation.
Nonetheless, the merged model exhibits worse
performance in many cases, compared to a spe-
cialized model trained on the corpus training data
only, supposedly because of systematically dif-
ferent annotation. We consequently improve the
merged model performance during inference by
allowing only such lemma rules and morphologi-
cal feature sets that are present in the training data
of the predicted corpus.

3.6 Model Ensembling

For every corpus, we consider three model config-
urations – the regular model with BERT embed-
dings trained only on the corpus data, the merged
model with BERT embeddings trained on all cor-
pora of the corresponding language, and the no-
BERT model trained only on the corpus data.

To allow automatic model selection and to ob-
tain highest performance, we use ensembling.
Namely, we train three models for every model
configuration, obtaining nine models for every
language. Then, we choose a model subset whose
ensemble achieves the highest performance on
the development data. The chosen subsets then
formed the competition entry of our system.

However, post-competition examination using
half of development data for ensemble selection
and the other for evaluation revealed that the
model selection can overfit, sometimes choosing
one or two models with high performance caused
by noise instead of high-quality generalization.
Therefore, we also consider another model selec-
tion method – we ensemble the three models for
every configuration, and choose the best configu-
ration out of three ensembles on the development
data. This second system has been submitted as
a post-competition entry.

4 Results

4.1 SIGMORPHON 2019 Test Results

Table 2 shows top 5 results in lemma accuracy,
lemma Levenshtein, morphological accuracy and
morphological F1 in Task 2 of the SIGMORPHON
2019, averaged over all 107 corpora. Our system
is called UFALPRAGUE-01.



Lemma Accuracy
UFALPRAGUE-01 95.78
CHARLES-SAARLAND-02 95.00
ITU-01 94.46
baseline-test-00 94.17
CBNU-01 94.07

Morph Accuracy
CHARLES-SAARLAND-02 93.23
UFALPRAGUE-01 93.19
RUG-01 90.53
EDINBURGH-01 88.93
RUG-02 88.80

Lemma Levenshtein
UFALPRAGUE-01 0.098
CHARLES-SAARLAND-02 0.108
ITU-01 0.108
CBNU-01 0.127
baseline-test-00 0.129

Morph F1
CHARLES-SAARLAND-02 96.02
UFALPRAGUE-01 95.92
RUG-01 94.54
RUG-02 93.22
EDINBURGH-01 92.89

Table 2: Top 5 results in lemma accuracy, lemma Levenshtein, morphological accuracy and morphological F1.

Word
BERT

Feature Lemma Morph
Embeddings Regularization Acc Lev Acc F1
7 7 7 94.251 0.168 90.506 93.585
3 FT only 7 7 95.229 0.109 91.704 94.745
3 7 7 95.294 0.107 91.828 94.849
7 3 7 95.440 0.106 92.789 95.614
3 3 7 95.534 0.104 92.980 95.755
7 7 3 w = 1 95.120 0.111 91.468 94.672
3 7 3 w = 1 95.365 0.104 92.135 95.189
3 3 3 w = 1 95.516 0.105 93.148 95.957
3 3 3 w = 0.5 95.534 0.105 93.172 95.939
3 3 3 w = 2 95.539 0.105 93.175 95.965

Table 3: Lemma accuracy, lemma Levenshtein, morphological accuracy, and morphological F1 results of ablation
experiments. For comparison, the FT only embeddings denote the pretrained embeddings of (Grave et al., 2018).

Regular Merged Without
Ensembling

Lemma Morph
Model Model BERT Acc Lev Acc F1
3 7 7 7 95.516 0.105 93.148 95.957
3 3 7 7 95.702 0.101 93.322 96.081
3 7 3 7 95.524 0.104 93.177 95.966
3 3 3 7 95.709 0.100 93.353 96.090
3 7 7 3 Every model 95.606 0.102 93.257 95.997
3 3 7 3 configuration 95.785 0.098 93.422 96.123
3 7 3 3 has independent 95.598 0.102 93.300 96.035
3 3 3 3 3-model ensemble 95.776 0.099 93.464 96.160

The competition entry, which allows ensembling any combination of the 9 models
3 3 3 3 Any combination 95.776 0.098 93.186 95.924

Table 4: Lemma accuracy, lemma Levenshtein, morphological accuracy, and morphological F1 results of model
combinations. When not specified otherwise, all models utilize pretrained word embeddings, BERT, and feature
regularization with weight w = 1.



Our participant system placed as one of the win-
ning systems of the shared task. In the lemmati-
zation task, our system exceeds all the submitted
systems by a wide margin with lemmatization ac-
curacy 95.78 (second best was 95.00, third 94.46).
In the morphological analysis, our system placed
tightly second: our morphological analysis accu-
racy was 93.19, the winning system’s 93.23.

4.2 Ablation Experiments
The effect of pretrained word embeddings, BERT
contextualized embeddings and regularization
with morphological features is evaluated in Ta-
ble 3. Even the baseline model without any of the
mentioned enhancements achieves relatively high
performance and would place third in both lemma-
tization and tagging accuracy (when not consider-
ing our competition entry).

Pretrained word embeddings improve the per-
formance of both the lemmatizer and the tagger
by a substantial margin. For comparison with
the embeddings we trained on CoNLL 2017 UD
Shared Task plain texts, we also evaluate the em-
beddings provided by Grave et al. (2018), which
achieve only slightly lower performance than our
embeddings – we presume the difference is caused
mostly by different tokenization, given that the
training data comes from Wikipedia and Com-
monCrawl in both cases.

BERT contextualized embeddings further con-
siderably improve POS tagging performance, and
have minor impact on lemmatization improve-
ment.

When used in isolation, the regularization with
morphological categories provides quite consid-
erable gain for both lemmatization and tagging,
nearly comparable to the effect of adding precom-
puted word embeddings. Combining all the en-
hancements together then produces a model with
the highest performance.

4.3 Model Combinations
For every corpus, we consider three model config-
urations – a regular model, then a model trained on
the merged corpora of a corresponding language,
and a model without BERT embeddings (which
we consider since even if BERT embeddings can
be computed for any language, the results might be
misleading if the language was not present in the
BERT training data). For every model configura-
tion, we train three models using different random
initialization.

The test set results of choosing the best model
configuration on a development set are provided
in Table 4. Employing the merged model in ad-
dition to the regular model increases the perfor-
mance slightly, and the introduction of no-BERT
model results in minimal gains. Finally, ensem-
bling the models of a same configuration provides
the highest performance.

As discussed in Section 3.6, our competition en-
try selected the ensemble using arbitrary subset of
all the nine models which achieved best perfor-
mance on the development data. This choice re-
sulted in overfitting on POS tag prediction, with
results worse than no ensembling.

4.4 Detailed Results

Tables 5 and 6 present detailed results of our best
system from Table 4. Note that while this sys-
tem is not our competition entry, it utilizes the
same models as the competition entry, only com-
bined in a different way. Furthermore, because
one model configuration was chosen for every lan-
guage, we can examine which configuration per-
formed best, and quantify what the exact effect of
corpora merging and BERT embeddings are.

5 Conclusions

We described our system which participated in the
SIGMORPHON 2019 Shared Task: Crosslingual-
ity and Context in Morphology, Task 2: contextual
morphological analysis and lemmatization, which
placed first in lemmatization and closely second
in morphological analysis. The contributed archi-
tecture is a modified UDPipe 2.0 with three im-
provements: addition of pretrained contextualized
BERT embeddings, regularization with morpho-
logical categories and corpora merging in some
languages. We described these improvements and
published the related ablation experiment results.
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Treebank Words Lemma POS Feats/ Lemma Morph Model Merged ∆ BERT ∆ B
Rules Tags /Cats Acc Lev Acc F1 R M N LAcc MAcc LAcc MAcc T

Afrikaans-AfriBooms 38 843 185 41 29/ 9 99.10 0.01 99.26 99.40 3 7 7 0.15 0.64 3
Akkadian-PISANDUB 1 425 548 12 11/ 1 55.94 1.50 86.63 86.46 7 7 3 0.99 -4.45 7
Amharic-ATT 7 952 1 54 35/10 100.00 0.00 89.70 93.24 3 7 7 0.00 0.57 3
Ancient Greek-PROIEL 171 478 6 843 887 49/14 94.04 0.15 92.99 97.92 7 3 7 0.65 0.30 -0.04 -0.01 7
Ancient Greek-Perseus 162 164 9 088 795 44/11 91.91 0.21 91.91 96.74 7 3 7 0.78 0.26 -0.05 0.01 7
Arabic-PADT 225 494 3 174 287 35/12 96.09 0.11 95.38 97.48 3 7 7 -0.09 0.02 0.35 0.66 3
Arabic-PUD 16 845 3 919 371 39/12 79.26 0.78 86.52 95.30 3 7 7 0.46 3.22 3
Armenian-ArmTDP 18 595 277 360 65/16 95.91 0.08 93.63 96.54 3 7 7 0.62 1.90 3
Bambara-CRB 11 205 311 43 32/ 9 92.10 0.12 94.00 95.62 3 7 7 -0.84 0.07 7
Basque-BDT 97 336 1 168 865 136/15 97.14 0.06 93.56 96.47 3 7 7 0.53 4.37 3
Belarusian-HSE 6 541 229 291 46/14 92.39 0.15 90.28 95.24 3 7 7 0.00 3.16 3
Breton-KEB 8 062 329 87 36/13 93.03 0.15 91.44 93.95 3 7 7 0.09 0.89 3
Bulgarian-BTB 124 749 605 316 44/15 98.34 0.05 97.84 99.03 3 7 7 0.25 0.21 3
Buryat-BDT 8 029 132 167 41/12 90.38 0.23 87.98 89.94 3 7 7 0.76 1.35 7
Cantonese-HK 5 121 17 13 12/ 1 100.00 0.00 91.25 88.86 3 7 7 0.00 0.54 3
Catalan-AnCora 427 672 579 145 41/13 99.32 0.01 98.66 99.35 3 7 7 0.09 0.34 3
Chinese-CFL 5 688 14 13 12/ 1 99.76 0.00 94.21 93.34 3 7 7 0.00 -0.12 0.00 3.43 3
Chinese-GSD 98 734 26 27 21/ 8 99.98 0.00 96.64 96.51 3 7 7 0.00 0.11 -0.01 2.61 3
Coptic-Scriptorium 17 624 181 53 26/ 9 97.31 0.06 95.85 96.82 3 7 7 -0.05 -0.56 7
Croatian-SET 157 446 578 818 51/16 97.45 0.05 94.16 97.67 3 7 7 0.22 0.83 3
Czech-CAC 395 043 929 960 57/15 99.31 0.01 97.78 99.20 3 7 7 -0.18 -0.37 0.06 0.73 3
Czech-CLTT 28 649 229 350 48/15 99.22 0.02 95.42 98.30 7 3 7 0.11 -0.06 0.37 1.00 3
Czech-FicTree 133 300 692 971 53/15 98.80 0.02 96.30 98.53 3 7 7 0.36 -0.23 0.12 0.65 3
Czech-PDT 1 207 922 1 661 1 123 57/15 99.37 0.01 98.02 99.25 3 7 7 -0.05 -0.15 0.04 0.44 3
Czech-PUD 14 814 349 549 56/15 98.13 0.03 94.46 98.14 7 3 7 2.59 3.94 0.77 3.84 3
Danish-DDT 80 964 426 128 41/14 98.30 0.03 97.76 98.49 3 7 7 0.44 0.84 3
Dutch-Alpino 167 187 631 43 33/10 98.45 0.03 97.59 98.20 7 3 7 -0.03 -0.03 0.12 0.39 3
Dutch-LassySmall 78 638 527 41 31/10 98.34 0.03 97.86 98.29 7 3 7 0.28 0.18 0.07 0.56 3
English-EWT 204 839 235 76 36/12 99.01 0.02 97.53 98.27 3 7 7 -0.18 -0.38 0.30 0.99 3
English-GUM 63 862 160 74 37/12 98.53 0.02 97.29 98.01 3 7 7 -0.84 -1.23 0.26 1.23 3
English-LinES 66 428 166 78 36/12 98.62 0.02 97.52 98.14 3 7 7 -0.83 -1.13 0.22 0.87 3
English-PUD 16 921 70 66 35/12 97.79 0.03 96.32 97.28 3 7 7 -1.76 -0.54 0.83 2.55 3
English-ParTUT 39 302 115 83 33/10 98.37 0.03 96.25 96.92 3 7 7 -0.48 -2.36 0.21 1.19 3
Estonian-EDT 346 986 3 294 494 52/14 96.59 0.06 96.72 98.37 3 7 7 0.35 0.44 3
Faroese-OFT 7 994 297 234 36/13 90.30 0.18 88.28 94.29 3 7 7 1.64 2.11 7
Finnish-FTB 127 536 1 211 660 53/12 96.05 0.08 96.55 97.98 3 7 7 0.37 0.44 3
Finnish-PUD 12 553 889 284 50/12 88.90 0.19 96.58 98.33 7 3 7 2.15 1.97 1.21 2.09 3
Finnish-TDT 161 582 2 650 565 51/12 95.91 0.08 96.81 98.21 3 7 7 -0.20 -0.08 0.34 0.39 3
French-GSD 320 404 736 134 40/13 98.82 0.02 97.82 98.71 3 7 7 0.01 -0.15 0.11 0.38 3
French-ParTUT 22 627 219 111 34/10 96.66 0.06 95.84 98.02 3 7 7 0.12 0.88 3
French-Sequoia 56 484 317 126 35/12 99.01 0.02 98.15 99.13 3 7 7 0.14 0.56 3
French-Spoken 28 182 208 13 12/ 1 98.91 0.02 98.12 98.15 3 7 7 0.14 0.25 3
Galician-CTG 111 034 160 14 13/ 2 98.87 0.02 98.28 98.12 3 7 7 0.00 -0.04 0.11 0.29 3
Galician-TreeGal 20 566 147 161 44/13 98.49 0.03 95.71 97.63 3 7 7 -0.03 -11.16 0.38 1.27 3
German-GSD 234 161 841 600 41/12 97.70 0.05 89.89 95.64 3 7 7 0.21 0.79 3
Gothic-PROIEL 44 660 1 130 540 43/13 95.61 0.09 90.50 96.39 7 7 3 -0.04 -0.13 7
Greek-GDT 50 567 1 285 243 40/12 96.85 0.08 95.89 98.36 3 7 7 0.09 0.86 3
Hebrew-HTB 129 425 387 236 38/13 98.18 0.03 97.51 98.24 3 7 7 0.19 0.45 3
Hindi-HDTB 281 948 286 738 49/12 98.89 0.01 93.23 97.83 3 7 7 0.07 0.53 3
Hungarian-Szeged 33 463 329 427 59/14 97.45 0.05 95.22 98.32 3 7 7 0.25 2.21 3
Indonesian-GSD 97 213 65 129 27/ 9 99.62 0.01 92.06 94.75 3 7 7 0.05 0.67 3
Irish-IDT 18 996 476 163 37/12 92.06 0.18 86.41 91.51 3 7 7 0.00 0.49 3
Italian-ISDT 239 381 321 142 38/11 98.86 0.02 98.30 99.03 7 3 7 0.01 0.19 0.13 0.33 3
Italian-PUD 18 834 167 159 38/14 97.57 0.05 96.33 98.34 3 7 7 0.41 -11.18 0.46 2.19 3
Italian-ParTUT 44 556 194 110 34/11 99.26 0.02 98.66 99.16 7 3 7 0.78 0.85 0.04 0.58 3
Italian-PoSTWITA 99 067 945 122 33/10 97.82 0.05 96.52 97.49 3 7 7 -0.13 -0.10 0.33 0.67 3

Table 5: For every corpus, its size, the number of unique lemma rules, the number of unique POS tags, and the
number of morphological features and morphological categories is presented. Then the test set results of lemma
accuracy, lemma Levenshtein, morphological accuracy and morphological F1 follow, using a model achieving best
score on the development set. We consider the regular model R, or a model on the merged corpus M and a model
without BERT embeddings N. Finally, we show the increase of the merged model to the regular model, the increase
of the regular model to the no-BERT model, and indicate if the language is present in BERT training data (BT).



Treebank Words Lemma POS Feats/ Lemma Morph Model Merged ∆ BERT ∆ B
Rules Tags /Cats Acc Lev Acc F1 R M N LAcc MAcc LAcc MAcc T

Japanese-GSD 147 897 104 13 12/ 1 99.65 0.00 98.14 97.91 7 3 7 0.03 -0.02 -0.01 0.23 3
Japanese-Modern 11 556 44 14 12/ 2 98.67 0.01 96.80 96.87 3 7 7 -0.14 -0.20 -0.20 0.33 3
Japanese-PUD 21 650 51 12 11/ 1 99.77 0.00 99.32 99.25 7 3 7 0.64 0.99 0.19 0.34 3
Komi Zyrian-IKDP 847 85 114 40/11 85.94 0.25 76.56 86.19 7 3 7 2.35 0.78 1.56 5.47 7
Komi Zyrian-Lattice 1 653 58 184 46/13 87.36 0.28 73.63 85.36 7 3 7 1.10 3.85 0.55 1.10 7
Korean-GSD 64 311 1 470 13 12/ 1 93.77 0.12 96.47 95.92 3 7 7 -0.63 -5.78 0.59 1.08 3
Korean-Kaist 280 494 3 137 13 12/ 1 95.65 0.07 97.31 96.98 3 7 7 -0.03 -0.23 0.17 0.31 3
Korean-PUD 13 306 9 109 29/11 99.07 0.01 94.06 96.23 3 7 7 -10.90 -16.72 0.06 2.67 3
Kurmanji-MG 8 077 275 148 41/14 94.71 0.10 85.57 91.52 3 7 7 0.09 0.80 7
Latin-ITTB 281 652 726 539 46/12 98.99 0.02 96.85 98.49 3 7 7 0.10 0.02 0.04 0.13 3
Latin-PROIEL 160 257 1 555 872 48/13 97.28 0.06 92.40 97.23 7 3 7 0.07 0.12 0.02 0.06 3
Latin-Perseus 23 339 879 427 43/11 93.32 0.14 86.97 94.28 7 3 7 2.99 2.60 0.17 0.48 3
Latvian-LVTB 121 760 677 644 49/15 97.22 0.05 95.48 97.74 3 7 7 0.04 0.22 3
Lithuanian-HSE 4 301 209 337 45/13 87.27 0.26 82.34 89.59 3 7 7 0.68 2.88 3
Marathi-UFAL 3 055 236 222 45/11 76.42 0.66 67.21 79.00 3 7 7 -0.54 0.54 3
Naija-NSC 10 280 7 13 12/ 1 99.93 0.00 96.28 95.06 3 7 7 0.00 0.45 7
North Sami-Giella 21 380 1 019 314 51/13 92.18 0.16 91.78 94.96 3 7 7 -0.25 0.04 7
Norwegian-Bokmaal 248 922 445 142 42/14 99.14 0.01 97.88 98.77 3 7 7 0.03 0.31 3
Norwegian-Nynorsk 241 028 478 138 40/12 98.96 0.02 97.48 98.49 7 3 7 0.05 -0.01 0.11 0.43 3
Norwegian-NynorskLIA 10 843 111 100 37/14 98.15 0.03 96.30 97.25 7 3 7 0.35 0.35 -0.07 0.43 3
Old Church Slavonic

-PROIEL 45 894 1 796 726 48/13 94.71 0.11 92.92 97.06 3 7 7 -0.07 0.13 7

Persian-Seraji 122 574 772 104 31/10 96.86 0.16 98.30 98.67 3 7 7 0.27 0.60 3
Polish-LFG 104 730 819 609 50/14 97.79 0.04 96.42 98.55 3 7 7 -0.07 -0.89 0.18 0.72 3
Polish-SZ 66 430 695 717 51/15 97.45 0.04 94.61 97.89 3 7 7 0.34 1.94 3
Portuguese-Bosque 180 773 402 247 43/12 98.70 0.02 96.09 98.18 3 7 7 -4.84 -5.27 0.19 0.76 3
Portuguese-GSD 255 690 175 19 17/ 5 99.07 0.05 98.88 98.96 3 7 7 -2.49 -0.62 0.19 0.49 3
Romanian-Nonstandard 156 320 2 094 288 45/14 96.78 0.06 94.62 97.27 7 3 7 0.02 -0.02 0.23 0.38 3
Romanian-RRT 174 747 678 254 47/14 98.50 0.03 97.97 98.68 3 7 7 -0.03 -0.05 0.15 0.30 3
Russian-GSD 79 989 553 668 47/14 97.93 0.04 94.38 97.64 3 7 7 0.89 4.05 3
Russian-PUD 15 433 309 525 46/15 94.69 0.09 90.24 96.45 3 7 7 0.96 -7.25 1.88 7.14 3
Russian-SynTagRus 886 711 1 744 678 48/13 98.92 0.02 98.05 99.05 3 7 7 -0.04 -0.08 0.24 1.02 3
Russian-Taiga 16 762 434 383 47/13 95.33 0.10 89.36 94.74 7 3 7 2.64 -0.40 2.14 7.02 3
Sanskrit-UFAL 1 450 244 232 54/14 64.82 0.89 50.25 68.99 7 7 3 0.00 0.00 7
Serbian-SET 68 933 359 421 39/12 98.27 0.03 96.68 98.40 3 7 7 0.50 1.04 3
Slovak-SNK 85 257 598 830 52/15 97.49 0.04 94.96 97.96 3 7 7 0.28 1.30 3
Slovenian-SSJ 112 136 369 744 52/15 98.84 0.02 96.99 98.59 7 3 7 0.06 0.14 0.28 1.03 3
Slovenian-SST 23 759 214 473 49/14 97.74 0.05 93.52 95.96 7 3 7 1.53 1.68 0.35 0.66 3
Spanish-AnCora 439 925 594 173 42/13 99.48 0.01 98.63 99.28 3 7 7 -0.24 -0.19 0.17 0.35 3
Spanish-GSD 345 545 310 239 52/14 99.31 0.01 95.67 97.97 3 7 7 -0.27 -0.50 0.05 0.26 3
Swedish-LinES 63 365 332 135 38/11 98.05 0.04 94.66 97.47 3 7 7 -0.19 -0.56 -0.02 0.57 3
Swedish-PUD 14 952 171 94 36/11 95.85 0.07 95.39 97.25 7 3 7 0.00 -0.04 0.74 2.21 3
Swedish-Talbanken 77 238 291 119 38/11 98.60 0.02 97.84 98.87 3 7 7 -0.16 -0.21 0.08 0.69 3
Tagalog-TRG 230 19 33 31/11 91.89 0.30 91.89 95.04 3 7 7 -5.41 0.00 3
Tamil-TTB 7 634 99 172 47/13 96.65 0.07 91.85 96.11 3 7 7 1.45 2.01 3
Turkish-IMST 46 417 211 985 56/13 96.84 0.06 92.83 96.60 3 7 7 -0.31 -0.83 0.15 0.82 3
Turkish-PUD 13 380 103 503 62/13 88.02 0.30 88.69 95.07 3 7 7 1.23 -2.39 0.33 2.67 3
Ukrainian-IU 93 264 629 597 49/14 97.84 0.04 95.40 97.93 3 7 7 0.25 1.51 3
Upper Sorbian-UFAL 8 959 222 417 49/14 93.46 0.11 87.11 93.71 3 7 7 0.56 2.89 7
Urdu-UDTB 110 682 448 740 49/12 97.10 0.05 80.95 93.44 3 7 7 0.34 0.82 3
Vietnamese-VTB 35 237 51 13 11/ 2 99.91 0.00 93.49 92.71 3 7 7 0.05 1.06 3
Yoruba-YTB 2 158 3 29 19/ 4 97.67 0.02 91.86 92.66 3 7 7 0.00 0.00 3

Table 6: For every corpus, its size, the number of unique lemma rules, the number of unique POS tags, and the
number of morphological features and morphological categories is presented. Then the test set results of lemma
accuracy, lemma Levenshtein, morphological accuracy and morphological F1 follow, using a model achieving best
score on the development set. We consider the regular model R, or a model on the merged corpus M and a model
without BERT embeddings N. Finally, we show the increase of the merged model to the regular model, the increase
of the regular model to the no-BERT model, and indicate if the language is present in BERT training data (BT).
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